-
1Academic Journal
المؤلفون: Caballero-Herrera, José Antonio, Urra, Javier, Gofas, Serge, Salas, Carmen, Bárcenas, Patricia, Gallardo-Núñez, Marina, Moya-Urbano, Elena, Olivero, Jesús, Rueda, José L.
المصدر: Scientia Marina; Vol. 87 No. 2 (2023); e067 ; Scientia Marina; Vol. 87 Núm. 2 (2023); e067 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2023.87n2
مصطلحات موضوعية: molluscs, deep sea, Chella Bank, Seco de los Olivos, vulnerable marine ecosystem, coral rubble, rhodoliths, moluscos, mar profundo, banco Chella, Ecosistemas Vulnerables Marinos, restos de corales, rodolitos
وصف الملف: text/html; application/pdf; text/xml
Relation: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1959/2968; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1959/2969; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1959/2970; Abad E., Preciado I., Serrano A., Baro J. 2007. Demersal and epibenthic assemblages of trawlable grounds in the northern Alboran Sea (western Mediterranean). Sci. Mar. 71: 513-524.; Albano P.G., Sabelli B. 2011. Comparison between death and living molluscs assemblages in a Mediterranean infralittoral off-shore reef. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310: 206-215.; Albano P.G., Sabelli B., Bouchet P. 2011. The challenge of small and rare species in marine biodiversity surveys: microgastropod diversity in a complex tropical coastal environment. Biodivers. Conserv. 20: 3223-3237.; Appeltans W., Ahyong S.T., Anderson G., Angel M., Artois T., Bailly N., et al. 2012. The magnitude of global marine species diversity. Curr. Biol. 22: 2189-2202.; Baroni-Urbani C., Buser M.W. 1976. Similarity of binary data. Syst. Zool. 25: 251-259.; Bedulli D., Bassignani F., Bruschi A. 2002. Use of biodiversity hotspots for conservation of marine Molluscs: a regional approach. Mediterr. Mar. Sci. 3: 113-121.; Borja A., Elliott M., Carstensen J., Heiskanen A.-S., Bund W. 2010. Marine management-Towards an integrated implementation of the European Marine Strategy Framework and the Water Framework Directives. Mar. Pollut. Bull. 60: 2175-2186.; Bouchet P., Warén A. 1980. Revision of the Northeast Atlantic bathyal and abyssal Turridae (Mollusca: Gastropoda). J. Molluscan. Stud. 8: 1-119.; Bouchet P., Warén A. 1985. Revision of the Northeast Atlantic bathyal and abyssal Neogastropoda excluding Turridae (Mollusca, Gastropoda). Boll. Malacol. 1: 121-296.; Bouchet P., Warén A. 1986. Revision of the Northeast Atlantic bathyal and abyssal Aclididae, Eulimidae, Epitonidae (Mollusca, Gastropoda). Boll. Malacol. 2: 297-576.; Bouchet P., Taviani M. 1992. The Mediterranean deep-sea fauna: pseudopopulations of Atlantic species?. Deep-Sea Res. Pt A. 39: 169-184.; Bouchet P., Warén A. 1993. Revision of the Northeast Atlantic bathyal and abyssal Mesogastropoda. Boll. Malacol. 3: 579-840.; Bray J.R., Curtis J.T. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325-349.; Buhl-Mortensen L., Vanreusel A., Gooday AJ., et al. 2010. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31: 21-50.; Caballero‐Herrera J.A., Olivero J., von Cosel R., Gofas S. 2021. An analytically derived delineation of the West African Coastal Province based on bivalves. Divers. Distrib. 28.; Caballero-Herrera J.A., Gofas S., Rueda J.L. 2022. Episcomitra angelesae (Mollusca: Gastropoda: Mitridae), a new species from an exceptional deep habitat in the Alboran Sea. Mediterr. Mar. Sci. 23: 14-24.; Ciccolella A., Bello G. 2006. Lo studio delle tanatomalacocenosi per la definizione della malacodiversità nelle aree marine protette. Biol. Mar. Mediterr. 13: 341-347.; Ciércoles C., García-Ruiz C., González-Aguilar M., et al. 2018. Molluscs collected with otter trawl in the northern Alboran Sea: main assemblages, spatial distribution and environmental linkage. Mediterr. Mar. Sci. 19: 209-222.; Clark M.R., Koslow J.A. 2007. Impacts of fisheries on seamounts. In: Pitcher T.J., Morato T., Hart P.J.B., et al. (eds), Seamounts: Ecology, fisheries, and conservation. Blackwell, Oxford, pp. 413-441.; Clarke K.R., Gorley R.N. 2006. PRIMER v6: user manual-tutorial. Plymouth Marine Laboratory, Plymouth, 192 pp.; Clarke K.R., Somerfield P.J., Gorley R.N. 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 366: 56-69.; Danovaro R., Corinaldesi C., D’Onghia G., et al. 2010. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PloS ONE. 5(8): e11832.; de la Torriente A., Aguilar R., Serrano A., et al. 2014. Sur de Almería - Seco de los Olivos. Proyecto LIFE+ INDEMARES. Fundación Biodiversidad del Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, pp 102.; de la Torriente A., Serrano A., Fernández-Salas L.M., et al. 2018. Identifying epibenthic habitats on the Seco de los Olivos Seamount: Species assemblages and environmental characteristics. Deep-Sea Res. Pt I. 135: 9-22.; de la Torriente A., González‐Irusta J.M., Aguilar R., et al. 2019. Benthic habitat modelling and mapping as a conservation tool for marine protected areas: A seamount in the western Mediterranean. Aquat. Conserv. 29: 732-750.; de la Torriente A., Aguilar R., González-Irusta J.M., et al. 2020. Habitat forming species explain taxonomic and functional diversities in a Mediterranean seamount. Ecol. Indic. 118: 106747.; De Leonardis C., Sandulli R., Vanaverbeke J., et al. 2008. Meiofauna and nematode diversity in some Mediterranean subtidal areas of the Adriatic and Ionian Sea. Sci. Mar. 72: 5-13.; De Mol B., Amblas D., Calafat A., et al. 2012. Cold-Water Coral Colonization of Alboran Sea Knolls, Western Mediterranean Sea. In: Harris P., Baker E (eds), Sea floor Geomorphology as Benthic Habitat. London, pp. 819-829.; Doğan A., Öztürk B., Bitlis-Bakir B., Türkçü N. 2016. Soft bottom molluscan assemblages of the bathyal zone of the Sea of Marmara. Mediterr. Mar. Sci. 17(3): 678-691.; Edgar G.J., Shaw C. 1995. The production and trophic ecology of shallow-water fish assemblages in southern Australia III. General relationships between sediments, seagrasses, invertebrates and fishes. J. Exp. Mar. Biol. Ecol. 194(1): 107-131.; Ekman S. 1953. Zoogeography of the sea. Sidgwick and Jackson, London, 417 pp.; Folk R.L. 