-
1Academic Journal
المؤلفون: Paul Barry
المصدر: Mathematics, Vol 13, Iss 2, p 242 (2025)
مصطلحات موضوعية: Riordan array, Robbins number, integrable lattice model, six-vertex model, twenty-vertex model, generating function, Mathematics, QA1-939
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Jasmine Renee Evans, Asamoah Nkwanta
المصدر: AppliedMath, Vol 3, Iss 1, Pp 200-220 (2023)
مصطلحات موضوعية: RNA secondary structure, linear tree, lattice walk, Riordan array, Mathematics, QA1-939
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: He Tian-Xiao, Ramírez José L.
المصدر: Special Matrices, Vol 10, Iss 1, Pp 153-165 (2021)
مصطلحات موضوعية: riordan array, dual number sequence, bernoulli numbers and polynomials, fuss-catalan numbers, sheffer sequence, dual sheffer sequence, 05a15, 05a19, 11b83, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2300-7451
-
4Report
المؤلفون: Deb, Bishal, Sokal, Alan D.
المساهمون: University College of London London (UCL), Sorbonne Université (SU), Université Paris Cité (UPCité), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), New York University New York (NYU), NYU System (NYU), ANR-18-CE40-0033,DIMERS,Dimères : de la combinatoire à la mécanique quantique(2018)
المصدر: https://hal.science/hal-04297025 ; 2023.
مصطلحات موضوعية: Schett polynomials Jacobian elliptic functions total positivity production matrix exponential Riordan array checkerboard exponential Riordan array, Schett polynomials, Jacobian elliptic functions, total positivity, production matrix, exponential Riordan array, checkerboard exponential Riordan array, MSC classes: 05A19 (Primary), 05A15, 05A20, 11B68, 15B48, 30B70, 33E05 (Secondary), [MATH]Mathematics [math]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/2311.11747; hal-04297025; https://hal.science/hal-04297025; https://hal.science/hal-04297025/document; https://hal.science/hal-04297025/file/2311.11747.pdf; ARXIV: 2311.11747
-
5Academic Journal
المؤلفون: Yidong Sun, Wenle Shi, Di Zhao
المصدر: Enumerative Combinatorics and Applications, Vol 2, Iss 3, p Article #S2R24 (2022)
مصطلحات موضوعية: asymmetric peak, dyck path, riordan array, symmetric peak, symmetric valley, Mathematics, QA1-939
وصف الملف: electronic resource
-
6Report
المؤلفون: Deb, Bishal, Dyachenko, Alexander, Pétréolle, Mathias, Sokal, Alan D.
المساهمون: University College of London London (UCL), Sorbonne Université (SU), Université Paris Cité (UPCité), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Keldysh Institute of Applied Mathematics, Russian Academy of Science (CAALAB), New York University New York (NYU), NYU System (NYU), ANR-18-CE40-0033,DIMERS,Dimères : de la combinatoire à la mécanique quantique(2018)
المصدر: https://hal.science/hal-04354289 ; 2023.
