يعرض 1 - 20 نتائج من 88 نتيجة بحث عن '"Rodríguez, María Margarita"', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Alsenani, Tahani A, Rodríguez, María Margarita, Ghiglione, Barbara, Taracila, Magdalena A, Mojica, Maria F, Rojas, Laura J, Hujer, Andrea M, Gutkind, Gabriel, Bethel, Christopher R, Rather, Philip N, Introvigne, Maria Luisa, Prati, Fabio, Caselli, Emilia, Power, Pablo, van den Akker, Focco, Bonomo, Robert A

    مصطلحات موضوعية: CTX-M, CTX-M-96, ESBL, KPC, KPC-2, MB_076, S02030, boronate, carbapenemase, β-lactamases

    Relation: info:eu-repo/semantics/altIdentifier/pmid/36602311; info:eu-repo/semantics/altIdentifier/wos/WOS:000915250100001; volume:67; issue:1; firstpage:e0093022; lastpage:e0093032; journal:ANTIMICROBIAL AGENTS AND CHEMOTHERAPY; https://hdl.handle.net/11380/1303026; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85147777020

  2. 2
    Academic Journal

    المساهمون: de Jonge, Boudewijn L., MINCyT | Agencia Nacional de Promoción Científica y Tecnológica, Consejo Nacional de Investigaciones Científicas y Técnicas

    المصدر: Antimicrobial Agents and Chemotherapy ; volume 68, issue 8 ; ISSN 0066-4804 1098-6596

  3. 3
    Academic Journal

    المصدر: Agronomía Colombiana; Vol. 38 Núm. 3 (2020); 325-334 ; Agronomía Colombiana; Vol. 38 No. 3 (2020); 325-334 ; Agronomía Colombiana; v. 38 n. 3 (2020); 325-334 ; 2357-3732 ; 0120-9965

