-
1Dissertation/ Thesis
المؤلفون: Guimbaud, Jean-Baptiste
المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Medicina i Ciències de la Vida
Thesis Advisors: Cabazet, Rémy, Maître, Léa
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Machine learning, Informed machine learning, Exposome, Environmental risk scores, Deep neural networks, Aprendizaje automático, Aprendizaje automático informado, Puntuaciones de riesgo ambiental, Redes neuronales profundas
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/692346
-
2Conference
المؤلفون: Stanchi, Oscar Agustín
مصطلحات موضوعية: Cs de la Computación, sistemas inteligentes, redes neuronales profundas, visión por computadora, interpretabilidad, fondo de ojo, intelligent systems, deep learning, computer vision, interpretability, fundus image
وصف الملف: application/pdf
-
3Academic Journal
المؤلفون: Lopez Perez, Jorge I., Taire, Damián L., Delrieux, Claudio
المصدر: JAIIO, Jornadas Argentinas de Informática; Vol. 10 Núm. 4 (2024): CAIS - Congreso Argentino de Informática y Salud; 51-59 ; JAIIO, Jornadas Argentinas de Informática; Vol. 10 No. 4 (2024): CAIS - Argentine Congress on Informatic and Health; 51-59 ; 2451-7496
مصطلحات موضوعية: Redes neuronales profundas, Sonidos respiratorios, Arquitectura VGG-16, Coeficientes cepstrales en frecuencia de Mel (MFCC´s), Diagnóstico de patologías respiratorias
وصف الملف: application/pdf
-
4Academic Journal
المصدر: Revista Vínculos; Vol. 20 No. 1 (2023) ; Revista Vínculos; Vol. 20 Núm. 1 (2023) ; Revista Vínculos; v. 20 n. 1 (2023) ; 2322-939X ; 1794-211X
مصطلحات موضوعية: Localización de personas, Sensores infrarrojos, Radar de onda milimétrica, Signos vitales, Procesamiento de señales, Tecnologías de rescate, Micrófonos ultrasónicos, Redes neuronales profundas, Person location, Infrared sensors, Millimeter wave radar, Vital signs, Deep neural networks, Signal processing, Rescue technologies, Ultrasonic microphones
وصف الملف: application/pdf
Relation: https://revistas.udistrital.edu.co/index.php/vinculos/article/view/17668/20192; O. Cardona, "La gestión del riesgo colectivo. Un marco conceptual que encuentra sustento en una ciudad laboratorio," Red de Estudios Sociales en Prevención de Desastres en América Latina, 2007. [2] J. C. Cobos Torres, "Medición de signos vitales mediante técnicas de visión artificial," 2017. [3] O. D. Cardona, A. C. García, S. Mattingly, E. G. C. Trujillo, y D. F. P. Vega, "Plan de emergencias de Manizales," Alcaldía de Manizales-Oficina Municipal para la Prevención y Atención de Desastres-OMPAD, Manizales, 2003. [4] F. D. Castro, "Metodología de projeto centrada na casa da qualidade," Tesis de maestría, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, 2008. [5] G. Pahl y W. Beitz, "Engineering design: a systematic approach," Springer Science & Business Media, 2013. [6] K. Schwaber y J. Sutherland, "The definitive guide to Scrum: The rules of the game," online], Scrum.org, 2013. [7] T. J. Chowdhury, C. Elkin, V. Devabhaktuni, D. B. Rawat, y J. Oluoch, "Advances on localization techniques for wireless sensor networks: A survey," Computer Networks, vol. 110, pp. 284-305, 2016. https://doi.org/10.1016/j.comnet.2016.10.006; G. Deak, K. Curran, J. Condell, E. Asimakopoulou, y N. Bessis, "IoTs (Internet of Things) and DfPL (Device-free Passive Localisation) in a disaster management scenario," Simulation Modelling Practice