يعرض 1 - 13 نتائج من 13 نتيجة بحث عن '"Ricaurte, C"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    مصطلحات موضوعية: XBeach, Delft-3D, Nearshore, Wave dynamics, WEC array

    وصف الملف: 22 páginas; application/pdf

    Relation: Renewable Energy; [1] International Energy Agency, Global Coal Demand Is Set to Return to its All-Time High in 2022,” Global Coal Demand Is Set to Return to its All-Time High in 2022, 2022. https://www.iea.org/news/global-coal-demand-is-set-to-return-to-its-all-tim e-high-in-2022.; [2] McKinsey & Company, Global energy perspective 2022. https://www.mckinsey. com/industries/oil-and-gas/our-insights/global-energy-perspective-2022, 2022.; [3] O. Farrok, K. Ahmed, A.D. Tahlil, M.M. Farah, M.R. Kiran, M.R. Islam, Electrical power generation from the oceanic wave for sustainable advancement in renewable energy technologies, Sustain 12 (6) (2020), https://doi.org/10.3390/ su12062178.; [4] O. Farrok, M. Islam, M. Sheikh, G. Guo, J. Zhu, Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion, IEEE Trans. Magn. 53 (1–4) (2017), https://doi.org/10.1109/ TMAG.2017.2713770 [Online]. Available:.; [5] H. Shakouri G, The share of cooling electricity in global warming: estimation of the loop gain for the positive feedback, Energy 179 (2019) 747–761, https://doi.org/ 10.1016/j.energy.2019.04.170.; [6] D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strateg. Rev. 24 (January) (2019) 38–50, https://doi.org/10.1016/j.esr.2019.01.006.; [7] A.G. Majidi, B. Bingolbali, ¨ A. Akpınar, E. Rusu, Wave power performance of wave energy converters at high-energy areas of a semi-enclosed sea, Energy 220 (2021), https://doi.org/10.1016/j.energy.2020.119705.; [8] EMEC: European Marine Energy Centre, Pelamis wave power. https://www.emec. org.uk/about-us/wave-clients/pelamis-wave-power, 2022.; [9] C.A. Rodríguez, P. Rosa-Santos, F. Taveira-Pinto, Hydrodynamic optimization of the geometry of a sloped-motion wave energy converter, Ocean Eng 199 (January) (2020), 107046, https://doi.org/10.1016/j.oceaneng.2020.107046.; [10] Q. Chen, J. Zang, J. Birchall, D. Ning, X. Zhao, J. Gao, On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater, Renew. Energy 146 (2020) 414–425, https://doi.org/10.1016/j.renene.2019.06.149.; [11] H. Zhang, B. Zhou, C. Vogel, R. Willden, J. Zang, J. Geng, Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter, Appl. Energy 259 (November 2019) (2020), 114212, https://doi.org/10.1016/j.apenergy.2019.114212.; [12] H. Zhang, B. Zhou, C. Vogel, R. Willden, J. Zang, L. Zhang, Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter, Appl. Energy 257 (April 2019) (2020), 113996, https://doi.org/ 10.1016/j.apenergy.2019.113996.; [13] S.J. Kim, W. Koo, M.J. Shin, Numerical and experimental study on a hemispheric point-absorber-type wave energy converter with a hydraulic power take-off system, Renew. Energy 135 (2019) 1260–1269, https://doi.org/10.1016/j. renene.2018.09.097.; [14] P. Rosa-Santos, F. Taveira-Pinto, C.A. Rodríguez, V. Ramos, M. Lopez, ´ The CECO wave energy converter: recent developments, Renew. Energy 139 (2019) 