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/agrocol/article/view/79629/77622; Andre, C.M., M. Ghislain, P. Bertin, M. Oufir, M.D.R. Herrera, L. Hoffmann, J. Hausman, Y. Larondelle, and D. Evers. 2007. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem. 55(2), 366-378. Doi:10.1021/jf062740i; André, C.M., M. Oufir, L. Hoffmann, J.F. Hausman, H. Rogez, Y. Larondelle, and D. Evers. 2009. Influence of environment and genotype on polyphenol compounds and in vitro antioxidant capacity of native Andean potatoes (Solanum tuberosum L.). J. Food Compost. Anal. 22(6), 517-524. Doi:10.1016/j.jfca.2008.11.010; Bellumori, M., M. Innocenti, M. Michelozzi, L. Cerretani, and N. Mulinacci. 2017. Coloured-fleshed potatoes after boiling: promising sources of known antioxidant compounds. J. Food Compost. Anal. 59, 1-7. Doi:10.1016/j.jfca.2017.02.004; Benzie, F. and J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Anal. Biochem. 239(1), 70-76. Doi:10.1006/abio.1996.0292; Brown, C.R., R.W. Durst, R. Wrolstad, and W. de Jong. 2008. Variability of phytonutrient content of potato in relation to growing location and cooking method. Potato Res. 51, 259-270. Doi:10.1007/s11540-008-9115-0; Burgos, G., W. Amoros, L. Muñoa, P. Sosa, E. Cayhualla, C. Sánchez, C. Díaz, and M. Bonierbale. 2013. Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. J. Food Compost. Anal. 30(1), 6-12. Doi:10.1016/j.jfca.2012.12.001; Burgos, G., L. Muñoa, P. Sosa, E. Cayhualla, R. Carpio, and T. Felde. 2014. Procedures for chemical analysis of potato and sweetpotato samples at CIP’s Quality and Nutrition Laboratory. CIP Communication and public awareness department (CPAD), Lima. Doi:10.4160/9789290604440; Camire, M.E., S. Kubow, and D.J. Donnelly. 2009. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 49(10), 823-840. Doi:10.1080/10408390903041996; Cerón-Lasso, M., A.F. Alzate-Arbeláez, B.A. Rojano, and C.E. Ñústez-López. 2018. Composición fisicoquímica y propiedades antioxidantes de genotipos nativos de papa criolla (Solanum tuberosum Grupo Phureja). Inf. Tecnol. 29(3), 205-216. Doi:10.4067/S0718-07642018000300205; Craft, B.D., A.L. Kerrihard, R. Amarowicz, and R.B. Pegg. 2012. Phenol-based antioxidants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. 11(2), 148-173. Doi:10.1111/j.1541-4337.2011.00173.x; Cuéllar-Cepeda, F., M. Parra-Galindo, J. Urquijo, L. Restrepo-Sánchez, T. Mosquera-Vásquez, and C. Narváez-Cuenca. 2019. Influence of genotype, agro-climatic conditions, cooking method, and their interactions on individual carotenoids and hydroxycinnamic acids contents in tubers of diploid potatoes. Food Chem. 288, 127-138. Doi:10.1016/j.foodchem.2019.03.015; Devaux, A., P. Kromann, and O. Ortiz. 2014. Potatoes for sustainable global food security. Am. J. Potato Res. 57(3-4),185-199. Doi:10.1007/s11540-014-9265-1; Ezekiel, R., N. Singh, S. Sharma, and A. Kaur. 2013. Beneficial phytochemicals in potato - a review. Food Res. Int. 50(2), 487-496. Doi:10.1016/j.foodres.2011.04.025; FAO. 2018. Commodity balances - crops primary equivalent. URL: http://www.fao.org/faostat/en/#data/BC (accessed 10 April 2018).; Fang, J. 2015. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 31(11-12), 1301-1306. Doi:10.1016/j.nut.2015.04.015; Farzadfar, S., F. Zarinkamar, and M. Hojati. 2017. Magnesium and manganese affect photosynthesis, essential oil composition and phenolic compounds of Tanacetum parthenium. Plant Physiol. Biochem. 112, 207-217. Doi:10.1016/j.plaphy.2017.01.002; Gómez, M. 2005. Guía técnica para el manejo nutricional de los cultivos: diagnóstico, interpretación y recomendación de planes de fertilización. Microfertisa, Bogota.; Gómez, M., M. López, and Y. Cifuentes. 2006. El manganeso como factor positivo en la producción de papa (Solanum tuberosum L.) y arveja (Pisum sativum L.) en suelos del altiplano Cundiboyacense. Agron. Colomb. 24(2), 340-347.; Gutiérrez-Quequezana, L., A.L. Vuorinen, H. Kallio, and B. Yang. 2020. Impact of cultivar, growth temperature and developmental stage on phenolic compounds and ascorbic acid in purple and yellow potato tubers. Food Chem. 326, 126966. Doi:10.1016/j.foodchem.2020.126966; Hamouz, K., J. Lachman, P. Dvořák, M. Jůzl, and V. Pivec. 2006. The effect of site conditions, variety and fertilization on the content of polyphenols in potato tubers. Plant Soil Environ. 52(9), 407-412. Doi:10.17221/3459-PSE; Klein, L.B., S. Chandra, and N.I. Mondy. 1982. Effect of magnesium fertilization on the quality of potatoes: total nitrogen, nonprotein nitrogen, protein, amino acids, minerals, and firmness. J. Agric. Food Chem. 30(4), 754-757. Doi:10.1021/jf00112a032; Kotíková, Z., M. Šulc, J. Lachman, V. Pivec, M. Orsák, and K. Hamouz. 2016. Carotenoid profile and retention in yellow-, purpleand red-fleshed potatoes after thermal processing. Food Chem. 197(A), 992-1001. Doi:10.1016/j.foodchem.2015.11.072; Lachman, J., K. Hamouz, M. Orsák, V. Pivec, and P. Dvořák. 2008. The influence of flesh colour and growing locality on polyphenolic content and antioxidant activity in potatoes. Sci. Hortic. 117(2), 109-114. Doi:10.1016/j.scienta.2008.03.030; Lachman, J., K. Hamouz, M. Orsák, V. Pivec, K. Hejtmánková, K. Pazderů, P. Dvořák, and J. Čepl. 2012. Impact of selected factors - cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chem. 113(4), 1107-1116. Doi:10.1016/j.foodchem.2011.07.077; Lachman, J., K. Hamouz, M. Orsák, and Z. Kotíková. 