مصطلحات موضوعية: Laguerre polynomial, rook polynomial, Lah polynomial, Laguerre digraph, production matrix, quadridiagonal matrix, exponential Riordan array, Hankel matrix, total positivity, Hankel-total positivity, continued fraction, branched continued fraction, multiple orthogonal polynomial, modified Bessel function, MSC: 05A15 (Primary), 05A05, 05A19, 05A20, 05C30, 05C38, 15B48, 30B70, 33C10, 33C45, 42C05 (Secondary), [MATH]Mathematics [math]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/2312.11081; ARXIV: 2312.11081
-
7Academic Journal
المؤلفون: Cetin, Mirac, Kizilates, Can, Yesil Baran, Fatma, Tuglu, Naim
مصطلحات موضوعية: Hyperharmonic, Fibonacci numbers, Riordan array, Symmetric, Infinite matrix method
Relation: Gazi University Journal Of Science; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; https://doi.org/10.35378/gujs.705885; https://search.trdizin.gov.tr/yayin/detay/1137497; https://hdl.handle.net/20.500.12450/2677; 34; 493; 504; 2-s2.0-85108586892; 1137497; WOS:000659983900013
-
8
المؤلفون: Tian-Xiao He, José L. Ramírez
المصدر: Special Matrices, Vol 10, Iss 1, Pp 153-165 (2021)
مصطلحات موضوعية: fuss-catalan numbers, Algebra and Number Theory, Mathematics::Combinatorics, dual number sequence, sheffer sequence, 11b83, riordan array, 05a19, QA1-939, dual sheffer sequence, Geometry and Topology, bernoulli numbers and polynomials, 05a15, Mathematics
-
9Dissertation/ Thesis
المؤلفون: Dickson, Jessica
المساهمون: Hudelson, Matthew, McDonald, Judith, Tsatsomeros, Michael
مصطلحات موضوعية: A-Sequence, Annihilating Operator, Generating Function, Overlay, Riordan Array, Template
وصف الملف: pdf
Relation: 99901019936901842; https://rex.libraries.wsu.edu/view/delivery/01ALLIANCE_WSU/12397306340001842/13397306330001842; alma:01ALLIANCE_WSU/bibs/99901019936901842
-
10Academic Journal
المساهمون: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. DCG - Discrete and Combinatorial Geometry, Universitat Politècnica de Catalunya. CGA - Computational Geometry and Applications
مصطلحات موضوعية: Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria, Combinatorial analysis, geometric graph, production matrix, Riordan array, Anàlisi combinatòria
وصف الملف: 6 p.; application/pdf
Relation: https://www.sciencedirect.com/science/article/pii/S1571065318301288; Esteban, G., Huemer, C., Silveira, R.I. New results on production matrices for geometric graphs. "Electronic notes in discrete mathematics", 1 Juliol 2018, vol. 68, núm. July 2018, p. 215-220.; http://hdl.handle.net/2117/121756
-
11Academic Journal
المساهمون: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
مصطلحات موضوعية: Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria, Graph theory, Fibonacci number, geometric graph, production matrix, Riordan array, Grafs, Teoria de
وصف الملف: 7 p.
Relation: http://www.sciencedirect.com/science/article/pii/S1571065317301828?via%3Dihub; This project has received funding from the European Union’s Horizon 89 2020 research and innovation programme under the Marie Sk lodowska- 90 Curie grant agreement No 734922. 91 C. H., C. S., and R. I. S. were partially supported by projects MINECO MTM2015- 92 63791-R and Gen. Cat. DGR2014SGR46. R. I. S. was also supported by MINECO 93 through the Ramon y Cajal program; Huemer, C., Pilz, A., Seara, C., Silveira, R.I. Characteristic polynomials of production matrices for geometric graphs. "Electronic notes in discrete mathematics", 1 Agost 2017, vol. 61, p. 1-7.; http://hdl.handle.net/2117/111649
-
12Academic Journal
المساهمون: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
مصطلحات موضوعية: Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta, Matrices, geometric graph, production matrix, Catalan number, Riordan array, Matrius (Matemàtica)
وصف الملف: 6 p.
Relation: http://www.sciencedirect.com/science/journal/15710653; Huemer, C., Pilz, A., Seara, C., Silveira, R.I. Production matrices for geometric graphs. "Electronic notes in discrete mathematics", 2016, vol. 54, p. 301-306.; http://hdl.handle.net/2117/103649
-
13Academic Journal
المؤلفون: Baril, Jean-Luc, Ramirez, José Luis, Simbaqueba, Lina Maria
المساهمون: Laboratoire d'Informatique de Bourgogne Dijon (LIB), Université de Bourgogne (UB), Departamento de Matematicas (Universidad Nacional de Colombia), Universidad Nacional de Colombia Bogotà (UNAL)
المصدر: ISSN: 1530-7638 ; Journal of Integer Sequences ; https://hal.science/hal-03523809 ; Journal of Integer Sequences, 2021, 24, pp.21.8.2 ; https://cs.uwaterloo.ca/journals/JIS/VOL24/Ramirez/ramirez10.html.
مصطلحات موضوعية: Skew Dyck path, Generating function, Lagrange inversion, Riordan array, [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Relation: hal-03523809; https://hal.science/hal-03523809
الاتاحة: https://hal.science/hal-03523809
-
14Academic Journal
المؤلفون: P. Petrullo
المساهمون: Petrullo, P.