368–384, https://doi.org/10.1016/j.renene.2019.02.081.; [15] E. Renzi, S. Michele, S. Zheng, S. Jin, D. Greaves, Niche applications and flexible devices for wave energy conversion: a review, Energies 14 (20) (2021) 1–25, https://doi.org/10.3390/en14206537.; [16] T.I. Koutrouveli, E. Di Lauro, L. Das Neves, T. Calheiros-Cabral, P. Rosa-Santos, F. Taveira-Pinto, Proof of concept of a breakwater-integrated hybrid wave energy converter using a composite modelling approach, J. Mar. Sci. Eng. 9 (2) (2021) 1–27, https://doi.org/10.3390/jmse9020226.; [17] D.Z. Ning, X.L. Zhao, L.F. Chen, M. Zhao, Hydrodynamic performance of an array of wave energy converters integrated with a pontoon-type breakwater, Energies 11 (3) (2018) 8–10, https://doi.org/10.3390/en11030685.; [18] X. Zhao, Y. Zhang, M. Li, L. Johanning, Experimental and analytical investigation on hydrodynamic performance of the comb-type breakwater-wave energy converter system with a flange, Renew. Energy 172 (2021) 392–407, https://doi. org/10.1016/j.renene.2021.02.138.; [19] I. Inertial, Sea Wave Energy Converter, “Energy from the sea.,”, 2023. htt ps://www.eni.com/en-IT/operations/iswec-eni.html.; [20] D. Vicinanza, E. Di Lauro, P. Contestabile, C. Gisonni, J.L. Lara, I.J. Losada, Review of innovative harbor breakwaters for wave-energy conversion, J. Waterw. Port, Coastal, Ocean Eng. 145 (4) (2019), https://doi.org/10.1061/(asce)ww.1943- 5460.0000519.; [21] T. Flanagan, M. Wengrove, B. Robertson, Coupled wave energy converter and nearshore wave propagation models for coastal impact assessments, J. Mar. Sci. Eng. 10 (3) (2022), https://doi.org/10.3390/jmse10030370.; [22] A.J. Garrido, et al., Mathematical modeling of oscillating water columns wavestructure interaction in ocean energy plants, Math. Probl. Eng. 2015 (2015), https://doi.org/10.1155/2015/727982. Figure 2.; [23] Z.L. Hutchison, L. Lieber, R.G. Miller, B.J. Williamson, in: T.M.B.T.-C. R. E (Ed.), Environmental Impacts of Tidal and Wave Energy Converters, Elsevier, Oxford, 2022, pp. 258–290, https://doi.org/10.1016/B978-0-12-819727-1.00115-1.; [24] A. Rahman, O. Farrok, M.M. Haque, Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic, Renew. Sustain. Energy Rev. 161 (February) (2022), 112279, https://doi.org/10.1016/j.rser.2022.112279.; [25] G. Lavidas, K. Blok, Shifting wave energy perceptions: the case for wave energy converter (WEC) feasibility at milder resources, Renew. Energy 170 (2021) 1143–1155, https://doi.org/10.1016/j.renene.2021.02.041.; [26] M. Goteman, ¨ M. Giassi, J. Engstrom, ¨ J. Isberg, Advances and challenges in wave energy park optimization—a review, Front. Energy Res. 8 (March) (2020), https:// doi.org/10.3389/fenrg.2020.00026.; [27] G.J. Dalton, R. Alcorn, T. Lewis, Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America, Renew. Energy 35 (2) (2010) 443–455, https://doi.org/10.1016/j.renene.2009.07.003.; [28] E. Rusu, F. Onea, A review of the technologies for wave energy extraction, Clean Energy 2 (1) (2018) 10–19, https://doi.org/10.1093/ce/zky003.; [29] E. Mendoza, et al., Beach response to wave energy converter farms acting as coastal defence, Coast. Eng. 87 (2014) 