يعرض 1 - 20 نتائج من 67 نتيجة بحث عن '"Riordan array"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Report

    المؤلفون: Deb, Bishal, Sokal, Alan D.

    المساهمون: University College of London London (UCL), Sorbonne Université (SU), Université Paris Cité (UPCité), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), New York University New York (NYU), NYU System (NYU), ANR-18-CE40-0033,DIMERS,Dimères : de la combinatoire à la mécanique quantique(2018)

    المصدر: https://hal.science/hal-04297025 ; 2023.

    Relation: info:eu-repo/semantics/altIdentifier/arxiv/2311.11747; hal-04297025; https://hal.science/hal-04297025; https://hal.science/hal-04297025/document; https://hal.science/hal-04297025/file/2311.11747.pdf; ARXIV: 2311.11747

  5. 5
    Academic Journal

    المؤلفون: Yidong Sun, Wenle Shi, Di Zhao

    المصدر: Enumerative Combinatorics and Applications, Vol 2, Iss 3, p Article #S2R24 (2022)

    وصف الملف: electronic resource

  6. 6
    Report

    المساهمون: University College of London London (UCL), Sorbonne Université (SU), Université Paris Cité (UPCité), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Keldysh Institute of Applied Mathematics, Russian Academy of Science (CAALAB), New York University New York (NYU), NYU System (NYU), ANR-18-CE40-0033,DIMERS,Dimères : de la combinatoire à la mécanique quantique(2018)

    المصدر: https://hal.science/hal-04354289 ; 2023.

    Relation: info:eu-repo/semantics/altIdentifier/arxiv/2312.11081; ARXIV: 2312.11081

  7. 7
    Academic Journal
  8. 8
  9. 9
    Dissertation/ Thesis
  10. 10
    Academic Journal

    المساهمون: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. DCG - Discrete and Combinatorial Geometry, Universitat Politècnica de Catalunya. CGA - Computational Geometry and Applications

    وصف الملف: 6 p.; application/pdf

    Relation: https://www.sciencedirect.com/science/article/pii/S1571065318301288; Esteban, G., Huemer, C., Silveira, R.I. New results on production matrices for geometric graphs. "Electronic notes in discrete mathematics", 1 Juliol 2018, vol. 68, núm. July 2018, p. 215-220.; http://hdl.handle.net/2117/121756

  11. 11
    Academic Journal

    المساهمون: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta

    وصف الملف: 7 p.

    Relation: http://www.sciencedirect.com/science/article/pii/S1571065317301828?via%3Dihub; This project has received funding from the European Union’s Horizon 89 2020 research and innovation programme under the Marie Sk lodowska- 90 Curie grant agreement No 734922. 91 C. H., C. S., and R. I. S. were partially supported by projects MINECO MTM2015- 92 63791-R and Gen. Cat. DGR2014SGR46. R. I. S. was also supported by MINECO 93 through the Ramon y Cajal program; Huemer, C., Pilz, A., Seara, C., Silveira, R.I. Characteristic polynomials of production matrices for geometric graphs. "Electronic notes in discrete mathematics", 1 Agost 2017, vol. 61, p. 1-7.; http://hdl.handle.net/2117/111649

  12. 12
    Academic Journal

    المساهمون: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta

    وصف الملف: 6 p.

    Relation: http://www.sciencedirect.com/science/journal/15710653; Huemer, C., Pilz, A., Seara, C., Silveira, R.I. Production matrices for geometric graphs. "Electronic notes in discrete mathematics", 2016, vol. 54, p. 301-306.; http://hdl.handle.net/2117/103649

  13. 13
    Academic Journal

    المساهمون: Laboratoire d'Informatique de Bourgogne Dijon (LIB), Université de Bourgogne (UB), Departamento de Matematicas (Universidad Nacional de Colombia), Universidad Nacional de Colombia Bogotà (UNAL)

    المصدر: ISSN: 1530-7638 ; Journal of Integer Sequences ; https://hal.science/hal-03523809 ; Journal of Integer Sequences, 2021, 24, pp.21.8.2 ; https://cs.uwaterloo.ca/journals/JIS/VOL24/Ramirez/ramirez10.html.

    Relation: hal-03523809; https://hal.science/hal-03523809

  14. 14
    Academic Journal

    المؤلفون: P. Petrullo

    المساهمون: Petrullo, P.