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J. Geol. 62(4): 344-359.; García Raso J.E., Gofas S., Salas Casanova C., et al. 2010. El mar más rico de Europa: Biodiversidad del litoral occidental de Málaga entre Calaburras y Calahonda. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, 138 pp.; Gallardo-Roldán H., Urra J., García T. et al. 2015. First record of the starfish Luidia atlantidea Madsen, 1950 in the Mediterranean Sea, with evidence of persistent populations. Cah. Biol. Mar. 56: 263-270.; Gladstone W. 2002. The potential value of indicator groups in the selection of marine reserves. Biol. Conserv. 104: 211-220.; Gofas S. 1998. Marine molluscs with a very restricted range in the Strait of Gibraltar. Divers Distrib. 4: 255-266.; Gofas S., Moreno D., Salas C. 2011. Moluscos marinos de Andalucía. Servicio de Publicaciones e Intercambio Científico, Universidad de Málaga. Vol. I, pp 1-342; Vol. II, pp 343-798.; Gofas S., Salas C., Rueda J.L., et al. 2014. Mollusca from a species-rich deep-water Leptometra community in the Alboran Sea. Sci. Mar. 78(4): 537-553.; Gofas S., Luque Á.A., Templado J., Salas C. 2017. A national check list of marine Mollusca in Spanish waters. Sci. Mar. 81: 241-254.; Gofas S., Luque Á., Urra J. 2019. Planktotrophic Columbellidae (Gastropoda) in the northeast Atlantic and the Mediterranean Sea, with description of a new species in the genus Mitrella. Bull Mar Sci. 96.; Gosling E. 2003. Bivalve molluscs: Biology, ecology and culture. Wiley Blackwell, Oxford, UK, pp 456.; Hadley A. 2006. Combine ZP public domain image processing software. Available from; Heiri O., Lotter A.F., Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25: 101-110.; International Hydrographic Organization. 2008. Standardization of undersea feature names: Guidelines proposal form terminology, 4th edition. International Hydrographic Bureau, Monaco, 32 pp.; Jablonski D., Lutz R.A. 1983. Larval ecology of marine benthic invertebrates: paleontological implications. Biol. Rev. 58: 21-89.; Jennings S., Smith A.D., Fulton E.A., Smith D.C. 2014. The ecosystem approach to fisheries: management at the dynamic interface between biodiversity conservation and sustainable use. Ann. N. Y. Acad. Sci. 1322: 48-60.; Kidwell S.M. 2001. Ecological fidelity of molluscan death assemblages. In: Aller J.Y., Woodin S.A., Aller R.C. (eds), Organism-sediment Interactions. University of South Carolina Press, Columbia, pp. 199-221.; Koutsoubas D., Tselepides A., Eleftheriou A. 2000. Deep sea molluscan fauna of the Cretan Sea (Eastern Mediterranean): faunal, ecological and zoogeographical remarks. Senckenb. Marit. 30: 85-98.; Krebs C.J. 1989. Ecological Methodology. Harper and Row, New York, 620 pp.; Llompart C. 1988. Braquiópodos del Banco de Chella (Mar de Alborán, Mediterráneo Occidental). Acta Geol. Hisp. 23: 311-319.; Lo Iacono C., Gràcia E., Diez S., et al. 2008. Seafloor characterization and backscatter variability of the Almería Margin (Alboran Sea, SW Mediterranean) based on high-resolution acoustic data. Mar. Geol. 250: 1-18.; Lo Iacono C., Gràcia E., Bartolomé R., et al. 2012. Habitats of the Chella Bank, Eastern Alboran Sea (Western Mediterranean). In: Harris P., Baker E (eds), Sea floor Geomorphology as Benthic Habitat. Elsevier, London, pp. 681-690.; Malatesta A., Zarlenga F. 1986. Northern guests in the Pleistocene Mediterranean Sea. Geol. Romana 25: 91-154.; Marina P., Urra J., Rueda J.L., Salas C. 2012. Composition and structure of the molluscan assemblage associated with a Cymodocea nodosa bed in south-eastern Spain: seasonal and diel variation. Helgol. Mar. Res. 66: 1-15.; Mateo-Ramírez, Á., Marina P., Moreno D., et al. 2021. Marine Protected Areas and Key Biodiversity Areas of the Alboran Sea and Adjacent Areas. In: Báez, J.C., Vázquez, JT., Camiñas, J.A., Malouli Idrissi, M. (eds) Alboran Sea - Ecosystems and Marine Resources. Springer, Cham, pp. 819-923.; Mellin C., Delean S., Caley J., et al. 2011. Effectiveness of biological surrogates for predicting patterns of marine biodiversity: a global meta-analysis. PloS ONE. 6: e20141.; Muñoz A., Ballesteros M., Montoya I., et al. 2008. Alborán Basin, southern Spain - part I: geomorphology. Mar. Petrol. Geol. 25: 59-73.; Negri M.P, Corselli C. 2016. Bathyal Mollusca from the cold-water coral biotope of Santa Maria di Leuca (Apulian margin, southern Italy). Zootaxa 4186: 1-97.; Olivero J., Real R., Marquez A.L. 2011. Fuzzy chorotypes as a conceptual tool to improve insight into biogeographic patterns. Syst. Biol. 60: 645-660.; Palomino D., Alonso B., Lo Iocano C., et al. 2015. Seamounts and seamount-like structures of the Alborán Sea. In: Würtz, M. and Rovere M. (eds), Atlas of the Mediterranean Seamounts and Seamount-like Structures. IUCN, Gland, Switzerland and Málaga, Spain, pp. 21-57.; Parrilla G., Kinder T.H. 1987. Oceanografía física del mar de Alborán. Bol. Inst. Esp. Oceanogr. 4: 133-165.; Pasquaud S., Pillet M., David V., Sautour B., Elie P. 2010. Determination of fish trophic levels in an estuarine ecosystem. Est. Coast. Shelf Sci. 86(2): 237-246.; Peñas A., Rolán E., Luque A.A., et al.2006. Moluscos marinos de la isla de Alborán. Iberus 24(1): 23-151.; Pielou E.C. 1969. An introduction to mathematical ecology. Wiley Interscience, New York, 286 pp.; Ramalho L.V., Caballero-Herrera J.A., Urra J., Rueda J.L. 2020. Bryozoans from Chella Bank (Seco de los Olivos), with the description of a new species and some new records for the Mediterranean Sea. Mar. Biodiv. 