97–111, https://doi.org/10.1016/j. coastaleng.2013.10.018.; [30] J. Abanades, D. Greaves, G. Iglesias, Coastal defence using wave farms: the role of farm-to-coast distance, Renew. Energy 75 (2015) 572–582, https://doi.org/ 10.1016/j.renene.2014.10.048.; [31] D.R. David, D.P. Rijnsdorp, J.E. Hansen, R.J. Lowe, M.L. Buckley, Predicting coastal impacts by wave farms: a comparison of wave-averaged and wave-resolving models, Renew. Energy 183 (2022) 764–780, https://doi.org/10.1016/j. renene.2021.11.048.; [32] A. O’Dea, M.C. Haller, H.T. Ozkan-Haller, ¨ The impact of wave energy converter arrays on wave-induced forcing in the surf zone, Ocean Eng 161 (May) (2018) 322–336, https://doi.org/10.1016/j.oceaneng.2018.03.077.; [33] C. Rodriguez-Delgado, R.J. Bergillos, M. Ortega-S´ anchez, G. Iglesias, Wave farm effects on the coast: the alongshore position, Sci. Total Environ. 640 (2018) 1176–1186, https://doi.org/10.1016/j.scitotenv.2018.05.281.; [34] C. Rodriguez-Delgado, R.J. Bergillos, G. Iglesias, Dual wave farms and coastline dynamics: the role of inter-device spacing, Sci. Total Environ. 646 (2019) 1241–1252, https://doi.org/10.1016/j.scitotenv.2018.07.110.; [35] D.L. Millar, H.C.M. Smith, D.E. Reeve, Modelling analysis of the sensitivity of shoreline change to a wave farm, Ocean Eng 34 (5–6) (2007) 884–901, https://doi. org/10.1016/j.oceaneng.2005.12.014.; [36] D.P. Rijnsdorp, J.E. Hansen, R.J. Lowe, Understanding coastal impacts by nearshore wave farms using a phase-resolving wave model, Renew. Energy 150 (2020) 637–648, https://doi.org/10.1016/j.renene.2019.12.138.; [37] S. Contardo, R. Hoeke, M. Hemer, G. Symonds, K. McInnes, J. O’Grady, In situ observations and simulations of coastal wave field transformation by wave energy converters, Coast. Eng. 140 (July) (2018) 175–188, https://doi.org/10.1016/j. coastaleng.2018.07.008.; [38] C. Rodriguez-Delgado, R.J. Bergillos, M. Ortega-S´ anchez, G. Iglesias, Protection of gravel-dominated coasts through wave farms: layout and shoreline evolution, Sci. Total Environ. 636 (2018) 1541–1552, https://doi.org/10.1016/j. scitotenv.2018.04.333.; [39] G. Iglesias, R. Carballo, Wave farm impact: the role of farm-to-coast distance, Renew. Energy 69 (2014) 375–385, https://doi.org/10.1016/j. renene.2014.03.059.; [40] N. Patrizi, et al., Lifecycle environmental impact assessment of an overtopping wave energy converter embedded in breakwater systems, Front. Energy Res. 7 (APR) (2019) 1–10, https://doi.org/10.3389/fenrg.2019.00032.; [41] E. Amini, D. Golbaz, F. Amini, M.M. Nezhad, M. Neshat, D.A. Garcia, A parametric study of wave energy converter layouts in real wave models, Energies 13 (22) (2020), https://doi.org/10.3390/en13226095.; [42] M.A. Mustapa, O.B. Yaakob, Y.M. Ahmed, C.K. Rheem, K.K. Koh, F.A. Adnan, Wave energy device and breakwater integration: a review, Renew. Sustain. Energy Rev. 77 (September 2015) (2017) 43–58, https://doi.org/10.1016/j.rser.2017.03.110.; [43] L. Wang, A. Kolios, L. Cui, Q. Sheng, Flexible multibody dynamics modelling of point-absorber wave energy converters, Renew. Energy 127 (2018) 790–801, https://doi.org/10.1016/j.renene.2018.05.029.; [44] X.L. Zhao, D.Z. Ning, Q.P. Zou, D.S. Qiao, S.Q. Cai, Hybrid floating breakwaterWEC system: a review, Ocean Eng 186 (June) (2019), 106126, https://doi.org/ 10.1016/j.oceaneng.2019.106126.; [45] G.R. Tomasicchio, et al., Physical model tests on spar buoy for offshore floating wind energy conversion, Ital. J. Eng. Geol. Environ. 