2016. Carotenoids in potatoes - a short overview. Plant Soil Environ. 62(10), 474-481. Doi:10.17221/459/2016-PSE; Mattila, P. and J. Hellström. 2007. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compost. Anal. 20(3-4), 152-160. Doi:10.1016/j.jfca.2006.05.007; Maurer, M., J. Mein, S. Chaudhuri, and H. Constant. 2014. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops. Food Chem. 165, 475-482. Doi:10.1016/j.foodchem.2014.05.038; Narváez-Cuenca, C.E., J.P. Vincken, C. Zheng, and H. Gruppen. 2013. Diversity of (dihydro) hydroxycinnamic acid conjugates in Colombian potato tubers. Food Chem. 139 (1-4), 1087-1097. Doi:10.1016/j.foodchem.2013.02.018; Narváez-Cuenca, C.E., C. Peña, L.P. Restrepo-Sánchez, A. Kushalappa, and T. Mosquera. 2018. Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. J. Food Compost. Anal. 66, 179-184. Doi:10.1016/j.jfca.2017.12.019; Navarre, D.A., S.S. Pillai, R. Shakya, and M.J. Holden. 2011. HPLC profiling of phenolics in diverse potato genotypes. Food Chem. 127(1), 34-41. Doi:10.1016/j.foodchem.2010.12.080; Oertel, A., A. Matros, A. Hartmann, P. Arapitsas, K.J. Dehmer, S. Martens, and H.P. Mock. 2017. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 246, 281-297. Doi:10.1007/s00425-017-2718-4; Palacios, C.A., S. Jaramillo, L.H. González, and J.M. Cotes. 2008. Efecto de la fertilización sobre la calidad de la papa para procesamiento en dos suelos antioqueños con propiedades ándicas. Agron. Colomb. 26(3), 487-496.; Pérez, L., L. Rodríguez, and M. Gómez. 2008. Efecto del fraccionamiento de la fertilización con N, P, K y Mg y la aplicación de los micronutrientes B, Mn y Zn en el rendimiento y calidad de papa criolla (Solanum phureja) variedad Criolla Colombia. Agron. Colomb. 26(3), 477-486.; Pillai, S.S., D.A. Navarre, and J. Bamberg. 2013. Analysis of polyphenols, anthocyanins and carotenoids in tubers from Solanum tuberosum Group Phureja, Stenotomum and Andigena. Am. J. Potato Res. 90(5), 440-450. Doi:10.1007/s12230-013-9318-z; Piñeros-Niño, C., C.E. Narváez-Cuenca, A.C. Kushalappa, and T. Mosquera. 2017. Hydroxycinnamic acids in cooked potato tubers from Solanum tuberosum group Phureja. Food Sci. Nutr. 5(3), 380-389. Doi:10.1002/fsn3.403; R, Core Team. 2019. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna. URL: http://www.R-project.org/. (accessed 5 May 2018).; Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9-10), 1231-1237. Doi:10.1016/S0891-5849(98)00315-3; Reddivari, L., A.L. Hale, and J.C. Miller. 2007. Determination of phenolic content, composition and their contribution to antioxidant activity in specialty potato selections. Am. J. Potato Res. 84, 275-282. Doi:10.1007/BF02986239; Reyes, L., J. Miller, and L. Cisneros-Zevallos. 2005. Antioxidant capacity, anthocyanins and total phenolics in purple- and red-fleshed potato (Solanum tuberosum L.) genotypes. Am. J. Potato Res. 82, 271-277. Doi:10.1007/BF02871956; Rodríguez-Amaya, D.B. 2018. Update on natural food pigments - a mini-review on carotenoids, anthocyanins, and betalains. Food Res. Int. 124, 200-205. Doi:10.1016/j.foodres.2018.05.028; Ruenroengklin, N., J. Sun, J. Shi, S.J. Xue, and Y. Jiang. 2009. Role of endogenous and exogenous phenolics in litchi anthocyanin degradation caused by polyphenol oxidase. Food Chem. 115(4), 1253-1256. Doi:10.1016/j.foodchem.2009.01.040; Rytel, E., A. Tajner-Czopek, A. Kita, M. Aniołowska, A.Z. Kucharska, A. Sokół-Łętowska, and K. Hamouz. 2014. Content of polyphenols in coloured and yellow fleshed potatoes during dices processing. Food Chem. 161, 224-229. Doi:10.1016/j.foodchem.2014.04.002; Tatarowska, B., D. Milczarek, E. Wszelaczyńska, J. Pobereżny, N. Keutgen, A.J. Keutgen, and B. Flis. 2019. Carotenoids variability of potato tubers in relation to genotype, growing location and year. Am. J. Potato Res. 96(5), 493-504. Doi:10.1007/s12230-019-09732-9; Tian, J., J. Chen, F. Lv, S. Chen, J. Chen, D. Liu, and X. Ye. 2016. Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes. Food Chem. 197(B), 1264-1270. Doi:10.1016/j.foodchem.2015.11.049; Tierno, R., D. Hornero-Méndez, L. Gallardo-Guerrero, R. López-Pardo, and J.I. Ruiz de Galarreta. 2015. Effect of boiling on the total phenolic, anthocyanin and carotenoid concentrations of potato tubers from selected cultivars and introgressed breeding lines from native potato species. J. Food Compost. Anal. 41, 58-65. Doi:10.1016/j.jfca.2015.01.013; Tierno, R., A. López, P. Riga, S. Arazuri, C. Jarén, L. Benedicto, and J.I. Ruiz de Galarreta. 2016. Phytochemicals determination and classification in purple and red fleshed potato tubers by analytical methods and near infrared spectroscopy. J. Sci. Food Agric. 96(6), 1888-1899. Doi:10.1002/jsfa.7294; Valiñas, M.A., M.L. Lanteri, A. ten Have, and A.B. Andreu. 2017. Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chem. 229, 837-846. Doi:10.1016/j.foodchem.2017.02.150; Villa, M., L. Rodríguez, and M. Gómez. 2011. Effect of edaphic and foliar management of manganese on the yield of the Criolla Colombia cultivar. Agron. Colomb. 29(3), 447-454.; Waterhouse, A.L. 2002. Determination of total phenolics. Current Protoc. Food Analyt. Chem. 6(1), 1-8. Doi:10.1002/0471142913.fai0101s06; https://revistas.unal.edu.co/index.php/agrocol/article/view/79629