50: 106.; Reyers B., van Jaarsveld A.S., Krüger M. 2000. Complementarity as a biodiversity indicator strategy. Proc. Roy. Soc. B. Biol. Sci. 267: 505-513.; Roark E.B., Guilderson T.P., Dunbar R.B., et al. 2009. Extreme longevity in proteinaceous deep-sea corals. Proc. Nat. Acad. Sci. 106: 5204-5208.; Rodríguez J. 1982. Oceanografía del Mar Mediterráneo. Pirámide, Madrid, 174 pp.; Rodríguez J. 1995. Las reservas marinas en el marco ecológico y oceanográfico del Mediterráneo Occidental. In: Guirado J. (eds): La gestión de los espacios marinos en el Mediterráneo Occidental, Instituto de Estudios Almerienses, Diputación de Almería, pp. 13-28.; Rossi S, Bramanti L, Gori A, Orejas C. 2017. An overview of the animal forests of the world. In: Rossi S., Bramanti L., Gori A., Orejas C. (eds) Marine animal forests. Springer, Cham, pp. 1-28.; Rueda J.L., Gofas S., Urra J., Salas C. 2009. A highly diverse molluscan assemblage associated with eelgrass beds (Zostera marina L.) in the Alboran Sea: Micro-habitat preference, feeding guilds and biogeographical distribution. Sci. Mar. 73: 679-700.; Rueda J.L., Urra J., Marina P., et al. 2010. Especies africanas en las costas de Andalucía: Un patrimonio natural único en Europa. Quercus 293: 24-31.; Rueda J. L., Gofas S., Aguilar R., et al. 2021. Benthic fauna of littoral and deep-sea habitats of the Alboran Sea: a hotspot of biodiversity. In: Báez J.C., Vázquez J.T, Camiñas J.A., Malouli M. (eds), Alboran Sea-Ecosystems and Marine Resources. Springer, Cham, pp. 285-358.; Salas C., Hergueta E. 1986. The molluscan fauna of calcareous concretions of Mesophyllum lichenoides (Ellis) Lemoine. Study of annual cycle diversity. Iberus 6: 57-65.; Salas C. 1996. Marine Bivalves from off the Southern Iberian Peninsula collected by the Balgim and Fauna 1 expeditions. Haliotis 25: 33-100.; Sánchez-Guillamón O., Rueda J.L., et al. 2022. Morphosedimentary, Structural and Benthic Characterization of Carbonate Mound Fields on the Upper Continental Slope of the Northern Alboran Sea (Western Mediterranean). Geosciences 12: 111.; Sarhan T., García Lafuente J., Vargas M., et al. 2000. Upwelling mechanisms in the northwestern Alboran Sea. J. Mar. Syst. 23: 317-331.; Sciberras M., Rizzo M., Mifsud J.R., et al. 2009. Habitat structure and biological characteristics of a maerl bed off the northeastern coast of the Maltese Islands (central Mediterranean). Mar. Biodivers. 39: 251-264.; Smith S.D. 2005. Rapid assessment of invertebrate biodiversity on rocky shores: where there’s a whelk there’s a way. Biodivers. Conserv. 14: 3565-3576.; Sneath P.H., Sokal R.R. 1973. Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman and Company, 573 pp.; Sokal R.R., Rohlf F.J. 1981. Biometry. W.H. Freeman and Company, 859 pp.; Staudigel H., Koppers A.A., Lavelle J.W., et al. 2010. Defining the word “Seamount”. Oceanography 23: 20-21.; Streftaris N., Zenetos A. 2007. Molluscan diversity in the N. East Aegean - Greece. Rapp. Comm. Int. Mer Médit. 38: 607.; Sitjà C., Maldonado M., Farias C., Rueda J. L. 2020. Export of bathyal benthos to the Atlantic through the Mediterranean outflow: Sponges from the mud volcanoes of the Gulf of Cadiz as a case study. Deep-Sea Res. Part I 163: 103326.; Templado J. 1993. Fauna marina circalitoral del sur de la Península Ibérica: resultados de la campaña oceanográfica “Fauna I”. CSIC, Madrid, 135 pp.; Templado J. 2011. La diversidad marina en España. In: Viejo J.L. (ed), Biodiversidad: aproximación a la diversidad botánica y zoológica en España. Mem. R. Soc. Esp. Hist. Nat. 9: 343-362.; Templado J., Luque Á. A., Moreno D., et al. 2021. Invertebrates: The Realm of Diversity. In: Báez J.C., Vázquez J.T, Camiñas J.A., Malouli M. (eds), Alboran Sea-Ecosystems and Marine Resources. Springer, Cham, pp. 359-430.; Urra J., Gofas S., Rueda JL., Marina P. 2011. Molluscan assemblages in littoral soft bottoms of the Alboran Sea (Western Mediterranean Sea). Mar. Biol. Res. 7: 27-42.; Urra J., Gofas S., Rueda J.L., Marina P., Mateo-Ramírez Á., Antit M., Salas C. 2017. Biodiversity and biogeographical patterns of molluscan assemblages in vegetated and unvegetated habitats in the northern Alboran Sea (W Mediterranean Sea). Mar. Biodiv. 47: 187-201.; Urra J., Rueda J.L., Marina P., Antit M., Salas C. 2018. Populations of commercial molluscs within a highly biodiverse Marine Protected Area of the Northern Alboran Sea (W Mediterranean): preferential habitats, seasonal dynamics and importance for artisanal fisheries. Thalassas 34: 349-359.; Utrilla O., Gofas S., Urra J., et al. 2020. Molluscs from benthic habitats of the Gazul mud volcano (Gulf of Cádiz). Sci. Mar. 84: 273-295.; Vargas-Yáñez M., García-Martinez M.C., Moya F., et al. 2019. The Alboran Sea: From Cape Pino to Cape Gata. In: Vargas-Yáñez M., García-Martinez M.C., Moya F. et al. (eds), The present state of marine ecosystems in the Spanish Mediterranean in a climate change context. Tuimagina Editorial, Grupo Mediterráneo de Cambio Climático, Málaga, pp. 33-72.; Vázquez J.T., Ercilla G., Catalán M., et al. 2021. A geological history for the Alboran Sea region. In: Báez J.C., Vázquez J.T, Camiñas J.A., Malouli M. (eds), Alboran Sea-Ecosystems and Marine Resources. Springer, Cham, pp. 111-155.; Von Rad U. 1974. Great Meteor and Josephine seamounts (eastern North Atlantic): composition and origin of bioclastic sands, carbonate and pyroclastic rocks. Meteor Forschungsergeb. C 19: 1-61.; Weber K., Zuschin M. 2013. Delta-associated molluscan life and death assemblages in the northern Adriatic Sea: Implications for paleoecology, regional diversity and conservation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 370: 77-91.; Wilson J.E. 2012. Dispersal in marine organisms without a pelagic larval phase. Integr. Comp. Biol. 52(4): 447-457.; WoRMS Editorial Board. 2022. World Register of Marine Species. Accessed 2022-08-30. Available at http://www.marinespecies.org; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1959