20 (1) (2020) 129–143, https://doi.org/10.4408/IJEGE.2020-01.S-15.; [46] X. Zheng, et al., Sea trial test on offshore integration of an oscillating buoy wave energy device and floating breakwater, Energy Convers. Manag. 256 (September 2021) (2022), https://doi.org/10.1016/j.enconman.2022.115375.; [47] Y. Cheng, et al., Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater, Renew. Sustain. Energy Rev. 161 (July 2021) (2022), 112299, https:// doi.org/10.1016/j.rser.2022.112299.; [48] S. Astariz, G. Iglesias, The economics of wave energy: a review, Renew. Sustain. Energy Rev. 45 (2015) 397–408, https://doi.org/10.1016/j.rser.2015.01.061.; [49] N. Rangel-Buitrago, A.T. Williams, G. Anfuso, Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls, Ocean Coast. Manag. 156 (2018) 58–75, https:// doi.org/10.1016/j.ocecoaman.2017.04.006.; [50] IDEAM, Boletín Condiciones Hidrometeorologicas, ´ 2022. http://www.pronostico syalertas.gov.co/boletin-condiciones-hidrometeorologicas. (Accessed 9 July 2017).; [51] N. Rangel, G.A. Melfi, “Morfología, morfodinamica ´ y evolucion ´ reciente en la Península de la Guajira, Caribe Colombiano,” 8 (1) (2013) 7–24.; [52] CORPOGUAJIRA and INVEMAR, Atlas marino costero de La Guajira, Ser. Publicaciones Espec. INVEMAR 27 (2012) 188.; [53] S. Ball´en, J.D. Barrios, Cuantificacion ´ de Las Transformaciones Territoriales Asociadas A Dinamicas ´ de Produccion ´ Derivadas de los Diferentes Sectores Productivos en la Cuenca del Río Ranchería, La Guajira, Colombia, Univ. St. Tom´ as, 2019, pp. 1–48.; [54] G. Rivillas-Ospina, et al., Appmar 1.0: a Python application for downloading and analyzing of WAVEWATCH III® wave and wind data, Comput. Geosci. 162 (Mar. 2022), 105098, https://doi.org/10.1016/j.cageo.2022.105098.; [55] Deltares, Delft3D-WAVE. Simulation of Short-Crested Waves with SWAN User Manual, 2020.; [56] B. Kamranzad, S. Hadadpour, A multi-criteria approach for selection of wave energy converter/location, Energy 204 (2020), 117924, https://doi.org/10.1016/ j.energy.2020.117924.; [57] E. Rusu, Study of the wave energy propagation patterns in the western Black Sea, Appl. Sci. 8 (6) (2018), https://doi.org/10.3390/app8060993.; [58] Deltares, User manual : Delft3D - flow, User Man (2020) 710.; [59] C. Amante, B.W. Eakins, ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, NOAA Tech. Memo. NESDIS NGDC-24 (2009) 19, https://doi.org/10.1594/PANGAEA.769615. March.; [60] A.K. Fragkou, C. Old, V. Venugopal, A. Angeloudis, Benchmarking a two-way coupled coastal wave–current hydrodynamics model, Ocean Model 183 (2023), 102193, https://doi.org/10.1016/j.ocemod.2023.102193. March.; [61] A.F. Orejarena-Rondon, ´ J.C. Restrepo, A. Correa-Metrio, A. Orfila, Wave energy flux in the Caribbean Sea: trends and variability, Renew. Energy 181 (2022) 