    Relation: volume:618; firstpage:158; lastpage:182; numberofpages:25; journal:LINEAR ALGEBRA AND ITS APPLICATIONS; https://hdl.handle.net/11563/146483

  15. 15
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4111851; zbl:07217143; reference:[1] Aigner, M.: Enumeration via ballot numbers.Discrete Math. 308 (2008), 2544-2563. Zbl 1147.05002, MR 2410460, 10.1016/j.disc.2007.06.012; reference:[2] Barry, P.: On the central coefficients of Riordan matrices.J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. Zbl 1310.11032, MR 3065330; reference:[3] Bonin, J., Shapiro, L., Simion, R.: Some $q$-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths.J. Stat. Plann. Inference 34 (1993), 35-55. Zbl 0783.05008, MR 1209988, 10.1016/0378-3758(93)90032-2; reference:[4] Chen, X., Liang, H., Wang, Y.: Total positivity of Riordan arrays.Eur. J. Comb. 46 (2015), 68-74. Zbl 1307.05010, MR 3305345, 10.1016/j.ejc.2014.11.009; reference:[5] Cheon, G.-S., Kim, H., Shapiro, L. W.: Combinatorics of Riordan arrays with identical $A$ and $Z$ sequences.Discrete Math. 312 (2012), 2040-2049. Zbl 1243.05007, MR 2920864, 10.1016/j.disc.2012.03.023; reference:[6] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions.D. Reidel Publishing, Dordrecht (1974). Zbl 0283.05001, MR 0460128, 10.1007/978-94-010-2196-8; reference:[7] Deutsch, E.: A bijective proof of the equation linking the Schröder numbers, large and small.Discrete Math. 241 (2001), 235-240. Zbl 0992.05010, MR 1861420, 10.1016/S0012-365X(01)00122-4; reference:[8] Deutsch, E., Munarini, E., Rinaldi, S.: Skew Dyck paths.J. Stat. Plann. Inference 140 (2010), 2191-2203. Zbl 1232.05010, MR 2609478, 10.1016/j.jspi.2010.01.015; reference:[9] Dziemiańczuk, M.: Counting lattice paths with four types of steps.Graphs Comb. 30 (2014), 1427-1452. Zbl 1306.05007, MR 3268642, 10.1007/s00373-013-1357-1; reference:[10] He, T.-X.: Parametric Catalan numbers and Catalan triangles.Linear Algebra Appl. 438 (2013), 1467-1484. Zbl 1257.05003, MR 2997825, 10.1016/j.laa.2012.10.001; reference:[11] Humphreys, K.: A history and a survey of lattice path enumeration.J. Stat. Plann. Inference 140 (2010), 2237-2254. Zbl 1204.05015, MR 2609483, 10.1016/j.jspi.2010.01.020; reference:[12] Luzón, A., Merlini, D., Morón, M., Sprugnoli, R.: Identities induced by Riordan arrays.Linear Algebra Appl. 436 (2011), 631-647. Zbl 1232.05011, MR 2854896, 10.1016/j.laa.2011.08.007; reference:[13] Mansour, T., Schork, M., Sun, Y.: Motzkin numbers of higher ranks: Generating function and explicit expression.J. Integer Seq. 10 (2007), Article 07.7.4, 11 pages. Zbl 1141.05308, MR 2322499; reference:[14] Merlini, D.: Proper generating trees and their internal path length.Discrete Appl. Math. 156 (2008), 627-646. Zbl 1136.05002, MR 2397210, 10.1016/j.dam.2007.08.051; reference:[15] Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C.: On some alternative characterizations of Riordan arrays.Can. J. Math. 49 (1997), 301-320. Zbl 0886.05013, MR 1447493, 10.4153/CJM-1997-015-x; reference:[16] Merlini, D., Sprugnoli, R.: Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern.Theor. Comput. Sci. 412 (2011), 2988-3001. Zbl 1220.68079, MR 2830262, 10.1016/j.tcs.2010.07.019; reference:[17] Niederhausen, H.: Inverses of Motzkin and Schröder paths.Integers 12 (2012), Article ID A49, 19 pages. Zbl 1290.05011, MR 3083422; reference:[18] Nkwanta, A., Shapiro, L. W.: Pell walks and Riordan matrices.Fibonacci Q. 43 (2005), 170-180. Zbl 1074.60053, MR 2147953; reference:[19] Pergola, E., Sulanke, R. A.: Schröder triangles, paths, and parallelogram polyominoes.J. Integer Seq. 1 (1998), Article 98.1.7. Zbl 0974.05003, MR 1677075; reference:[20] Ramírez, J. L., Sirvent, V. F.: Generalized Schröder matrix and its combinatorial interpretation.Linear Multilinear Algebra 66 (2018), 418-433. Zbl 1387.15004, MR 3750599, 10.1080/03081087.2017.1301360; reference:[21] Rogers, D. G.: A Schröder triangle: Three combinatorial problems.Combinatorial Mathematics, V Lecture Notes in Mathematics 622, Springer, Berlin (1977), 175-196. Zbl 0368.05004, MR 0462964, 10.1007/BFb0069192; reference:[22] Rogers, D. G., Shapiro, L. W.: Some correspondence involving the Schröder numbers and relations.Combinatorial Mathematics Lecture Notes in Mathematics 686, Springer, Berlin (1978). MR 0526754, 10.1007/BFb0062541; reference:[23] Schröder, E.: Vier kombinatorische probleme.Schloemilch Z. (Zs. f. Math. u. Phys.) 15 (1870), 361-376 German \99999JFM99999 02.0108.04.; reference:[24] Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C.: The Riordan group.Discrete Appl. Math. 34 (1991), 229-239. Zbl 0754.05010, MR 1137996, 10.1016/0166-218X(91)90088-E; reference:[25] Sloane, N. J. A.: On-line Encyclopedia of Integer Sequences (OEIS).Available at https://oeis.org (2018). MR 3822822; reference:[26] Song, C.: The generalized Schröder theory.Electron. J. Comb. 12 (2005), Article ID 53, 10 pages. Zbl 1077.05010, MR 2176529; reference:[27] Sprugnoli, R.: Riordan arrays and combinatorial sums.Discrete Math. 132 (1994), 267-290. Zbl 0814.05003, MR 1297386, 10.1016/0012-365X(92)00570-H; reference:[28] Stanley, R. P.: Hipparchus, Plutarch, Schröder, and Hough.Am. Math. Mon. 104 (1997), 344-350. Zbl 0873.01002, MR 1450667, 10.2307/2974582; reference:[29] Stanley, R. P.: Enumerative Combinatorics. Volume 2.Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). Zbl 0928.05001, MR 1676282, 10.1017/CBO9780511609589; reference:[30] Sulanke, R. A.: Bijective recurrences concerning Schröder paths.Electron. J. Combin. 5 (1998), Article ID R47, 11 pages. Zbl 0913.05007, MR 1661185, 10.37236/1385; reference:[31] Woan, W.-J.: A relation between restricted and unrestricted weighted Motzkin paths.J. Integer Seq. 9 (2006), Article 06.1.7, 12 pages. Zbl 1101.05008, MR 2188940; reference:[32] Yang, S.-L., Dong, Y.-N., He, T.-X.: Some matrix identities on colored Motzkin paths.Discrete Math. 340 (2017), 3081-3091. Zbl 1370.05114, MR 3698097, 10.1016/j.disc.2017.07.006; reference:[33] Yang, S.-L., Dong, Y.-N., Yang, L., Yin, J.: Half of a Riordan array and restricted lattice paths.Linear Algebra Appl. 537 (2018), 1-11. Zbl 1373.05007, MR 3716232, 10.1016/j.laa.2017.09.027; reference:[34] Yang, S.-L., Xu, Y.-X., He, T.-X.: $(m,r)$-central Riordan arrays and their applications.Czech. Math. J. 67 (2017), 919-936. Zbl 06819563, MR 3736009, 10.21136/CMJ.2017.0165-16; reference:[35] Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X.: Schröder matrix as inverse of Delannoy matrix.Linear Algebra Appl. 439 (2013), 3605-3614. Zbl 1283.15098, MR 3119875, 10.1016/j.laa.2013.09.044