-
2Academic Journal
المؤلفون: Rebecchi, Federica, Zeppilli, Daniela, Baldrighi, Elisa, Di Cosmo, Anna, Polese, Gianluca, Pisaniello, Alessandro, Grall, Jacques
المصدر: Scientia Marina; Vol. 86 No. 1 (2022); e024 ; Scientia Marina; Vol. 86 Núm. 1 (2022); e024 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2022.86n1
مصطلحات موضوعية: rhodolith beds, Bay of Brest, meiobenthos, Nematoda, biodiversity, taxonomy, lechos de rodolitos, bahía de Brest, meiobentos, biodiversidad, taxonomía
وصف الملف: text/html; application/pdf; text/xml
Relation: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1913/2840; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1913/2841; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1913/2842; Austin W.E.N., Cage A.G. 2010. High benthic foraminiferal species counts in a Clyde Sea maerl bed, western Scotland. Geolog. Soc. London, Spec. Pub. 344: 83-88. https://doi.org/10.1144/SP344.8; BIOMAERL Team: Barbera J., Bordehore C., Borg J.A., et al. 2003. Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat. Conserv. Mar. Fresh. Ecosyst. 13: 65-76. https://doi.org/10.1002/aqc.569; Baldrighi E., Grall J., Quillien N., et al. 2019. Meiofauna communities' response to an anthropogenic pressure: The case study of green macroalgal bloom on sandy beach in Brittany. Est. Coast. Shelf Sci. 227: 106326. https://doi.org/10.1016/j.ecss.2019.106326; Bezerra T.N., Eisendle U., Hodda M., et al. 2021. Nemys: World Database of Nematodes. Accessed at http://nemys.ugent.be on 05/06/2021.; Carriço R., Zeppilli D., Quillien N., et al.2013. Can meiofauna be a good biological indicator of the impacts of eutrophication caused by green macroalgal blooms? An Aod. Cah. Nat. Obs. Mar. 2: 9-16.; Clarke K.R., Gorley R.N. 2006. PRIMER V6: User Manual/Tutorial. PRIMER-E, Plymouth, 93 pp.; Colangelo M.A., Bertasi F., Dall'Olio P., Ceccherelli V. H. 2001. Meiofaunal biodiversity on hydrothermal seepage off Panarea (Aeolian islands, Tyrrhenian sea). In: Faranda F.M, Guglielmo L., Spezie G. (eds), Mediterranean Ecosystems: Structures and Processes. Springer Verlag, pp. 353-359. https://doi.org/10.1007/978-88-470-2105-1_46; Danovaro R. 2010. Methods for the Study of Deep-Sea Sediments, Their Functioning and Biodiversity. CRC Press Boca Raton, 458 pp. https://doi.org/10.1201/9781439811382 PMCid:PMC2739426; Feller R.J., Warwick R.M. 1988. "Energetics". In: Higgin, R.P., Thiel, H. (eds), Introduction to the Study of Meiofauna. Washington, DC. Smithsonian Institution. pp. 181-196.; Foster M.S., Amado Filho G.M., Kamenos N.A., et al. 2013. Rhodoliths and rhodolith beds. Smithsonian Contr. Mar. Sci. 39: 143-55.; Gambi C., Vanreusel A., Danovaro R. 2003. Biodiversity of nematode assemblages from deepsea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep Sea Res. I: Oceanogr. Res. Pap. 50: 103-117. https://doi.org/10.1016/S0967-0637(02)00143-7; Giere O. 2009. Meiobenthology. The microscopic motile fauna of aquatic sediments. Springer-Verlag, Berlin 527 pp.; Grall J., Le Loc'h F., Guyonnet B., Riera P. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013; Hall-Spencer J., Kelly J., Maggs C.A. 2010. Background document on maerl beds. OSPAR Commission, London.; Heip C.H.R., Vincx M., Vranken G. 1985. The ecology of marine nematodes. Oceanogr. Mar. Biol. Ann. Rev. 23: 399-489.; Ingels J., Vanreusel A. 2013. The importance of different spatial scales in determining structure and function of deep-sea infauna communities. Biogeosciences Discuss 10: C796-C807. https://doi.org/10.5194/bgd-10-195-2013; Jackson C.M., Kamenos N.A., Moore P.G., Young M. 2004. Meiofaunal bivalves in maerl and other substrata; their diversity and community structure. Ophelia 58: 48-60. https://doi.org/10.1080/00785236.2004.10410212; Jensen P. 1987. Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia 71: 564-567. https://doi.org/10.1007/BF00379298 PMid:28312228; Leduc D., Probert P.K. 2009. The effect of bacterivorous nematodes on detritus incorporation by macrofaunal detritivores: A study using stable isotope and fatty acid analyses. J. Exp. Mar. Biol. Ecol. 37: 130-139. https://doi.org/10.1016/j.jembe.2009.01.011; Linnaeus C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentius Salvius, Holmiae, 824 pp. https://doi.org/10.5962/bhl.title.542; McCormack E. 2006. Carraroenia ruthae gen. et sp. nov. (Copepoda, Harpacticoida, Laophontidae) from maerl substrates of the Irish west coast. Zootaxa 1202: 39-52. https://doi.org/10.11646/zootaxa.1202.1.4; Moodley L., Chen GT., Heip C., Vincx M. 2000. Vertical distribution of meiofauna in sediments from contrasting sites in the Adriatic Sea: clues to the role of abiotic versus biotic control. Ophelia 53: 203-212. https://doi.org/10.1080/00785326.2000.10409450; Martínez A., García-Gómez G., García-Herrero Á. et al. 2021. Habitat differences filter functional diversity of low dispersive microscopic animals (Acari, Halacaridae). Hydrobiologia 848: 2681-2698. https://doi.org/10.1007/s10750-021-04586-x; Novack R. 1989. Ecology of Nematodes in the Mediterranean Seagrass Posidonia oceanica (L.) Delile 1. General part and faunistics of the nematode community. Mar. Ecol. 10: 335-363. https://doi.org/10.1111/j.1439-0485.1989.tb00077.x; Platt H.M. 1977. Vertical and horizontal distribution of free-living marine nematodes from Strangford Lough, Northern Ireland. Cah. Biol. Mar.18: 261-273.; Platt H.M., Warwick R.M. 1988. Free-living Marine Nematodes. Part II: British Chromadorids. Brill Academic Pub., 502 pp.; Pusceddu A., Dell'Anno A., Fabiano M., Danovaro, R. 2009. Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Mar. Ecol. Progr. Ser. 375: 41-52. https://doi.org/10.3354/meps07735; Pusceddu A., Gambi C., Corinaldesi C., Scopa M., Danovaro R. 2014. Relationships between Meiofaunal Biodiversity and Prokaryotic Heterotrophic Production in Different Tropical Habitats and Oceanic Regions. PLoS ONE 9: e91056. https://doi.org/10.1371/journal.pone.0091056 PMid:24603709 PMCid:PMC3948168; Raes M., Decraemer W., Vanreusel A. 2008. Walking with worms: coral-associated epifaunal nematodes. J. Biogeog. 35: 2207-2222. https://doi.org/10.1111/j.1365-2699.2008.01945.x; Semprucci F., Colantoni P., Baldelli G., et al. 2013. Meiofauna associated with coral sediments in the Maldivian subtidal habitats (Indian Ocean). Mar. Biodivers. 43: 189-198. https://doi.org/10.1007/s12526-013-0146-7; Semprucci F., Balsamo M., Apolloni L., Sandulli R. 2018. Assessment of ecological quality status along the Apulian coasts (eastern Mediterranean Sea) based on meiobenthic and nematode assemblages. Mar. Biodivers. 48: 105-115. https://doi.org/10.1007/s12526-017-0745-9; Steyaert M., Garner N., Van Gansbeke D., Vincx M. 1999. Nematode communities from the North Sea: environmental controls on species diversity and vertical distribution within the sediment. J. Mar. Biol. Assoc. UK 79: 253-264. https://doi.org/10.1017/S0025315498000289; Wieser W. 1953. Die beziehung zwischen Mundhöhlengestalt, Ernährungsweise und vorkommen bei freilebenden marinen Nematoden. Ark. Zool. 4: 439-484.; Wieser W. 1960. Benthic studies in Buzzards Bay. II. The meiofauna. Limnol. Oceanogr. 5: 121-137. https://doi.org/10.4319/lo.1960.5.2.0121; Zeppilli D., Bongiorni L., Santos R.S., Vanreusel A. 2014. Changes in Nematode Communities in Different Physiographic Sites of the Condor Seamount (North-East Atlantic Ocean) and Adjacent Sediments. PLoS ONE 9(12): e115601. https://doi.org/10.1371/journal.pone.0115601 PMid:25541988 PMCid:PMC4277353; Zeppilli D., Sarrazin J., Leduc D. Arbizu P.M., et al. 2015a. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45: 505-535. https://doi.org/10.1007/s12526-015-0359-z; Zeppilli D., Vanreusel A., Pradillon F., et al. 2015b. Rapid colonisation by nematodes on organic and inorganic substrata deployed at the deep-sea Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge). Mar. Biodivers. 45: 489-504. https://doi.org/10.1007/s12526-015-0348-2; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1913
-
3
المؤلفون: Rebelo, Ana C.
المساهمون: Repositório da Universidade dos Açores
مصطلحات موضوعية: Alga Vermelha Coralina, Rodólitos
وصف الملف: application/pdf
Relation: Rebelo, A. C. (2020, 12 de janeiro). Rock and rol em ilhas oceânicas. “Açoriano Oriental, Açores Magazine, UAciência”, pp. 28-29.
الاتاحة: http://hdl.handle.net/10400.3/5434
-
4Academic Journal
المؤلفون: Longo, Caterina, Corriero, Giuseppe, Cardone, Frine, Mercurio, Maria, Pierri, Cataldo, Nonnis Marzano, Carlotta
المصدر: Scientia Marina; Vol. 84 No. 3 (2020); 297-308 ; Scientia Marina; Vol. 84 Núm. 3 (2020); 297-308 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2020.84n3
مصطلحات موضوعية: Porifera, Ustica Island, Mediterranean Sea, rhodolith beds, coralligenous formations, photophilous hard substrates, marine caves, isla de Ustica, mar Mediterráneo, lechos de rodolitos, hábitat de coralígeno, sustratos duros fotófilos, cuevas marina
وصف الملف: text/html; application/pdf; application/xml
Relation: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1864/2721; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1864/2701; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1864/2722; Agnesi S., Annunziatellis A., Casese M.L., et al. 2009. Analysis on the coralligenous assemblages in the Mediterranean Sea: a review of the current state of knowledge in support of future investigations. In: Pergent-Martini C., Brichet M. (eds), Proceedings of the 1st Mediterranean symposium on the conservation of the coralligenous and other calcareous bio-concretions (Tabarka, 15-16 January 2009). RAC/SPA Publ., Tunis, pp. 41-46.; Aguilar R., Pastor X., De la Torriente A., et al. 2009. Deep-sea coralligenous beds observed with ROV on four seamounts in the Western Mediterranean. In: Pergent-Martini C., Brichet M. (eds), Proceedings of the 1st Mediterranean symposium on the conservation of the coralligenous and other calcareous bio-concretions (Tabarka, 15-16 January 2009). RAC/SPA Publ., Tunis, pp. 148-150.; Ávila E., Riosmena-Rodríguez R. 2011. A preliminary evaluation of shallow-water rhodolith beds of Bahia Magdalena, Mexico. Braz. J. Oceanogr. 59: 365-375. https://doi.org/10.1590/S1679-87592011000400007; Ávila E., Riosmena Rodríguez R., Hinojosa-Arango G. 2013. Sponge-rhodolith interactions in a subtropical estuarine system. Helgoland Mar. Res. 67: 349-357. https://doi.org/10.1007/s10152-012-0327-y; Ballesteros E. 2006. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 44: 123-195. https://doi.org/10.1201/9781420006391.ch4; Barbieri M., Bavestrello G., Sarà M. 2008. Morphological and ecological differences in two electrophoretically detected species of Cliona (Porifera, Demospongiae). Biol. J. Linn. Soc. 54: 193-200. https://doi.org/10.1111/j.1095-8312.1995.tb01032.x; Basso D., Babbini L., Kaleb S., et al. 2016. Monitoring deep Mediterranean rhodolith beds. Aquat. Conserv. 