-
1Dissertation/ Thesis
المؤلفون: López Moraña, Juan
المساهمون: University/Department: Universitat de Barcelona. Facultat de Física
Thesis Advisors: Viñas Gausì, Xavier, Salvat Gavaldà, Francesc, Soto Riera, Joan
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Microscòpia, Microscopía, Microscopy, Relacions de dispersió, Relaciones de dispersión, Dispersion relations, Reaccions nuclears, Reacciones nucleares, Nuclear reactions, Ciències Experimentals i Matemàtiques
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/690852
-
2Dissertation/ Thesis
المؤلفون: Velázquez Molinero, José Luis
Thesis Advisors: Pons Aglio, Alicia, Universidad de Granada. Programa Oficial de Doctorado en: Física y Ciencias del Espacio, Consejo Superior de Investigaciones Científicas (CSIC). Instituto de Óptica "Daza de Valdés"
مصطلحات موضوعية: Diodos emisores de luz, Diodos semiconductores, Fuentes luminosas, Sustancias luminiscentes, Luminiscencia, Espectrofotometría, Polinomios de Zernike, Relaciones de dispersión
Time: 628.92
URL الوصول: http://hdl.handle.net/10481/43894
-
3Dissertation/ Thesis
المؤلفون: Velázquez Molinero, José Luis
Thesis Advisors: Pons Aglio, Alicia, Universidad de Granada. Programa Oficial de Doctorado en: Física y Ciencias del Espacio, Consejo Superior de Investigaciones Científicas (CSIC). Instituto de Óptica "Daza de Valdés"
مصطلحات موضوعية: Diodos emisores de luz, Diodos semiconductores, Fuentes luminosas, Sustancias luminiscentes, Luminiscencia, Espectrofotometría, Polinomios de Zernike, Relaciones de dispersión
Time: 628.92
URL الوصول: http://hdl.handle.net/10481/43894
-
4Academic Journal
المصدر: Ciencia En Desarrollo; Vol. 12 No. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre ; Ciencia en Desarrollo; Vol. 12 Núm. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre ; 2462-7658 ; 0121-7488
مصطلحات موضوعية: Tight-Binding, relaciones de dispersión, densidad de estados, dispersion relations, density of states
وصف الملف: application/pdf
Relation: https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12612/11161; https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12612; https://repositorio.uptc.edu.co/handle/001/15314
-
5Dissertation/ Thesis
المؤلفون: Linares Melo, Milton Smit
المساهمون: Vinck-Posada, Herbert, Gómez González, Edgar Arturo, Óptica e Información Cuántica (UNAL), Superconductividad y Nanotecnología (UNAL)
مصطلحات موضوعية: 530 - Física::535 - Luz y radiación relacionada, 530 - Física::539 - Física moderna, Campos magnéticos, Relaciones de dispersión, Sistemas moleculares, Fotónica, Magnetic fields, Photonics, Campo magnético aplicado, Punto cuántico multiexcitónico, Estados moleculares excitónicos y fotónicos, Cavidad óptica, Acoplamiento luz-materia, Relaciones de dispersión de energía, Ocupaciones en estado estacionario, Applied magnetic field, Multi-excitonic quantum dot, Excitonic and photonic molecular states, Optical cavity, Light-matter coupling, Energy dispersion relations, Steady-state occupancies
وصف الملف: xiv, 97 páginas; application/pdf
Relation: Alfonso González Taboada. Control de la forma, tamaño y composición de nanoestructuras de semiconductores III-V: anillos y puntos cuánticos. PhD thesis, Universidad Autónoma de Madrid, 2010.; Suwit Kiravittaya, Armando Rastelli, and Oliver G Schmidt. Advanced quantum dot configurations. IOP Science - Rep. Prog. Phys, 72:046502, 2009.; P Michler. Single Semiconductor Quantum Dots. In NanoScience and Technology. 2009.; Kerry J Vahala. Optical microcavities. Nature, 424:839–846, 2003.; Loannis Chremmos. Photonic Microresonator Research and Applications. 2010.; Misael León Hilario. Efecto de muchos cuerpos en transiciones opticas en nanoestructuras semiconductoras. PhD thesis, Universidad Nacional de Cuyo, 2010.; Peter Lodahl, Sahand Mahmoodian, and Søren Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Reviews Of Modern Physics, 87:347– 400, 2015.; H J Krenner, M Sabathil, E C Clark, A Kress, D Schuh, M Bichler, G Abstreiter, and J J Finley. Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule. Physical Review Letters, 94:057402, 2005.; A S Bracker, M Scheibner, M F Doty, E A Stinaff, I V Ponomarev, J C Kim, L J Whitman, and T L Reinecke. Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules. Applied Physics Letters, 89:233110, 2006.; Michael Scheibner, Allan S Bracker, Danny Kim, and Daniel Gammon. Essential concepts in the optical properties of quantum dot molecules. Solid State Communications, 149:1427–1435, 2009.; S Suraprapapich, S Thainoi, S Kanjanachuchai, and S Panyakeow. Self-assembled quantum-dot molecules by molecular-beam epitaxy. Journal of Vacuum Science & Technology B, 23:1217–1220, 2007.; Svetlana V Boriskina. Chapter 16 : Photonic molecules and spectral engineering. In Photonic Microresonator Research and Applications. 2010.; R P Stanley, R Houdré, U Oesterle, M Ilegems, C Weisbuch, U Oesterle, and M Ilegems. Coupled semiconductor microcavities. Applied Physics Letters, 65:2093–2095, 1994.; Brendon W Lovett, John H Reina, Ahsan Nazir, and G Andrew D Briggs. Optical schemes for quantum computation in quantum dot molecules. Physical Review B, 68:205319, 2003.; A V Tsukanov. Quantum Dots in Photonic Molecules and Quantum Informatics . Part I. Russian Microelectronics, 42:325–346, 2013.; M F Doty, M Scheibner, A S Bracker, I V Ponomarev, T L Reinecke, and D Gammon. Optical spectra of doubly charged quantum dot molecules in electric and magnetic fields. Physical Review B, 78:115316, 2008.; M Bayer, O Stern, A Kuther, and A Forchel. Spectroscopic study of dark excitons in In. Physical Review B, 61:7273–7276, 2000.; H. Vinck-Posada and C. A. Jiménez-Orjuela. Dark excitons in a quantum-dot–cavity system under a tilted magnetic field. Physical Review B, 96:125303, 2017.; Andreas Reiserer and Gerhard Rempe. Cavity-based quantum networks with single atoms and optical photons. Reviews Of Modern Physics, 87:1379–1418, 2015.; J M Elzerman, K M Weiss, and A Imamog. Optical Amplification Using Raman Transitions between Spin-Singlet and Spin-Triplet States of a Pair of Coupled In- GaAs Quantum Dots. Physical Review B - Condensed Matter and Materials Physics, 107:017401, 2011.; Hakan E Türeci, J M Taylor, and A Imamoglu. Coherent optical manipulation of triplet-singlet states in coupled quantum dots. Physical Review B, 75:235313, 2007.; Danny Kim, Samuel G Carter, Alex Greilich, Allan S Bracker, and Daniel Gammon. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Physics, 7:223–229, 2010.; Author M Bayer, P Hawrylak, K Hinzer, S Fafard, M Korkusinski, Z R Wasilewski, O Stern, A Forchel, and Dot Molecules. Coupling and Entangling of Quantum States in Quantum. Science, 291:451–453, 2016.; Yu He, Yu-ming He, Y Wei, X Jiang, M Chen, F Xiong, Y Zhao, Christian Schneider, Chao-yang Lu, Jian-wei Pan, Martin Kamp, and Sven Ho. Indistinguishable Tunable Single Photons Emitted by Spin Flip Raman Transitions in InGaAs Quantum Dots. Physical Review Letters, 111:237403, 2013.; M Bayer, T L Reinecke, F Weidner, A Larionov, A Mcdonald, and A Forchel. Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators. Physical Review Letters, 86:3168–3171, 2001.; J. P. Reithmaier, G. Sek, A.Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432:197–200, 2004.; E L Hu, A Imamog, S Gulde, S Fa, K Hennessy, A Badolato, M Winger, D Gerace, and M Atatu. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445:896–899, 2007.; J I Perea, D Porras, and C Tejedor. Dynamics of the excitations of a quantum dot in a microcavity. Physical Review B, 70:115304, 2004.; M S Linares andWJ Herrera. Emission of an interacting quantum dot system embedded in an optical microcavity. Optik - International Journal for Light and Electron Optics, 176:685–693, 2019.; Z R Wasilewski, S Fafard, and J P Mcca. Size and shape engineering of vertically stacked self assembled quantum dots. Journal of Crystal Growth, 202:1131–1135, 1999.; D. J. Eaglesham and M. Cerullo. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Physical Review Letters, 64:1943–1946, 1990.; Qianghua Xie, Anupam Madhukar, Ping Chen, and Nobuhiko P Kobayashi. Vertically Self-Organized InAs Quantum Box Islands on GaAs(100). Physical Review Letters, 75:2542–2545, 1995.; J Tersoff, C Teichert, and M G Lagally. Self-Organization in Growth of Quantum Dot Superlattices. Physical Review Letters, 76:1675–1678, 1996.; R A Rosas. Excitones confinados en puntos cuánticos esferoidales prolatos. Revista Mexicana De Física, 50:412–421, 2004.; Chang-yu Hsieh, Yun-pil Shim, and Marek Korkusinski. Physics of lateral triple quantum-dot molecules with controlled electron. IOP Science - Rep. Prog. Phys, 75:114501, 2012.; Ahsan Nazir, Brendon W. Lovett, Sean D. Barrett, John H. Reina, and G. Andrew D Briggs. Anticrossings in Förster coupled quantum dots. Physical Review B – Condensed Matter and Materials Physics, 71:045334, 2005.; L Wang, A Rastelli, O G Schmidt, P Michler, G J Beirne, and C Hermannsta. Quantum Light Emission of Two Lateral Tunnel-Coupled (In, Ga)As = GaAs Quantum Dots Controlled by a Tunable Static Electric Field. Physical Review Letters, 96:137401, 2006.; M C Xu, Y Temko, T Suzuki, K Jacobi, M C Xu, Y Temko, T Suzuki, and K Jacobi. Shape transition of InAs quantum dots on GaAs (001). Journal of Applied Physics, 98:083525, 2005.; M. Scheibner, M. F. Doty, A. S. Bracker, E. A. Stinaff, and D. Gammon. Spin fine structure of optically excited quantum dot molecules. Physical Review B, 75:245318, 2007.; E A Stinaff, M Scheibner, and A S Backer. Optical signatures of coupled quantum dots. Science, 311:636–639, 2006.; Rudeesun Songmuang, Suwit Kiravittaya, Oliver G Schmidt, Rudeesun Songmuang, Suwit Kiravittaya, and Oliver G Schmidt. Formation of lateral quantum dot molecules around self-assembled nanoholes. Applied Physics Letters, 82:2892–2894, 2003.; J H Lee, Zh M Wang, N W Strom, Yu I Mazur, G J Salamo, J H Lee, Zh M Wang, N W Strom, Yu I Mazur, and G J Salamo. InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Applied Physics Letters, 89:202101, 2006.; T Yoshie, A Scherer, J Hendrickson, G Khitrova, H M Gibbs, G Rupper, C Ell, O B Shchekin, and D G Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432:200–203, 2004.; Dorothea Pinotsi, Parisa Fallahi, Javier Miguel-sanchez, and Atac Imamoglu. Dots in Photonic Crystal Structures. 47:1371–1374, 2011.; Mark Adams and Axel Scherer. Lithographically fabricated optical cavities for refractive index sensing. Microelectronics and Nanometer Structures, 23:3168–3173, 2005.; Francesca Intonti, Silvia Vignolini, Volker Türck, Marcello Colocci, Paolo Bettotti, Lorenzo Pavesi, L Stefan, Ralf Wehrspohn, and Diederik Wiersma. Rewritable photonic circuits. Applied Physics Letters, 89:211117, 2006.; Qian Bo Chen San Ding Hong-Lin Liu KuiWang Xiang Xu Jun LiWei Zhang Xian-Gao, Chen Kun-Ji and Huang Xin-Fan. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity. Chinese Physics Letters, 25:1888, 2008.; M Bayer, T Gutbrod, J P Reithmaier, and A Forchel. Optical Modes in Photonic Molecules. Physical Review Letters, 81:2582–2585, 1998.; M Benyoucef and S Kiravittaya. Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances. Physical Review B, 77:035108, 2008.; Hsuan Lin, Jhih-hao Chen, Shih-shing Chao, Ming-cheng Lo, Sheng-di Lin, and Wenhao Chang. Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities. Optics Express, 18:1557–1559, 2010.; Svetlana V Boriskina. Theoretical prediction of a dramatic Q -factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules. Optics Letters, 31:338–340, 2006.; Jung-wan Ryu, Soo-young Lee, and Sang Wook Kim. Coupled nonidentical microdisks: Avoided crossing of energy levels and unidirectional far-field emission. Physical Review A, 79:053858, 2009.; Atsuo Nakagawa, Satoru Ishii, Toshihiko Baba, Atsuo Nakagawa, Satoru Ishii, and Toshihiko Baba. Photonic molecule laser composed of GaInAsP microdisks. Applied Physics Letters, 86:041112, 2005.; Svetlana V Boriskina. Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. Optics Letters, 32:1557–1559, 2007.; Yoshiko Hara, Takashi Mukaiyama, Kenji Takeda, and Makoto Kuwata-gonokami. Photonic molecule lasing. Optics Letters, 28:2437–2439, 2003.; T Mukaiyama, K Takeda, H Miyazaki, and Y Jimba. Tight-Binding Photonic Molecule Modes of Resonant Bispheres. Physical Review Letters, 82:4623–4626, 1999.; David B Thompson, David A Keating, Emre Guler, Kazuya Ichimura, Mary E Williams, and Kirk A Fuller. Separation-sensitive measurements of morphology dependent resonances in coupled fluorescent microspheres. Optics Express, 18:8286–8295, 2010.; B M Möller and UWoggon. Photonic molecules doped with semiconductor nanocrystals. Physical Review B, 70:115323, 2004.; Silvia Vignolini, Francesco Riboli, Diederik Sybolt Wiersma, Laurent Balet, Lianhe H Li, Marco Francardi, Annamaria Gerardino, Andrea Fiore, and Massimo Gurioli. Nanofluidic control of coupled photonic crystal resonators. Applied Physics Letters, 96:141114, 2010.; Silvia Vignolini, Francesca Intonti, Margherita Zani, Francesco Riboli, Diederik S Wiersma, Lianhe H Li, Laurent Balet, Marco Francardi, Annamaria Gerardino, Andrea Fiore, and Massimo Gurioli. Near field imaging of coupled photonic-crystal microcavities. Applied Physics Letters, 94:151103, 2013.; M Brunstein, T J Karle, I Sagnes, F Raineri, J Bloch, Y Halioua, G Beaudoin, L Le Gratiet, J A Levenson, A M Yacomotti, M Brunstein, T J Karle, I Sagnes, F Raineri, J Bloch, Y Halioua, and G Beaudoin. Radiation patterns from coupled photonic crystal nanocavities. Applied Physics Letters, 99:111101, 2011.; A R A Chalcraft, S Lam, B D Jones, D Szymanski, R Oulton, A C T Thijssen, M S Skolnick, D M Whittaker, T F Krauss, and A M Fox. Mode structure of coupled L3 photonic crystal cavities. Optics Express, 19:5670–5675, 2011.; Mehmet A Du, Joost A M Voorbraak, Richard No, and Rob W Van Der Heijden. Multimodal strong coupling of photonic crystal cavities of dissimilar size. Applied Physics Letters, 100:081107, 2012.; Xiaodong Yang, Charlton J Chen, Chad A Husko, Chee Wei Wong, Xiaodong Yang, Charlton J Chen, Chad A Husko, and Chee Wei. Digital resonance tuning of high- Q V m silicon photonic crystal nanocavities by atomic layer deposition. Applied Physics Letters, 91:161114, 2013.; T Gu, S Kocaman, X Yang, J F Mcmillan, and M B Yu. Deterministic integrated tuning of multicavity resonances and phase for slow-light in coupled photonic crystal cavities. Applied Physics Letters, 98:121103, 2014.; Christopher Gerry and Peter Knight. Introductory Quantum Optics. 2005.; Jonas Larson and Neil Young. Extended Jaynes-Cummings models in cavity QED than meets the eye. 2005.; M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Physical Review B, 65:195315, 2002.; S. Reitzenstein, S. Münch, P. Franeck, A. Rahimi-Iman, A. Löffler, S. Höfling, L. Worschech, and A. Forchel. Control of the Strong Light-Matter Interaction between an Elongated in 0.3Ga0.7 As Quantum Dot and a Micropillar Cavity Using External Magnetic Fields. Physical Review Letters, 103:127401, 2009.; Hyochul Kim, Glenn S. Solomon, and Edo Waks. Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity. Applied Physics Letters, 98:091102, 2011.; S. Lüker, T. Kuhn, and D. E. Reiter. Direct optical state preparation of the dark exciton in a quantum dot. Physical Review B - Condensed Matter and Materials Physics, 92:201305, 2015.; https://repositorio.unal.edu.co/handle/unal/86523; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
6Book
المؤلفون: Velázquez, J.L.