  4. 4
    Report
  5. 5
  6. 6
    Academic Journal

    المساهمون: Agencia Nacional de Promoción Científica y Tecnológica, Cleveland Department of Veterans Affairs, HHS | NIH | National Institute of Allergy and Infectious Diseases, Universidad de Buenos Aires

    المصدر: Antimicrobial Agents and Chemotherapy ; volume 62, issue 6 ; ISSN 0066-4804 1098-6596

  7. 7
    Academic Journal

    المساهمون: Joint Programme Initiative on Antimicrobial Resistance, MINCyT | Agencia Nacional de Promoción Científica y Tecnológica

    المصدر: Antimicrobial Agents and Chemotherapy ; volume 62, issue 8 ; ISSN 0066-4804 1098-6596

  8. 8
    Academic Journal
  9. 9
    Dissertation/ Thesis
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
  18. 18
    Electronic Resource

    Additional Titles: Compuestos antioxidantes en papa diploide: Efecto de la aplicación foliar de magnesio y manganeso

    المصدر: Agronomía Colombiana; Vol. 38 Núm. 3 (2020); 325-334; Agronomía Colombiana; Vol. 38 No. 3 (2020); 325-334; Agronomía Colombiana; v. 38 n. 3 (2020); 325-334; 2357-3732; 0120-9965