مصطلحات موضوعية: Riordan array, Gamma vector, Directed graph, Orthogonal polynomial, Catalan numbers
Relation: volume:618; firstpage:158; lastpage:182; numberofpages:25; journal:LINEAR ALGEBRA AND ITS APPLICATIONS; https://hdl.handle.net/11563/146483
-
15
المؤلفون: Donatella Merlini
المصدر: Results in Mathematics. 76
مصطلحات موضوعية: Formal power series, Applied Mathematics, Riordan array, Bell matrix, square root matrix, Schroder’s equation, 0211 other engineering and technologies, 021107 urban & regional planning, Context (language use), 010103 numerical & computational mathematics, 02 engineering and technology, Function (mathematics), 01 natural sciences, Prime (order theory), Combinatorics, Matrix (mathematics), Mathematics (miscellaneous), Square root, 0101 mathematics, Square root of a matrix, Mathematics, Schröder's equation
-
16Academic Journal
المؤلفون: Sheng-liang Yang, Sai-nan Zheng, Shao-peng Yuan
المساهمون: The Pennsylvania State University CiteSeerX Archives
مصطلحات موضوعية: Delannoy number, Pascal matrix, Catalan number, Schroder number, Riordan array
-
17Academic Journal
المؤلفون: Yang, Lin, Yang, Sheng-Liang, He, Tian-Xiao
مصطلحات موضوعية: keyword:Riordan array, keyword:lattice path, keyword:Delannoy matrix, keyword:Schröder number, keyword:Schröder matrix, msc:05A15, msc:05A19, msc:11B83, msc:15A24
وصف الملف: application/pdf
Relation: mr:MR4111851; zbl:07217143; reference:[1] Aigner, M.: Enumeration via ballot numbers.Discrete Math. 308 (2008), 2544-2563. Zbl 1147.05002, MR 2410460, 10.1016/j.disc.2007.06.012; reference:[2] Barry, P.: On the central coefficients of Riordan matrices.J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. Zbl 1310.11032, MR 3065330; reference:[3] Bonin, J., Shapiro, L., Simion, R.: Some $q$-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths.J. Stat. Plann. Inference 34 (1993), 35-55. Zbl 0783.05008, MR 1209988, 10.1016/0378-3758(93)90032-2; reference:[4] Chen, X., Liang, H., Wang, Y.: Total positivity of Riordan arrays.Eur. J. Comb. 46 (2015), 68-74. Zbl 1307.05010, MR 3305345, 10.1016/j.ejc.2014.11.009; reference:[5] Cheon, G.-S., Kim, H., Shapiro, L. W.: Combinatorics of Riordan arrays with identical $A$ and $Z$ sequences.Discrete Math. 312 (2012), 2040-2049. Zbl 1243.05007, MR 2920864, 10.1016/j.disc.2012.03.023; reference:[6] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions.D. Reidel Publishing, Dordrecht (1974). Zbl 0283.05001, MR 0460128, 10.1007/978-94-010-2196-8; reference:[7] Deutsch, E.: A bijective proof of the equation linking the Schröder numbers, large and small.Discrete Math. 241 (2001), 235-240. Zbl 0992.05010, MR 1861420, 10.1016/S0012-365X(01)00122-4; reference:[8] Deutsch, E., Munarini, E., Rinaldi, S.: Skew Dyck paths.J. Stat. Plann. Inference 140 (2010), 2191-2203. Zbl 1232.05010, MR 2609478, 10.1016/j.jspi.2010.01.015; reference:[9] Dziemiańczuk, M.: Counting lattice paths with four types of steps.Graphs Comb. 30 (2014), 1427-1452. Zbl 1306.05007, MR 3268642, 10.1007/s00373-013-1357-1; reference:[10] He, T.