616–629, https://doi.org/10.1016/j.renene.2021.09.081.; [62] J. Ruiz-Merchan, ´ L. Otero, M. Conde, J.C. Restrepo, J.C. Ortiz, Field observations of wave and current characteristics on a microtidal reflective beach, J. Coast. Res. 35 (6) (2019) 1164–1184, https://doi.org/10.2112/JCOASTRES-D-18-00120.1.; [63] M. Conde-Frias, L. Otero, J.C. Restrepo, J.C. Ortiz, J. Ruiz, A.F. Osorio, Swash oscillations in a microtidal dissipative beach, J. Coast. Res. 33 (6) (2017) 1408–1422, https://doi.org/10.2112/JCOASTRES-D-16-00147.1.; [64] J. Cueto, L. Otero, Morphodynamic response to extreme wave events of microtidal dissipative and reflective beaches, Appl. Ocean Res. 101 (February) (2020), 102283, https://doi.org/10.1016/j.apor.2020.102283.; [65] C. Nederhoff, Modelling the Effects of Hard Structures on Dune Erosion and Overwash, 2014, p. 188.; [66] C.M. Nederhoff, Q.J. Lodder, M. Boers, J.P. Den Bieman, J.K. Miller, Modeling the effects of hard structures on dune erosion and overwash: a case study of the impact of Hurricane Sandy on the New Jersey coast, Proc. Coast. Sediments, San Diego, CA (2015) 1–17, https://doi.org/10.1142/9789814689977_0219. Figure 1.; [67] C.M. Nederhoff, Q.J. Lodder, M. Boers, J.P. Den Bieman, J.K. Miller, MODELING the EFFECTS of HARD STRUCTURES on DUNE EROSION and OVERWASH: a Case Study of the Impact of Hurricane Sandy on the New Jersey Coast, Proc. Coast. Sediments, San Diego, CA, 2015, pp. 1–17. May.; [68] D. Roelvink, A. Reniers, A. van Dongeren, J. van Thiel de Vries, R. McCall, J. Lescinski, Modelling storm impacts on beaches, dunes and barrier islands, Coast. Eng. 56 (11–12) (2009) 1133–1152, https://doi.org/10.1016/j. coastaleng.2009.08.006.; [69] L.C. van Rijn, D.J.R. Wasltra, B. Grasmeijer, J. Sutherland, S. Pan, J.P. Sierra, The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models, Coast. Eng. 47 (3) (2003) 295–327, https://doi.org/10.1016/S0378-3839(02)00120-5.; [70] J. Sutherland, A.H. Peet, R.L. Soulsby, Evaluating the performance of morphological models, Coast. Eng. 51 (8–9) (2004) 917–939, https://doi.org/ 10.1016/j.coastaleng.2004.07.015.; [71] A. Pedrozo-Acuna, ˜ D.J. Simmonds, A.K. Otta, A.J. Chadwick, On the cross-shore profile change of gravel beaches, Coast. Eng. 53 (4) (2006) 335–347, https://doi. org/10.1016/j.coastaleng.2005.10.019.; [72] J.J. Williams, A.R. de Alegría-Arzaburu, R.T. McCall, A. Van Dongeren, Modelling gravel barrier profile response to combined waves and tides using XBeach: laboratory and field results, Coast. Eng. 63 (2012) 62–80, https://doi.org/ 10.1016/j.coastaleng.2011.12.010.; [73] D. Pender, H. Karunarathna, A statistical-process based approach for modelling beach profile variability, Coast. Eng. 81 (2013) 19–29, https://doi.org/10.1016/j. coastaleng.2013.06.006.; [74] G. Rivillas-Ospina, et al., Coastal Restoration on the Barrier Island of Ci´enaga Grande, no. June, 2017, pp. 21–23.; [75] E.A. Himmelstoss, R.E. Henderson, M.G. Kratzmann, A.S. Farris, Digital shoreline analysis system (DSAS) version 5.1 user guide: U.S. Geological survey open-file report 2021–1091, U.S. Geol. Surv. 104 (2021).; [76] J. Allen, K. Sampanis, J. Wan, D. Greaves, J. Miles, G. Iglesias, Laboratory