and Theory, vol. 35, pp. 86-96, 2013. https://doi.org/10.1016/j.simpat.2013.03.005 [9] UNGRD, "Boletín de prensa 131, Unidad atención de riesgos y desastres. Tras avalancha en Manizales, continúan los trabajos de recuperación," 2017. [10] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, y K. Mankodiya, "Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare," Future Generation Computer Systems, 2017. https://doi.org/10.1016/j.future.2017.03.034 [11] A. M. García y A. C. Castaño Dávila, "SIG de deslizamientos para el departamento de Caldas," 2013. [12] G. Morral y P. Bianchi, "Distributed on-line multidimensional scaling for self-localization in wireless sensor networks," Signal Processing, vol. 120, pp. 88-98, 2016. https://doi.org/10.1016/j.sigpro.2015.08.014 [13] K. Keipi, S. Mora-Castro, y P. Bastidas, "Gestión de riesgo de amenazas naturales en proyectos de desarrollo: Lista de preguntas de verificación ('Checklist')," Inter-American Development Bank, 2005. [14] T. Kim, C. Ramos, y S. Mohammed, "Smart City and IoT," Elsevier, 2017. https://doi.org/10.1016/j.future.2017.03.034 [15] L. Liu, C. Guo, J. Li, H. Xu, J. Zhang, y B. Wang, "Simultaneous life detection and localization using a wideband chaotic signal with an embedded tone," Sensors, vol. 16, no. 11, p. 1866, 2016. https://doi.org/10.3390/s16111866 [16] L. Rising y N. S. Janoff, "The Scrum software development process for small teams," IEEE Software, vol. 4, pp. 26-32, 2000. https://doi.org/10.1109/52.854065 [17] J. V. González, O. A. V. Arenas, y V. V. González, "Semiología de los signos vitales: Una mirada novedosa a un problema vigente:/Vitals sign semiology: the new look to an actual problem," Archivos de Medicina (Manizales), vol. 12, no. 2, pp. 221-240, 2012. https://doi.org/10.30554/archmed.12.2.10.2012 [18] R. K. Lomotey, J. Pry, y S. Sriramoju, "Wearable IoT data stream traceability in a distributed health information system," Pervasive and Mobile Computing, 2017. https://doi.org/10.1016/j.pmcj.2017.06.020 [19] A. Lavell, "Sobre la gestión del riesgo: apuntes hacia una definición," Biblioteca Virtual en Salud de Desastres-OPS. [20] A. Shalloway, S. Bain, K. Pugh, y A. Kolsky, "Essential Skills for the agile developer. A guide to better programming and design," Addison-Wesley, 2011.; https://revistas.udistrital.edu.co/index.php/vinculos/article/view/17668
-
5Academic Journal
المؤلفون: Hortúa, Héctor J., García, Luz Ángela, Castañeda, Leonardo
المساهمون: Hortúa, Héctor J. 0000-0002-3396-2404
مصطلحات موضوعية: Inteligencia artificial, Cosmología, Redes neuronales profundas, Simulaciones de N-cuerpos, Estimación de parámetros, Artificial intelligence, Cosmology, Deep neural networks, N-body simulations, Parameter estimation
وصف الملف: application/pdf
Relation: https://www.scopus.com/record/display.uri?eid=2-s2.0-85164691012&origin=inward&txGid=1afec315290c1c2aea69b8d69947962e; http://hdl.handle.net/20.500.12495/11386; instname:Universidad El Bosque; reponame:Repositorio Institucional Universidad El Bosque; repourl:https://repositorio.unbosque.edu.co
-
6Academic Journal
المؤلفون: Suarez Baron, Marco Javier, Gonzalez Sanabria, Juan Sebastian, Espindola Diaz, Jorge Enrique
المصدر: Investigación e Innovación en Ingenierías; Vol. 10 No. 1 (2022): January - June; 202-214 ; Investigación e Innovación en Ingenierías; Vol. 10 Núm. 1 (2022): Enero-Junio; 202-214 ; 2344-8652 ; 10.17081/invinno.10.1