    URL: https://revistas.unal.edu.co/index.php/agrocol/article/view/79629/77622
    https://revistas.unal.edu.co/index.php/agrocol/article/view/79629/77622
    *ref*/Andre, C.M., M. Ghislain, P. Bertin, M. Oufir, M.D.R. Herrera, L. Hoffmann, J. Hausman, Y. Larondelle, and D. Evers. 2007. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem. 55(2), 366-378. Doi: 10.1021/jf062740i
    *ref*/André, C.M., M. Oufir, L. Hoffmann, J.F. Hausman, H. Rogez, Y. Larondelle, and D. Evers. 2009. Influence of environment and genotype on polyphenol compounds and in vitro antioxidant capacity of native Andean potatoes (Solanum tuberosum L.). J. Food Compost. Anal. 22(6), 517-524. Doi: 10.1016/j.jfca.2008.11.010
    *ref*/Bellumori, M., M. Innocenti, M. Michelozzi, L. Cerretani, and N. Mulinacci. 2017. Coloured-fleshed potatoes after boiling: promising sources of known antioxidant compounds. J. Food Compost. Anal. 59, 1-7. Doi: 10.1016/j.jfca.2017.02.004
    *ref*/Benzie, F. and J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Anal. Biochem. 239(1), 70-76. Doi: 10.1006/abio.1996.0292
    *ref*/Brown, C.R., R.W. Durst, R. Wrolstad, and W. de Jong. 2008. Variability of phytonutrient content of potato in relation to growing location and cooking method. Potato Res. 51, 259-270. Doi: 10.1007/s11540-008-9115-0
    *ref*/Burgos, G., W. Amoros, L. Muñoa, P. Sosa, E. Cayhualla, C. Sánchez, C. Díaz, and M. Bonierbale. 2013. Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. J. Food Compost. Anal. 30(1), 6-12. Doi: 10.1016/j.jfca.2012.12.001
    *ref*/Burgos, G., L. Muñoa, P. Sosa, E. Cayhualla, R. Carpio, and T. Felde. 2014. Procedures for chemical analysis of potato and sweetpotato samples at CIP’s Quality and Nutrition Laboratory. CIP Communication and public awareness department (CPAD), Lima. Doi: 10.4160/9789290604440
    *ref*/Camire, M.E., S. Kubow, and D.J. Donnelly. 2009. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 49(10), 823-840. Doi: 10.1080/10408390903041996
    *ref*/Cerón-Lasso, M., A.F. Alzate-Arbeláez, B.A. Rojano, and C.E. Ñústez-López. 2018. Composición fisicoquímica y propiedades antioxidantes de genotipos nativos de papa criolla (Solanum tuberosum Grupo Phureja). Inf. Tecnol. 29(3), 205-216. Doi: 10.4067/S0718-07642018000300205
    *ref*/Craft, B.D., A.L. Kerrihard, R. Amarowicz, and R.B. Pegg. 2012. Phenol-based antioxidants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. 11(2), 148-173. Doi: 10.1111/j.1541-4337.2011.00173.x
    *ref*/Cuéllar-Cepeda, F., M. Parra-Galindo, J. Urquijo, L. Restrepo-Sánchez, T. Mosquera-Vásquez, and C. Narváez-Cuenca. 2019. Influence of genotype, agro-climatic conditions, cooking method, and their interactions on individual carotenoids and hydroxycinnamic acids contents in tubers of diploid potatoes. Food Chem. 288, 127-138. Doi: 10.1016/j.foodchem.2019.03.015
    *ref*/Devaux, A., P. Kromann, and O. Ortiz. 2014. Potatoes for sustainable global food security. Am. J. Potato Res. 57(3-4),185-199. Doi: 10.1007/s11540-014-9265-1
    *ref*/Ezekiel, R., N. Singh, S. Sharma, and A. Kaur. 2013. Beneficial phytochemicals in potato - a review. Food Res. Int. 50(2), 487-496. Doi: 10.1016/j.foodres.2011.04.025
    *ref*/FAO. 2018. Commodity balances - crops primary equivalent. URL: http://www.fao.org/faostat/en/#data/BC (accessed 10 April 2018).
    *ref*/Fang, J. 2015. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 31(11-12), 1301-1306. Doi: 10.1016/j.nut.2015.04.015
    *ref*/Farzadfar, S., F. Zarinkamar, and M. Hojati. 2017. Magnesium and manganese affect photosynthesis, essential oil composition and phenolic compounds of Tanacetum parthenium. Plant Physiol. Biochem. 112, 207-217. Doi: 10.1016/j.plaphy.2017.01.002