26: 549-561. https://doi.org/10.1002/aqc.2586; Basso D., Babbini L., Ramos-Esplá A.A., et al. 2017. Mediterranean rhodolith beds. In: Riosmena-Rodríguez R., Nelson W., Aguirre J. (eds), Rhodolith/Maërl Beds: A Global Perspective. Springer International, Cham, pp. 282-295. https://doi.org/10.1007/978-3-319-29315-8_11; Bell J.J., Barnes D.K.A. 2000. A sponge diversity centre within a marine 'island'. Hydrobiologia 440: 55-64. https://doi.org/10.1007/978-94-017-1982-7_6 PMCid:PMC2640544; Bertolino M., Cerrano C., Bavestrello G., et al. 2013. Diversity of Porifera in the Mediterranean coralligenous accretions, with description of a new species. ZooKeys 336: 1-37. https://doi.org/10.3897/zookeys.336.5139 PMid:24146570 PMCid:PMC3800777; BIOMAËRL Team. 1999. Final report, BIOMAËRL project (Co-ordinator: Moore P.O. University Marine Biological Station Millport, Scotland), EC Contract No. MAS3-CT95-0020, 973 pp.; Birkett D.A., Maggs C.A., Dring M.J. 1998. Maërl (volume V). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project), Belfast, 116 pp.; Borg J.A., Howegel H.M., Lanfranco E., et al. 1998. The Macrobenthic Species of the lnfralittoral to Circalittoral Transition Zone off the Northeastern Coast of Malta (Central Mediterranean). Xjenza 31: 16-24.; Bosellini A., Ginsburg R.N. 1971. Form and internal structure of recent algal nodules (rhodolites). Bermuda J. Geol. 79: 669-682. https://doi.org/10.1086/627697; Boury-Esnault N., Rützler K. 1997. Thesaurus of Sponge Morphology. Smithsonian Institution Press, Washington, DC, 55 pp. https://doi.org/10.5479/si.00810282.596; Calcinai B., Moratti V., Martinelli M., et al. 2013. Uncommon sponges associated with deep coral bank and maërl habitats in the Strait of Sicily (Mediterranean Sea). Ital. J. Zool. 80: 412-423. https://doi.org/10.1080/11250003.2013.786763; Cerrano C., Bavestrello G., Bianchi C., et al. 2001. The role of sponge bioerosion in Mediterranean coralligenous accretion. In: Faranda F.M., Guglielmo L., Spezie G. (eds), Mediterranean Ecosystems. Springer, Milano, pp. 235-240. https://doi.org/10.1007/978-88-470-2105-1_30; Coll M., Piroddi C., Steenbeek J., et al. 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE 5: e11842. https://doi.org/10.1371/journal.pone.0011842 PMid:20689844 PMCid:PMC2914016; Corriero G. 1989. Primi dati sul popolamento di Poriferi delle grotte superficiali dell'isola di Ustica. Nova Thalassia 10: 585-588.; Corriero G., Pronzato R., Sarà M. 1991. The Sponge Fauna Associated with Arca noae L. (Mollusca, Bivalvia). In: Reitner J., Keupp H. (eds), Fossil and Recent Sponges. Springer, Berlin, Heidelberg, pp. 395-403. https://doi.org/10.1007/978-3-642-75656-6_32; Corriero G., Scalera Liaci L., Pronzato R. 1996. Two new species of Dendroxea Griessinger, 1971 (Porifera, Demospongiae) from the Mediterranean Sea. Bull. Inst. r. Sci. Nat. Belg. 66: 197-203.; Corriero G., Scalera Liaci L., Pronzato R. 1997a. Didiscus spinoxeatus, a new species of Porifera (Demospongiae) from the Mediterranean Sea. Ophelia 47: 63-70. https://doi.org/10.1080/00785326.1997.10433391; Corriero G., Scalera Liaci L., Gristina M., et al. 1997b. Composizione tassonomica e distribuzione della fauna a Poriferi e Briozoi di una grotta semisommersa della Riserva Marina di Ustica. Biol. Mar. Medit. 4: 34-43.; Corriero G., Scalera Liaci L., Gristina M., et al. 1999. Composizione tassonomica e distribuzione del macrozoobenthos in ambienti di grotta semisommersa della Riserva Naturale Marina "Isola di Ustica". Biol. Mar. Medit. 6: 250-252.; Corriero G., Gherardi M., Giangrande A., et al. 2004. Inventory and distribution of hard bottom fauna from the Marine Protected Area of Porto Cesareo (Ionian Sea): Porifera and Polichaeta. Ital. J. Zool. 71: 237-245. https://doi.org/10.1080/11250000409356578; Foster M.S., Mc Connico L.M., Lundsten L., et al. 2007. Diversity and natural history of a Lithothamnion muelleri-Sargassum horridum community in the Gulf of California. Cienc. Mar. 33: 367-384. https://doi.org/10.7773/cm.v33i4.1174; Gerovasileiou V., Voultsiadou E. 2012. Marine caves of the Mediterranean Sea: a sponge biodiversity reservoir within a biodiversity hotspot. PLoS ONE 7: e39873. https://doi.org/10.1371/journal.pone.0039873 PMid:22808070 PMCid:PMC3394755; Gerovasileiou V., Martínez García A., Álvarez Noguera F., et al. 2019. World Register of Marine Cave Species (WoRCS). Porifera. Accessed 10 April 2019.; Giaccone T., Giaccone G., Mannino A.M. 2018. Deep rhodolith beds in the Ustica Island (Sicily, Southern Tyrrhenian Sea): a sedimentary and paleoecological approach. Geogr. Fis. Din. Quat. 41: 47-63.; Gondim A.I., Dias T.L.P., de Souza Duarte R.C., et al. 2014. Filling a knowledge gap on the biodiversity of rhodolith-associated Echinodermata from northeastern Brazil. Trop. Conserv. Sci. 7: 87-99. https://doi.org/10.1177/194008291400700112; Grall J., Glémarec M. 1997. Biodiversité des fonds de maërl en Bretagne: approche fonctionnelle et impacts anthropogeniques. Vie Milieu 47: 339-349.; Grall J., Le Loc'h F., Guyonnet B., et al. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maërl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013; Grenier M., Ruiz C., Fourt M., et al. 2018. Sponge inventory of the French Mediterranean waters, with an emphasis on cave-dwelling species. Zootaxa 4466: 205-228. https://doi.org/10.11646/zootaxa.4466.1.16 PMid:30313448; Hernandez-Kantun J.J., Hall-Spencer J.M., Grall J., et al. 2017. North Atlantic rhodolith beds. In: Riosmena-Rodríguez R., Nelson W., Aguirre J. (eds), Rhodolith/Maërl Beds: A Global Perspective. Springer International Publishing, Switzerland, pp. 265-279. https://doi.org/10.1007/978-3-319-29315-8_10; Horta P.A., Riul P., Amado Filho G.M., et al. 2016. Rhodoliths in Brazil: Current knowledge and potential impacts of climate change. Braz. J. Oceanogr. 