  18. 18
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3736009; zbl:Zbl 06819563; reference:[1] Andrews, G. H.: Some formulae for the Fibonacci sequence with generalizations.Fibonacci Q. 7 (1969), 113-130. Zbl 0176.32202, MR 0242761; reference:[2] Barry, P.: On integer-sequence-based constructions of generalized Pascal triangles.J. Integer Seq. 9 (2006), Article 06.2.4, 34 pages. Zbl 1178.11023, MR 2217230; reference:[3] Barry, P.: On the central coefficients of Bell matrices.J. Integer Seq. 14 (2011), Article 11.4.3, 10 pages. Zbl 1231.11029, MR 2792159; reference:[4] Barry, P.: On the central coefficients of Riordan matrices.J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. Zbl 1310.11032, MR 3065330; reference:[5] Brietzke, E. H. M.: An identity of Andrews and a new method for the Riordan array proof of combinatorial identities.Discrete Math. 308 (2008), 4246-4262. Zbl 1207.05010, MR 2427755, 10.1016/j.disc.2007.08.050; reference:[6] Cheon, G.-S., Jin, S.-T.: Structural properties of Riordan matrices and extending the matrices.Linear Algebra Appl. 435 (2011), 2019-2032. Zbl 1226.05021, MR 2810643, 10.1016/j.laa.2011.04.001; reference:[7] Cheon, G.-S., Kim, H., Shapiro, L. W.: Combinatorics of Riordan arrays with identical $A$ and $Z$ sequences.Discrete Math. 312 (2012), 2040-2049. Zbl 1243.05007, MR 2920864, 10.1016/j.disc.2012.03.023; reference:[8] Comtet, L.: Advanced Combinatorics. The Art of Finite and Infinite Expansions.D. Reidel Publishing, Dordrecht (1974). Zbl 0283.05001, MR 0460128, 10.1007/978-94-010-2196-8; reference:[9] Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics. A Foundation for Computer Science.Addison-Wesley Publishing Company, Reading (1989). Zbl 0668.00003, MR 1001562; reference:[10] He, T.-X.: Parametric Catalan numbers and Catalan triangles.Linear Algebra Appl. 438 (2013), 1467-1484. Zbl 1257.05003, MR 2997825, 10.1016/j.laa.2012.10.001; reference:[11] He, T.-X.: Matrix characterizations of Riordan arrays.Linear Algebra Appl. 465 (2015), 15-42. Zbl 1303.05007, MR 3274660, 10.1016/j.laa.2014.09.008; reference:[12] He, T.-X., Sprugnoli, R.: Sequence characterization of Riordan arrays.Discrete Math. 309 (2009), 3962-3974. Zbl 1228.05014, MR 2537389, 10.1016/j.disc.2008.11.021; reference:[13] Kruchinin, D., Kruchinin, V.: A method for obtaining generating functions for central coefficients of triangles.J. Integer Seq. 15 (2012), Article 12.9.3, 10 pages. Zbl 1292.05028, MR 3005529; reference:[14] Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C.: On some alternative characterizations of Riordan arrays.Can. J. Math. 49 (1997), 301-320. Zbl 0886.05013, MR 1447493, 10.4153/CJM-1997-015-x; reference:[15] Merlini, D., Sprugnoli, R., Verri, M. C.: Lagrange inversion: when and how.Acta Appl. Math. 94 (2006), 233-249. Zbl 1108.05008, MR 2290868, 10.1007/s10440-006-9077-7; reference:[16] Młotkowski, W.: Fuss-Catalan numbers in noncommutative probability.Doc. Math., J. DMV 15 (2010), 939-955. Zbl 1213.44004, MR 2745687; reference:[17] Rogers, D. G.: Pascal triangles, Catalan numbers and renewal arrays.Discrete Math. 22 (1978), 301-310. Zbl 0398.05007, MR 0522725, 10.1016/0012-365X(78)90063-8; reference:[18] Shapiro, L. W.: A Catalan triangle.Discrete Math. 14 (1976), 83-90. Zbl 0323.05004, MR 0387069, 10.1016/0012-365X(76)90009-1; reference:[19] Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C.: The Riordan group.Discrete Appl. Math. 34 (1991), 229-239. Zbl 0754.05010, MR 1137996, 10.1016/0166-218X(91)90088-E; reference:[20] Sprugnoli, R.: Riordan arrays and combinatorial sums.Discrete Math. 132 (1994), 267-290. Zbl 0814.05003, MR 1297386, 10.1016/0012-365X(92)00570-H; reference:[21] Stanley, R. P.: Enumerative Combinatorics. Vol. 2.Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). Zbl 0928.05001, MR 1676282, 10.1017/CBO9780511609589; reference:[22] Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X.: Schröder matrix as inverse of Delannoy matrix.Linear Algebra Appl. 439 (2013), 3605-3614. Zbl 1283.15098, MR 3119875, 10.1016/j.laa.2013.09.044

  19. 19
    Academic Journal
  20. 20