    *ref*/Gómez, M. 2005. Guía técnica para el manejo nutricional de los cultivos: diagnóstico, interpretación y recomendación de planes de fertilización. Microfertisa, Bogota.
    *ref*/Gómez, M., M. López, and Y. Cifuentes. 2006. El manganeso como factor positivo en la producción de papa (Solanum tuberosum L.) y arveja (Pisum sativum L.) en suelos del altiplano Cundiboyacense. Agron. Colomb. 24(2), 340-347.
    *ref*/Gutiérrez-Quequezana, L., A.L. Vuorinen, H. Kallio, and B. Yang. 2020. Impact of cultivar, growth temperature and developmental stage on phenolic compounds and ascorbic acid in purple and yellow potato tubers. Food Chem. 326, 126966. Doi: 10.1016/j.foodchem.2020.126966
    *ref*/Hamouz, K., J. Lachman, P. Dvořák, M. Jůzl, and V. Pivec. 2006. The effect of site conditions, variety and fertilization on the content of polyphenols in potato tubers. Plant Soil Environ. 52(9), 407-412. Doi: 10.17221/3459-PSE
    *ref*/Klein, L.B., S. Chandra, and N.I. Mondy. 1982. Effect of magnesium fertilization on the quality of potatoes: total nitrogen, nonprotein nitrogen, protein, amino acids, minerals, and firmness. J. Agric. Food Chem. 30(4), 754-757. Doi: 10.1021/jf00112a032
    *ref*/Kotíková, Z., M. Šulc, J. Lachman, V. Pivec, M. Orsák, and K. Hamouz. 2016. Carotenoid profile and retention in yellow-, purpleand red-fleshed potatoes after thermal processing. Food Chem. 197(A), 992-1001. Doi: 10.1016/j.foodchem.2015.11.072
    *ref*/Lachman, J., K. Hamouz, M. Orsák, V. Pivec, and P. Dvořák. 2008. The influence of flesh colour and growing locality on polyphenolic content and antioxidant activity in potatoes. Sci. Hortic. 117(2), 109-114. Doi: 10.1016/j.scienta.2008.03.030
    *ref*/Lachman, J., K. Hamouz, M. Orsák, V. Pivec, K. Hejtmánková, K. Pazderů, P. Dvořák, and J. Čepl. 2012. Impact of selected factors - cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chem. 113(4), 1107-1116. Doi: 10.1016/j.foodchem.2011.07.077
    *ref*/Lachman, J., K. Hamouz, M. Orsák, and Z. Kotíková. 2016. Carotenoids in potatoes - a short overview. Plant Soil Environ. 62(10), 474-481. Doi: 10.17221/459/2016-PSE
    *ref*/Mattila, P. and J. Hellström. 2007. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compost. Anal. 20(3-4), 152-160. Doi: 10.1016/j.jfca.2006.05.007
    *ref*/Maurer, M., J. Mein, S. Chaudhuri, and H. Constant. 2014. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops. Food Chem. 165, 475-482. Doi: 10.1016/j.foodchem.2014.05.038
    *ref*/Narváez-Cuenca, C.E., J.P. Vincken, C. Zheng, and H. Gruppen. 2013. Diversity of (dihydro) hydroxycinnamic acid conjugates in Colombian potato tubers. Food Chem. 139 (1-4), 1087-1097. Doi: 10.1016/j.foodchem.2013.02.018
    *ref*/Narváez-Cuenca, C.E., C. Peña, L.P. Restrepo-Sánchez, A. Kushalappa, and T. Mosquera. 2018. Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. J. Food Compost. Anal. 66, 179-184. Doi: 10.1016/j.jfca.2017.12.019
    *ref*/Navarre, D.A., S.S. Pillai, R. Shakya, and M.J. Holden. 2011. HPLC profiling of phenolics in diverse potato genotypes. Food Chem. 127(1), 34-41. Doi: 10.1016/j.foodchem.2010.12.080
    *ref*/Oertel, A., A. Matros, A. Hartmann, P. Arapitsas, K.J. Dehmer, S. Martens, and H.P. Mock. 2017. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 246, 281-297. Doi: 10.1007/s00425-017-2718-4
    *ref*/Palacios, C.A., S. Jaramillo, L.H. González, and J.M. Cotes. 2008. Efecto de la fertilización sobre la calidad de la papa para procesamiento en dos suelos antioqueños con propiedades ándicas. Agron. Colomb. 26(3), 487-496.
    *ref*/Pérez, L., L. Rodríguez, and M. Gómez. 2008. Efecto del fraccionamiento de la fertilización con N, P, K y Mg y la aplicación de los micronutrientes B, Mn y Zn en el rendimiento y calidad de papa criolla (Solanum phureja) variedad Criolla Colombia. Agron. Colomb. 26(3), 477-486.