المساهمون: Pons Aglio, Alicia
مصطلحات موضوعية: Diodos emisores de luz, Diodos semiconductores, Fuentes luminosas, Sustancias luminiscentes, Luminiscencia, Espectrofotometría, Polinomios de Zernike, Relaciones de dispersión
Relation: Sí; Estudio de las propiedades fotométricas de sistemas de iluminación de estado sólido en campo cercano y campo lejano (2016); http://hdl.handle.net/10261/147986
الاتاحة: http://hdl.handle.net/10261/147986
-
7
المؤلفون: Rasero, Diego A., Portacio, Alfonso A., Suescún, Daniel
المصدر: Ciencia en Desarrollo, Volume: 12, Issue: 2, Pages: 43-48, Published: 29 JAN 2022
مصطلحات موضوعية: dispersion relations, Tight-Binding, relaciones de dispersión, density of states, densidad de estados
وصف الملف: text/html
-
8Academic Journal
المؤلفون: Dario G. Santiago-Pérez
المصدر: Nova Scientia, Vol 1, Iss 2 (2014)
مصطلحات موضوعية: oscilaciones de la red, constantes de fuerza, relaciones de dispersión, cadena lineal, Science, Science (General), Q1-390, Social Sciences, Social sciences (General), H1-99
وصف الملف: electronic resource
-
9Academic Journal
المؤلفون: Bernal, Carlos Ávila
المساهمون: Academia Colombiana de Ciencias Exactas, Físicas y Naturales
مصطلحات موضوعية: Dispersión elástica, Sección eficaz total, Amplitud de dispersión, Relaciones de dispersión, Teoría de Regge, Elastic scattering, Total cross section, Scattering amplitude, Dispersion relations, Regge theory
وصف الملف: 13 páginas; application/pdf
Relation: Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales; 38; 17; Suplemento; https://repositorio.accefyn.org.co/handle/001/824; https://doi.org/10.18257/raccefyn.151
-
10
المؤلفون: Velázquez Molinero, José Luis
المساهمون: Pons Aglio, Alicia, Universidad de Granada. Programa Oficial de Doctorado en: Física y Ciencias del Espacio, Consejo Superior de Investigaciones Científicas (CSIC). Instituto de Óptica 'Daza de Valdés'
المصدر: Digibug. Repositorio Institucional de la Universidad de Granada
instnameمصطلحات موضوعية: Sustancias luminiscentes, 628.92, Polinomios de Zernike, Diodos semiconductores, Relaciones de dispersión, Fuentes luminosas, Diodos emisores de luz, Luminiscencia, Espectrofotometría
وصف الملف: application/pdf
-
11
المؤلفون: JUAN CARLOS JUAREZ MORALES
المساهمون: GABRIEL CONSTANTINO MARTINEZ NICONOFF, JAVIER MUÑOZ LOPEZ
المصدر: Instituto Nacional de Astrofísica, Óptica y Electrónica
INAOE
Repositorio Institucional del INAOEمصطلحات موضوعية: Dispersion relations [Relaciones de dispersión], Dipole moment [Momento bipolar], 22 [cti], 1 [cti], Surface plasmon resonance [Resonancia de plasmones superficiales], 2209 [cti]
وصف الملف: application/pdf
-
12Academic Journal
المؤلفون: Santiago-Pérez, Dario G.
المصدر: Nova scientia, ISSN 2007-0705, Nº. 2, 2009, pags. 54-63
مصطلحات موضوعية: oscilaciones de la red, constantes de fuerza, relaciones de dispersión, cadena lineal, lattice oscillations, force constants, dispersion relations, linear chain
وصف الملف: application/pdf
-
13Electronic Resource