-X.: Parametric Catalan numbers and Catalan triangles.Linear Algebra Appl. 438 (2013), 1467-1484. Zbl 1257.05003, MR 2997825, 10.1016/j.laa.2012.10.001; reference:[11] Humphreys, K.: A history and a survey of lattice path enumeration.J. Stat. Plann. Inference 140 (2010), 2237-2254. Zbl 1204.05015, MR 2609483, 10.1016/j.jspi.2010.01.020; reference:[12] Luzón, A., Merlini, D., Morón, M., Sprugnoli, R.: Identities induced by Riordan arrays.Linear Algebra Appl. 436 (2011), 631-647. Zbl 1232.05011, MR 2854896, 10.1016/j.laa.2011.08.007; reference:[13] Mansour, T., Schork, M., Sun, Y.: Motzkin numbers of higher ranks: Generating function and explicit expression.J. Integer Seq. 10 (2007), Article 07.7.4, 11 pages. Zbl 1141.05308, MR 2322499; reference:[14] Merlini, D.: Proper generating trees and their internal path length.Discrete Appl. Math. 156 (2008), 627-646. Zbl 1136.05002, MR 2397210, 10.1016/j.dam.2007.08.051; reference:[15] Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C.: On some alternative characterizations of Riordan arrays.Can. J. Math. 49 (1997), 301-320. Zbl 0886.05013, MR 1447493, 10.4153/CJM-1997-015-x; reference:[16] Merlini, D., Sprugnoli, R.: Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern.Theor. Comput. Sci. 412 (2011), 2988-3001. Zbl 1220.68079, MR 2830262, 10.1016/j.tcs.2010.07.019; reference:[17] Niederhausen, H.: Inverses of Motzkin and Schröder paths.Integers 12 (2012), Article ID A49, 19 pages. Zbl 1290.05011, MR 3083422; reference:[18] Nkwanta, A., Shapiro, L. W.: Pell walks and Riordan matrices.Fibonacci Q. 43 (2005), 170-180. Zbl 1074.60053, MR 2147953; reference:[19] Pergola, E., Sulanke, R. A.: Schröder triangles, paths, and parallelogram polyominoes.J. Integer Seq. 1 (1998), Article 98.1.7. Zbl 0974.05003, MR 1677075; reference:[20] Ramírez, J. L., Sirvent, V. F.: Generalized Schröder matrix and its combinatorial interpretation.Linear Multilinear Algebra 66 (2018), 418-433. Zbl 1387.15004, MR 3750599, 10.1080/03081087.2017.1301360; reference:[21] Rogers, D. G.: A Schröder triangle: Three combinatorial problems.Combinatorial Mathematics, V Lecture Notes in Mathematics 622, Springer, Berlin (1977), 175-196. Zbl 0368.05004, MR 0462964, 10.1007/BFb0069192; reference:[22] Rogers, D. G., Shapiro, L. W.: Some correspondence involving the Schröder numbers and relations.Combinatorial Mathematics Lecture Notes in Mathematics 686, Springer, Berlin (1978). MR 0526754, 10.1007/BFb0062541; reference:[23] Schröder, E.: Vier kombinatorische probleme.Schloemilch Z. (Zs. f. Math. u. Phys.) 15 (1870), 361-376 German \99999JFM99999 02.0108.04.; reference:[24] Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C.: The Riordan group.Discrete Appl. Math. 34 (1991), 229-239. Zbl 0754.05010, MR 1137996, 10.1016/0166-218X(91)90088-E; reference:[25] Sloane, N. J. A.: On-line Encyclopedia of Integer Sequences (OEIS).Available at https://oeis.org (2018). MR 3822822; reference:[26] Song, C.: The generalized Schröder theory.Electron. J. Comb. 12 (2005), Article ID 53, 10 pages. Zbl 1077.05010, MR 2176529; reference:[27] Sprugnoli, R.: Riordan arrays and combinatorial sums.Discrete Math. 132 (1994), 267-290. Zbl 0814.05003, MR 1297386, 10.1016/0012-365X(92)00570-H; reference:[28] Stanley, R. P.: Hipparchus, Plutarch, Schröder, and Hough.Am. Math. Mon. 104 (1997), 344-350. Zbl 0873.01002, MR 1450667, 10.2307/2974582; reference:[29] Stanley, R. P.: Enumerative Combinatorics. Volume 2.Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). Zbl 0928.05001, MR 1676282, 10.1017/CBO9780511609589; reference:[30] Sulanke, R. A.: Bijective recurrences concerning Schröder paths.Electron. J. Combin. 5 (1998), Article ID R47, 11 pages. Zbl 0913.05007, MR 1661185, 10.37236/1385; reference:[31] Woan, W.