64: 117-136. https://doi.org/10.1590/S1679-875920160870064sp2; Huvé H. 1956. Contribution à l'étude des fonds à Lithothamnium (?) solutum Foslie (= Lithophyllum solutum (Foslie) Lemoine) de la région de Marseille. Rec. Trav. Stat. Mar. Endoume 18: 105-134.; Irvine L.M., Chamberlain Y.M. 1994. Seaweeds of the British Isles. Vol. 1. Rhodophyta. Part 2B. Corallinales, Hildenbrandiales. Natural History Museum, London, 276 pp.; Jacquotte R. 1962. Etude des fonds de maërl de Méditerranée. Rec. Trav. Stat. Mar. Endoume 26: 141-235.; Leal R.N., Bassi D., Posenato R., et al. 2012. Tomographic analysis for bioerosion signatures in shallow-water rhodoliths from the Abrolhos Bank Braz. J. Coast. Res. 28: 306-309. https://doi.org/10.2112/11T-00006.1; Leal C.V., De Paula T.S., Lôbo-Hajdu G., et al. 2016. Morphological and molecular systematics of the Cliona viridis complex' from south-eastern Brazil. J. Mar. Biol. Ass. U.K. 96: 313-322. https://doi.org/10.1017/S0025315415001642; Longo C., Cardone F., Pierri C., et al. 2018. Sponges associated with coralligenous formations along the Apulian coasts. Mar. Biodivers. 48: 2151-2163. https://doi.org/10.1007/s12526-017-0744-x; Mannino A.M., Castriota L., Beltrano A.M., et al. 2002. The epiflora of a rhodolith bed from the Island of Ustica (Southern Tyrrhenian Sea). Flora Medit. 12: 11-28.; Massa-Gallucci A., Cigliano M., Lattanzi L., et al. 2006. Zoobenthos associato a fondi a rodoliti (Corallinales) dell'isola d'Ischia (Mare Tirreno). Biol. Mar. Medit. 13: 194-195.; Morrow C., Cárdenas P. 2015. Proposal for a revised classification of the Demospongiae (Porifera). Front. Zool. 12: 7. https://doi.org/10.1186/s12983-015-0099-8 PMid:25901176 PMCid:PMC4404696; Neill K.F., Nelson W.A., D'Archino R., et al. 2015. Northern New Zealand rhodoliths: assessing faunal and floral diversity in physically contrasting beds. Mar. Biodivers. 45: 63. https://doi.org/10.1007/s12526-014-0229-0; Ordines F., Ramón M., Rivera J., et al. 2017. Why long term trawled red algae beds off Balearic Islands (western Mediterranean) still persist? Reg. Stud. Mar. Sci. 15: 39-49. https://doi.org/10.1016/j.rsma.2017.07.005; Pansini M., Longo C. 2008. Porifera. Biol. Mar. Medit. 15: 42-66.; Pérès J.M., Picard J. 1964. Nouveau manuel de Bionomie bentique de la Mer Méditerranée. Rec. Trav. Stat. Mar. Endoume 31: 5-137.; Picard J. 1965. Recherches qualitatives sur les biocoenoses des substrats meubles dragables de la région marseillaise. Rec. Trav. Stat. Mar. Endoume 52: 3-160.; Ramos-Esplà A.A., Luque del Villar A.A. 2008. Maërl beds: a fragile oasis of marine life. In: The Seas of Spain. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, pp. 273-290.; Riosmena-Rodríguez R., Nelson W., Aguirre J. 2017. Rhodolith/ maërl beds: a global perspective. Springer International Publishing, Switzerland, 368 pp. https://doi.org/10.1007/978-3-319-29315-8; Rosell D., Uriz M.J. 2002. Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key. Org. Divers. Evol. 2: 55-86. https://doi.org/10.1078/1439-6092-00033; Sanfilippo M., Capillo G., Spanò N., et al. 2016. Evaluation of Water Variables in No-Take Zone of Ustica Marine Protected Area (Southern Tyrrhenian Sea). Braz. Arch. Biol. Techn. 59: 1-10. https://doi.org/10.1590/1678-4324-2016160330; Santín A., Grinyó J., Ambroso S., et al. 2018. Sponge assemblages on the deep Mediterranean continental shelf and slope (Menorca Channel, Western Mediterranean Sea). Deep-Sea Res. Part I 131: 75-86. https://doi.org/10.1016/j.dsr.2017.11.003; Sarà M. 1959. Specie nuove di Demospongie provenienti da acque superficiali del golfo di Napoli. Annuario Ist. Mus. Zool. Univ. Napoli 11: 1-22.; Sarà M. 1961. La fauna di Poriferi delle grotte delle isole Tremiti. Studio ecologico e sistematico. Arch. Zool. Ital. 46: 1-59.; Schönberg C.H.L. 2002. Sponges of the Cliona viridis complex: a key for species identification. In: Moosa M.K., Soemodihardjo S., et al. (eds), Proceedings of the 9th International Coral Reef Symposium, vol. 1. International Society of Coral Reef Studies, Bali, Indonesia, pp. 295-300.; Sciberras M., Rizzo M., Mifsud J.R., et al. 2009. Habitat structure and biological characteristics of a maërl bed off the northeastern coast of the Maltese Islands (central Mediterranean). Mar. Biodiv. 39: 251-264. https://doi.org/10.1007/s12526-009-0017-4; Sitjà C., Maldonado M. 2014. New and rare sponges from the deep shelf of the Alboran Island (Alboran Sea, Western Mediterranean). Zootaxa 3760: 141-179. https://doi.org/10.11646/zootaxa.3760.2.2 PMid:24870077; van Soest R.W.M., Boury-Esnault N., Hooper J.N.A., et al. 2020. World Porifera Database. Accessed 25 February 2020.; Teichert S., Woelkerling W., Rüggeberg A., et al. 2014. Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway). Facies 60: 15-37. https://doi.org/10.1007/s10347-013-0372-2; UNEP-MAP-RAC/SPA. 2017. Action Plan for the Conservation of the Coralligenous and Other Calcareous Bio-concretions in the Mediterranean Sea. United Nations Environment Programme/ Mediterranean Action Plan, Athens, Greece, 20 pp.; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1864
-
5
المؤلفون: Ávila, Sérgio P.
المساهمون: Repositório da Universidade dos Açores
مصطلحات موضوعية: Alga Vermelha Coralina, Rodólitos, Açores
وصف الملف: application/pdf
Relation: Ávila, S. (2016, 14 de fevereiro). Rodólitos em ilhas oceânicas. “Açoriano Oriental, Açores Magazine, UAciência”, pp. 28-29.