    *ref*/Pillai, S.S., D.A. Navarre, and J. Bamberg. 2013. Analysis of polyphenols, anthocyanins and carotenoids in tubers from Solanum tuberosum Group Phureja, Stenotomum and Andigena. Am. J. Potato Res. 90(5), 440-450. Doi: 10.1007/s12230-013-9318-z
    *ref*/Piñeros-Niño, C., C.E. Narváez-Cuenca, A.C. Kushalappa, and T. Mosquera. 2017. Hydroxycinnamic acids in cooked potato tubers from Solanum tuberosum group Phureja. Food Sci. Nutr. 5(3), 380-389. Doi: 10.1002/fsn3.403
    *ref*/R, Core Team. 2019. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna. URL: http://www.R-project.org/. (accessed 5 May 2018).
    *ref*/Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9-10), 1231-1237. Doi: 10.1016/S0891-5849(98)00315-3
    *ref*/Reddivari, L., A.L. Hale, and J.C. Miller. 2007. Determination of phenolic content, composition and their contribution to antioxidant activity in specialty potato selections. Am. J. Potato Res. 84, 275-282. Doi: 10.1007/BF02986239
    *ref*/Reyes, L., J. Miller, and L. Cisneros-Zevallos. 2005. Antioxidant capacity, anthocyanins and total phenolics in purple- and red-fleshed potato (Solanum tuberosum L.) genotypes. Am. J. Potato Res. 82, 271-277. Doi: 10.1007/BF02871956
    *ref*/Rodríguez-Amaya, D.B. 2018. Update on natural food pigments - a mini-review on carotenoids, anthocyanins, and betalains. Food Res. Int. 124, 200-205. Doi: 10.1016/j.foodres.2018.05.028
    *ref*/Ruenroengklin, N., J. Sun, J. Shi, S.J. Xue, and Y. Jiang. 2009. Role of endogenous and exogenous phenolics in litchi anthocyanin degradation caused by polyphenol oxidase. Food Chem. 115(4), 1253-1256. Doi: 10.1016/j.foodchem.2009.01.040
    *ref*/Rytel, E., A. Tajner-Czopek, A. Kita, M. Aniołowska, A.Z. Kucharska, A. Sokół-Łętowska, and K. Hamouz. 2014. Content of polyphenols in coloured and yellow fleshed potatoes during dices processing. Food Chem. 161, 224-229. Doi: 10.1016/j.foodchem.2014.04.002
    *ref*/Tatarowska, B., D. Milczarek, E. Wszelaczyńska, J. Pobereżny, N. Keutgen, A.J. Keutgen, and B. Flis. 2019. Carotenoids variability of potato tubers in relation to genotype, growing location and year. Am. J. Potato Res. 96(5), 493-504. Doi: 10.1007/s12230-019-09732-9
    *ref*/Tian, J., J. Chen, F. Lv, S. Chen, J. Chen, D. Liu, and X. Ye. 2016. Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes. Food Chem. 197(B), 1264-1270. Doi: 10.1016/j.foodchem.2015.11.049
    *ref*/Tierno, R., D. Hornero-Méndez, L. Gallardo-Guerrero, R. López-Pardo, and J.I. Ruiz de Galarreta. 2015. Effect of boiling on the total phenolic, anthocyanin and carotenoid concentrations of potato tubers from selected cultivars and introgressed breeding lines from native potato species. J. Food Compost. Anal. 41, 58-65. Doi: 10.1016/j.jfca.2015.01.013
    *ref*/Tierno, R., A. López, P. Riga, S. Arazuri, C. Jarén, L. Benedicto, and J.I. Ruiz de Galarreta. 2016. Phytochemicals determination and classification in purple and red fleshed potato tubers by analytical methods and near infrared spectroscopy. J. Sci. Food Agric. 96(6), 1888-1899. Doi: 10.1002/jsfa.7294
    *ref*/Valiñas, M.A., M.L. Lanteri, A. ten Have, and A.B. Andreu. 2017. Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chem. 229, 837-846. Doi: 10.1016/j.foodchem.2017.02.150
    *ref*/Villa, M., L. Rodríguez, and M. Gómez. 2011. Effect of edaphic and foliar management of manganese on the yield of the Criolla Colombia cultivar. Agron. Colomb. 29(3), 447-454.
    *ref*/Waterhouse, A.L. 2002. Determination of total phenolics. Current Protoc. Food Analyt. Chem. 6(1), 1-8. Doi: 10.1002/0471142913.fai0101s06

  19. 19
  20. 20