-J.: A relation between restricted and unrestricted weighted Motzkin paths.J. Integer Seq. 9 (2006), Article 06.1.7, 12 pages. Zbl 1101.05008, MR 2188940; reference:[32] Yang, S.-L., Dong, Y.-N., He, T.-X.: Some matrix identities on colored Motzkin paths.Discrete Math. 340 (2017), 3081-3091. Zbl 1370.05114, MR 3698097, 10.1016/j.disc.2017.07.006; reference:[33] Yang, S.-L., Dong, Y.-N., Yang, L., Yin, J.: Half of a Riordan array and restricted lattice paths.Linear Algebra Appl. 537 (2018), 1-11. Zbl 1373.05007, MR 3716232, 10.1016/j.laa.2017.09.027; reference:[34] Yang, S.-L., Xu, Y.-X., He, T.-X.: $(m,r)$-central Riordan arrays and their applications.Czech. Math. J. 67 (2017), 919-936. Zbl 06819563, MR 3736009, 10.21136/CMJ.2017.0165-16; reference:[35] Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X.: Schröder matrix as inverse of Delannoy matrix.Linear Algebra Appl. 439 (2013), 3605-3614. Zbl 1283.15098, MR 3119875, 10.1016/j.laa.2013.09.044
-
18Academic Journal
المؤلفون: Yang, Sheng-Liang, Xu, Yan-Xue, He, Tian-Xiao
مصطلحات موضوعية: keyword:Riordan array, keyword:central coefficient, keyword:central Riordan array, keyword:generating function, keyword:Fuss-Catalan number, keyword:Pascal matrix, keyword:Catalan matrix, msc:05A05, msc:05A10, msc:05A19, msc:15A09
وصف الملف: application/pdf
Relation: mr:MR3736009; zbl:Zbl 06819563; reference:[1] Andrews, G. H.: Some formulae for the Fibonacci sequence with generalizations.Fibonacci Q. 7 (1969), 113-130. Zbl 0176.32202, MR 0242761; reference:[2] Barry, P.: On integer-sequence-based constructions of generalized Pascal triangles.J. Integer Seq. 9 (2006), Article 06.2.4, 34 pages. Zbl 1178.11023, MR 2217230; reference:[3] Barry, P.: On the central coefficients of Bell matrices.J. Integer Seq. 14 (2011), Article 11.4.3, 10 pages. Zbl 1231.11029, MR 2792159; reference:[4] Barry, P.: On the central coefficients of Riordan matrices.J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. Zbl 1310.11032, MR 3065330; reference:[5] Brietzke, E. H. M.: An identity of Andrews and a new method for the Riordan array proof of combinatorial identities.Discrete Math. 308 (2008), 4246-4262. Zbl 1207.05010, MR 2427755, 10.1016/j.disc.2007.08.050; reference:[6] Cheon, G.-S., Jin, S.-T.: Structural properties of Riordan matrices and extending the matrices.Linear Algebra Appl. 435 (2011), 2019-2032. Zbl 1226.05021, MR 2810643, 10.1016/j.laa.2011.04.001; reference:[7] Cheon, G.-S., Kim, H., Shapiro, L. W.: Combinatorics of Riordan arrays with identical $A$ and $Z$ sequences.Discrete Math. 312 (2012), 2040-2049. Zbl 1243.05007, MR 2920864, 10.1016/j.disc.2012.03.023; reference:[8] Comtet, L.: Advanced Combinatorics. The Art of Finite and Infinite Expansions.D. Reidel Publishing, Dordrecht (1974). Zbl 0283.05001, MR 0460128, 10.1007/978-94-010-2196-8; reference:[9] Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics. A Foundation for Computer Science.Addison-Wesley Publishing Company, Reading (1989). Zbl 0668.00003, MR 1001562; reference:[10] He, T.-X.: Parametric Catalan numbers and Catalan triangles.Linear Algebra Appl. 438 (2013), 1467-1484. Zbl 1257.05003, MR 2997825, 10.1016/j.laa.2012.10.001; reference:[11] He, T.-X.: Matrix characterizations of Riordan arrays.Linear Algebra Appl. 465 (2015), 15-42. Zbl 1303.05007, MR 3274660, 10.1016/j.laa.2014.09.008; reference:[12] He, T.