الاتاحة: http://hdl.handle.net/10400.3/5567
-
6
المؤلفون: Rebelo, Ana Cristina Furtado
المساهمون: Cachão, Mário A. P., 1961-, Melo, Ricardo Alexandre, 1956-, Repositório da Universidade de Lisboa
مصطلحات موضوعية: Algas calcárias, Corallinales, Rhodophyta, Rodólitos, Ribeira de Ilhas, Porto Santo, Miocénico Médio, Teses de mestrado - 2010
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10451/5359
-
7
المؤلفون: Pereira-Filho, Guilherme Henrique UNIFESP, Candido, Lucas C., Moreira, Priscila S., Laranja, Diego H. R., Motta, Fabio dos Santos UNIFESP, Comin, Eric UNIFESP
المساهمون: Universidade Federal de São Paulo (UNIFESP), http://lattes.cnpq.br/1211745530577271
مصطلحات موضوعية: Rodolitos, Ilha das Couves, Maerl, Algas Calcárias, Plano de Uso Publico, Fundação Florestal, MPF
وصف الملف: application/pdf
Relation: PEREIRA-FILHO, Guilherme Henrique; CANDIDO, Lucas C.; MOREIRA, Priscila S.; LARANJA, Diego H. R.; MOTTA, Fabio dos Santos; COMIN, Eric. (2023) Nota técnica conjunta n 001/2023 IMar/Unifesp - Fundação Florestal de São Paulo: Descoberta do Banco de Rodolitos na Ilha das Couves, Ubatuba, SP. Disponível em: https://repositorio.unifesp.br/handle/11600/67268; https://repositorio.unifesp.br/11600/67268
-
8
المؤلفون: Mueller, Carolina Melissa
المساهمون: Horta Junior, Paulo Antunes, Oliveira, Willian da Silva, Universidade Federal de Santa Catarina.
مصطلحات موضوعية: algas calcárias, bancos de rodolitos, ilha do campeche, Lithophyllum margaritae, Roseolithon, rbcL
وصف الملف: application/pdf
-
9Dissertation/ Thesis
المؤلفون: Díaz Licona, Celeste Avelina
المساهمون: Fernández García, Cindy
المصدر: Ciudad Universitaria Rodrigo Facio Universidad de Costa Rica
مصطلحات موضوعية: Mantos de rodolitos, Servicios ecosistémicos, Recomendaciones de manejo
وصف الملف: application/pdf
Relation: https://hdl.handle.net/10669/90933
الاتاحة: https://hdl.handle.net/10669/90933
-
10Academic Journal
المؤلفون: Ávila, Enrique, Riosmena-Rodriguez, Rafael
المصدر: Brazilian Journal of Oceanography; Vol. 59 Núm. 4 (2011); 365-375 ; Brazilian Journal of Oceanography; v. 59 n. 4 (2011); 365-375 ; Brazilian Journal of Oceanography; Vol. 59 No. 4 (2011); 365-375 ; 1982-436X ; 1679-8759
مصطلحات موضوعية: Rhodolith beds, Lithophyllum margaritae, distribution, Bahia Magdalena, Baja California, México, Bancos de rodolitos, distribuição
وصف الملف: application/pdf
Relation: https://revistas.usp.br/bjoce/article/view/39730/42589; https://revistas.usp.br/bjoce/article/view/39730
-
11Academic Journal
المؤلفون: Amado-Filho,GM, Maneveldt,GW, Pereira-Filho,GH, Manso,RCC, Bahia,RG., Barros-Barreto,MB, Guimarães,SMPB
المصدر: Ciencias marinas v.36 n.4 2010
مصطلحات موضوعية: rodolitos, algas marinas de Brasil, comunidad algal bentónica, estado de Espirito Santo, algas coralinas incrustantes
وصف الملف: text/html
-
12Academic Journal
المؤلفون: Figueiredo,MA de O, Santos de Menezes,K, Costa-Paiva,EM, Paiva,PC, Ventura,CRR
المصدر: Ciencias marinas v.33 n.4 2007
مصطلحات موضوعية: Parque Nacional Marino de Abrolhos, infauna, algas coralinas, rodolitos vivos
وصف الملف: text/html
-
13Academic Journal
المؤلفون: Harvey,AS, Woelkerling,WJ
المصدر: Ciencias marinas v.33 n.4 2007
مصطلحات موضوعية: rodolitos, algas coralinas, identificación, Corallinales
وصف الملف: text/html
-
14Academic Journal
المؤلفون: Amado-Filho,GM, Maneveldt,G, Manso,RCC, Marins-Rosa,BV, Pacheco,MR, Guimarães,SMPB
المصدر: Ciencias marinas v.33 n.4 2007
مصطلحات موضوعية: rodolitos, plataforma continental, distribución, comunidad epibéntica
وصف الملف: text/html
-
15Academic Journal
المؤلفون: Cosme, Marcial, Otero Ferrer, Francisco, Haroun, Ricardo
المصدر: Okeanos [ISSN 2444-4758], n. 10, (enero-junio 2020), p. 26-35
مصطلحات موضوعية: 241705 Biología marina, Rodolitos
Relation: Okeanos; http://hdl.handle.net/10553/73962; Sí
الاتاحة: http://hdl.handle.net/10553/73962
-
16Academic Journal
المؤلفون: Gherardi, Douglas F. M.
المصدر: Brazilian Journal of Oceanography; Vol. 52 Núm. 3-4 (2004); 207-224 ; Brazilian Journal of Oceanography; v. 52 n. 3-4 (2004); 207-224 ; Brazilian Journal of Oceanography; Vol. 52 No. 3-4 (2004); 207-224 ; 1982-436X ; 1679-8759
مصطلحات موضوعية: Community structure, Rhodolith bank, Carbonate production, Estrutura da comunidade, Rodolitos, Produção de carbonato
وصف الملف: application/pdf
Relation: https://revistas.usp.br/bjoce/article/view/38411/41256; https://revistas.usp.br/bjoce/article/view/38411
-
17Academic Journal
المؤلفون: Rivera,M.G., Riosmena-Rodríguez,R., Foster,M.S.
المصدر: Ciencias marinas v.30 n.1b 2004
مصطلحات موضوعية: edad, crecimiento, Lithothamnion muelleri, rodolitos, Corallinales
وصف الملف: text/html
-
18Academic Journal
المصدر: Geofísica Internacional, Vol 42, Iss 3, Pp 467-471 (2003)
مصطلحات موضوعية: enso, estrés térmico, blanqueamiento de coral, mortalidad de coral, zooxantelas, camas de rodolitos, Geophysics. Cosmic physics, QC801-809
Relation: http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/935; https://doaj.org/toc/0016-7169; https://doaj.org/toc/2954-436X; https://doaj.org/article/4e10ccd66c2640da8f18b68524fa3dcf
-
19Dissertation/ Thesis
المؤلفون: Centelles Felici, Livia
المساهمون: Blazquez Morilla, Ana María, Fernández García, Cindy
مصطلحات موضوعية: Rodolitos, Sustrato, Profundidad, Algas rojas, Rodolith, Substrate, Depth, Red algae, 2510.04 Botánica Marina
Relation: http://hdl.handle.net/20.500.12466/1143
-
20Report
المؤلفون: Sewell,AA, Johnson,ME, Backus,DH, Ledesma-Vázquez,J
المصدر: Ciencias marinas v.33 n.4 2007
مصطلحات موضوعية: Deflación de playa, dunas carbonatadas, ciclo del carbón, rodolitos
وصف الملف: text/html