مصطلحات موضوعية: Learning machine, student dropout, deep neural networks, Aprendizaje de máquina, deserción estudiantil, redes neuronales profundas
وصف الملف: application/pdf; text/xml
Relation: https://revistas.unisimon.edu.co/index.php/innovacioning/article/view/5607/5670; https://revistas.unisimon.edu.co/index.php/innovacioning/article/view/5607/5725; https://revistas.unisimon.edu.co/index.php/innovacioning/article/view/5607
-
7Academic Journal
مصطلحات موضوعية: redes neuronales profundas, Deep Neural Networks, fotopletismografía, Photoplethysmography, frecuencia respiratoria, Respiratory Rate
وصف الملف: application/pdf
-
8Academic Journal
المؤلفون: C. Lampier, Lucas, L. Coelho, Yves, O. Caldeira , Eliete M., Bastos-Filho, Teodiano F., Bastos-Filho, Teodiano
المصدر: Ingenius; No. 27 (2022): january-june; 96-104 ; Ingenius; Núm. 27 (2022): enero-junio; 96-104 ; Ingenius; n. 27 (2022): enero-junio; 96-104 ; 1390-860X ; 1390-650X
مصطلحات موضوعية: redes neuronales profundas, fotopletismografía, frecuencia respiratoria, Deep Neural Networks, Photoplethysmography, Respiratory Rate
وصف الملف: application/pdf; text/html
Relation: https://revistas.ups.edu.ec/index.php/ingenius/article/view/27.2022.09/4743; https://revistas.ups.edu.ec/index.php/ingenius/article/view/27.2022.09/4744; https://revistas.ups.edu.ec/index.php/ingenius/article/view/27.2022.09/4846; https://revistas.ups.edu.ec/index.php/ingenius/article/view/27.2022.09
-
9Academic Journal
المؤلفون: Moreno Álvarez, Sergio, Paoletti Ávila, Mercedes Eugenia, Rico Gallego, Juan Antonio, Haut Hurtado, Juan Mario
المساهمون: Universidad Complutense de Madrid, Universidad de Extremadura. Departamento de Ingeniería de Sistemas Informáticos y Telemáticos, Universidad de Extremadura. Departamento de Tecnología de los Computadores y de las Comunicaciones
مصطلحات موضوعية: Aprendizaje profundo, Redes neuronales profundas, Computación de alto rendimiento, Plataformas heterogéneas, Entrenamiento distribuido, Deep learning, Deep neural networks, High-performance computing, Heterogeneous platforms, Distributed training, 1203.04 Inteligencia Artificial
وصف الملف: 15 p.; application/pdf
Relation: https://doi.org/10.1007/s11227-022-04399-2; http://hdl.handle.net/10662/17104; Moreno-Álvarez, S., Paoletti, M.E., Rico-Gallego, J.A. et al. Heterogeneous gradient computing optimization for scalable deep neural networks. J Supercomput 78, 13455–13469 (2022). https://doi.org/10.1007/s11227-022-04399-2; Journal of Supercomputing; 13455; 13469; 78; orcid:0000-0002-1858-9920; orcid:0000-0003-1030-3729; orcid:0000-0002-4264-7473
-
10Conference
المؤلفون: Bourlot, Jimena, Eberle, Gerónimo, Priemer, Eric, Ferrante, Enzo, Martínez, César, Albornoz, Enrique Marcelo
مصطلحات موضوعية: Ciencias Informáticas, Mapas de calor, Procesamiento de video, Basquetbol, Redes neuronales profundas
وصف الملف: application/pdf; 231-239
-
11Conference
مصطلحات موضوعية: Segmentación semántica, Estado del arte, Redes neuronales profundas, Aprendizaje máquina, Semantic segmentation, Machine learning, Deep learning, State-of-the-art
Relation: https://doi.org/10.17979/spudc.9788497498043.655; Espacio, A., Salamanca, S., Merchán, P., Pérez, E., Punzón, S. Análisis comparativo de segmentación semántica de nubes de puntos con redes neuronales. En XLII Jornadas de Automática: libro de actas. Castelló, 1-3 de septiembre de 2021 (pp.655-662). DOI capítulo: https://doi.org/10.17979/spudc.9788497498043.655 DOI libro: https://doi.org/10.17979/spudc.9788497498043; http://hdl.handle.net/2183/28354