tests in the development of WaveCat, Sustain 8 (12) (2016), https://doi.org/10.3390/ su8121339.; [77] D. Vicinanza, L. Cappietti, V. Ferrante, P. Contestabile, Estimation of the wave energy in the Italian offshore, J. Coast. Res. (2011) 613–617. SPEC. ISSUE 64.; [78] A. Cornet, A global wave energy assessment, 59–64, Eighteenth Int. Offshore Polar Eng. Conf., Int. Soc. Offshore Polar Eng. (2008), 00933651 [Online]. Available: https://www.onepetro.org/conference-paper/ISOPE-I-08-370.; [79] G. Lavidas, V. Venugopal, A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea, Renew. Energy 103 (2017) 401–417, https://doi.org/10.1016/j.renene.2016.11.055.; [80] K. Amarouche, A. Akpınar, N.E.I. Bachari, F. Houma, Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast, Renew. Energy 153 (2020) 840–860, https://doi.org/10.1016/j.renene.2020.02.040.; [81] National Hurricane center, Atlantic Tropical Cyclones and Disturbances, 2017. : Jul. 09, 2017. [Online]. Available: https://www.nodc.noaa.gov/gocd/index.html.; [82] INVEMAR and CORPOGUAJIRA, Caracterizacion ´ de la zona costera del departamento de La Guajira: una aproximacion ´ para su manejo integrado, 2008, p. 48 [Online]. Available: http://www.pares.com.co/wp-content/uploads /2014/03/.; [83] H. Fernandez, et al., The new wave energy converter WaveCat: concept and laboratory tests, Mar. Struct. 29 (1) (2012) 58–70, https://doi.org/10.1016/j. marstruc.2012.10.002.; [84] B. Zanuttigh, E. Angelelli, Experimental investigation of floating wave energy converters for coastal protection purpose, Coast. Eng. 80 (2013) 148–159, https:// doi.org/10.1016/j.coastaleng.2012.11.007.; [85] M. Van Ormondt, K. Nederhoff, A. Van Dongeren, Delft Dashboard: a quick set-up tool for hydrodynamic models, J. Hydroinformatics 22 (3) (2020) 510–527, https://doi.org/10.2166/hydro.2020.092.; [86] A.F. Osorio, S. Ortega, S. Arango-Aramburo, Assessment of the marine power potential in Colombia, Renew. Sustain. Energy Rev. 53 (2016) 966–977, https:// doi.org/10.1016/j.rser.2015.09.057.; [87] J. Abanades, D. Greaves, G. Iglesias, Wave farm impact on beach modal state, Mar. Geol. 361 (2015) 126–135, https://doi.org/10.1016/j.margeo.2015.01.008.; 22; 219; https://hdl.handle.net/11323/13086; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  7. 7
    Academic Journal
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal
  12. 12
    Dissertation/ Thesis

    المؤلفون: Ricaurte, Catherine

    Thesis Advisors: Atienza, Manuel, González Lagier, Daniel, Universidad de Alicante. Departamento de Filosofía del Derecho y Derecho Internacional Privado

  13. 13
    Dissertation/ Thesis

    المساهمون: Salazar T., Marco Vinicio, Ricaurte C., Bolívar Alexis

    وصف الملف: application/pdf

    Relation: UDCTFADE;102T0118; Sanaguano Masache, Yadira Alexandra. (2015). Diseño de un modelo de gestión comercial para la empresa Key & Sol Asesoría y Soluciones Cia. Ltda. De la ciudad de Riobamba, provincia de Chimborazo, durante el periodo 2014. Escuela Superior Politécnica de Chimborazo. Riobamba; http://dspace.espoch.edu.ec/handle/123456789/10078