-X., Sprugnoli, R.: Sequence characterization of Riordan arrays.Discrete Math. 309 (2009), 3962-3974. Zbl 1228.05014, MR 2537389, 10.1016/j.disc.2008.11.021; reference:[13] Kruchinin, D., Kruchinin, V.: A method for obtaining generating functions for central coefficients of triangles.J. Integer Seq. 15 (2012), Article 12.9.3, 10 pages. Zbl 1292.05028, MR 3005529; reference:[14] Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C.: On some alternative characterizations of Riordan arrays.Can. J. Math. 49 (1997), 301-320. Zbl 0886.05013, MR 1447493, 10.4153/CJM-1997-015-x; reference:[15] Merlini, D., Sprugnoli, R., Verri, M. C.: Lagrange inversion: when and how.Acta Appl. Math. 94 (2006), 233-249. Zbl 1108.05008, MR 2290868, 10.1007/s10440-006-9077-7; reference:[16] Młotkowski, W.: Fuss-Catalan numbers in noncommutative probability.Doc. Math., J. DMV 15 (2010), 939-955. Zbl 1213.44004, MR 2745687; reference:[17] Rogers, D. G.: Pascal triangles, Catalan numbers and renewal arrays.Discrete Math. 22 (1978), 301-310. Zbl 0398.05007, MR 0522725, 10.1016/0012-365X(78)90063-8; reference:[18] Shapiro, L. W.: A Catalan triangle.Discrete Math. 14 (1976), 83-90. Zbl 0323.05004, MR 0387069, 10.1016/0012-365X(76)90009-1; reference:[19] Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C.: The Riordan group.Discrete Appl. Math. 34 (1991), 229-239. Zbl 0754.05010, MR 1137996, 10.1016/0166-218X(91)90088-E; reference:[20] Sprugnoli, R.: Riordan arrays and combinatorial sums.Discrete Math. 132 (1994), 267-290. Zbl 0814.05003, MR 1297386, 10.1016/0012-365X(92)00570-H; reference:[21] Stanley, R. P.: Enumerative Combinatorics. Vol. 2.Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). Zbl 0928.05001, MR 1676282, 10.1017/CBO9780511609589; reference:[22] Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X.: Schröder matrix as inverse of Delannoy matrix.Linear Algebra Appl. 439 (2013), 3605-3614. Zbl 1283.15098, MR 3119875, 10.1016/j.laa.2013.09.044
-
19Academic Journal
المؤلفون: Shattuck, Mark, Tan, Elif
المصدر: Applications and Applied Mathematics: An International Journal (AAM)
مصطلحات موضوعية: Tribonacci polynomials, Incomplete tribonacci numbers, Polynomial generalization, Generating function, Combinatorial identity, Fibonacci polynomials, Riordan array, Discrete Mathematics and Combinatorics, Number Theory
وصف الملف: application/pdf
Relation: https://digitalcommons.pvamu.edu/aam/vol13/iss1/1; https://digitalcommons.pvamu.edu/context/aam/article/1610/viewcontent/01_R1102_Shattuck_AAM_V13_1_pp_1_18_060118.pdf
-
20
المؤلفون: Carlos Seara, Rodrigo I. Silveira, Alexander Pilz, Clemens Huemer
المساهمون: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
المصدر: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Electronic Notes in Discrete Mathematics
Recercat. Dipósit de la Recerca de Catalunya
instnameمصطلحات موضوعية: geometric graph, Fibonacci number, 0211 other engineering and technologies, 0102 computer and information sciences, 02 engineering and technology, Convex position, 01 natural sciences, production matrix, Combinatorics, Indifference graph, Matrix (mathematics), Spatial network, Chordal graph, Discrete Mathematics and Combinatorics, Mathematics, Discrete mathematics, 021103 operations research, Grafs, Teoria de, Applied Mathematics, Geometric progression, Graph theory, 010201 computation theory & mathematics, Riordan array, Production (computer science), Matemàtiques i estadística::Geometria [Àrees temàtiques de la UPC]
وصف الملف: application/pdf