-
12Academic Journal
المؤلفون: Jeyson A. Castillo, Yenny C. Granados, Carlos A. Fajardo
المصدر: Ciencia e Ingeniería Neogranadina, Vol 30, Iss 1, Pp 45-57 (2020)
مصطلحات موضوعية: detección automática, ecg, fibrilación auricular, redes neuronales convolucionales, redes neuronales profundas, Engineering (General). Civil engineering (General), TA1-2040, Science
وصف الملف: electronic resource
-
13Dissertation/ Thesis
Thesis Advisors: Lozano-Díez, Alicia (tutora), González-Rodríguez, Joaquín (ponente), UAM. Departamento de Tecnología Electrónica y de las Comunicaciones
مصطلحات موضوعية: Reconocimiento automático de idioma, Redes neuronales profundas, Cuello de botella, Telecomunicaciones
URL الوصول: http://hdl.handle.net/10486/679389
-
14Academic Journal
المؤلفون: Merchán Vargas, Diana Paola, Navarro Báez, Helis, Barrero Pérez, Jaime Guillermo, Castillo Bohórquez, Jeyson Arley
المصدر: Ciencia y Tecnología; Ciencia y Tecnología 21; 65-80 ; 2344-9217 ; 1850-0870 ; 10.18682/cyt.vi21
مصطلحات موضوعية: skin cancer, Deep Neural Networks (DNN), Dermatologists, cáncer de piel, redes neuronales profundas (DNN), dermatólogos
وصف الملف: application/pdf
Relation: https://dspace.palermo.edu/ojs/index.php/cyt/article/view/4612/8127; https://dspace.palermo.edu/ojs/index.php/cyt/article/view/4612
-
15Academic Journal
المؤلفون: Matrone, Francesca, Martini, Massimo
مصطلحات موضوعية: Cultural heritage, Semantic segmentation, Deep learning, Deep neural networks, Point clouds, Patrimonio cultural, Segmentación semántica, Aprendizaje profundo, Redes neuronales profundas, Nubes de puntos
Relation: Virtual Archaeology Review; https://doi.org/10.4995/var.2021.15318; http://hdl.handle.net/10251/169359; urn:eissn:1989-9947
-
16Dissertation/ Thesis
المؤلفون: Sánchez Vivas, Diego Fernando
المساهمون: Ramírez Gil, Joaquín Guillermo, Terán Chaves, Cesar Augusto, Biogénesis, Sánchez Vivas, Diego Fernando 0000000163130871, Sánchez Vivas, Diego Fernando 0000092231, Sánchez Vivas, Diego Fernando 58159513500, Sánchez Vivas, Diego Fernando https://www.researchgate.net/profile/Diego-Sanchez-Vivas, Sánchez Vivas, Diego Fernando https://scholar.google.se/citations?user=7KTTn5UAAAAJ
مصطلحات موضوعية: 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales, 630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura, AGUACATE-CONSERVACION, CLIMATOLOGIA AGRICOLA, METEOROLOGIA AGRICOLA, RECOPILACION DE DATOS, CAMBIOS CLIMATICOS, VARIABILIDAD DE PRECIPITACION, ZONAS CLIMATICAS, Avocado - preservation, Crops and climate, Meteorology, agricultural, Data collecting, Climatic changes, Precipitation variability, Climatic zones, Variabilidad y cambio climático, Series de tiempo, Redes neuronales profundas, Índices de vegetación, Teledetección, Climate variability and change, Time series, Deep neural networks
جغرافية الموضوع: Colombia
وصف الملف: 248 páginas; application/pdf
Relation: Agrosavia; Agrovoc; Abadi, A.M., Rowe, C.M., Andrade, M. (2020). Climate regionalization in Bolivia: A combination of non-hierarchical and consensus clustering analyses based on precipitation and temperature. International Journal of Climatology. 40, 4408–4421. https://doi.org/10.1002/joc.6464; Abatzoglou, J.T., S.Z. Dobrowski, S.A. Parks, K.C. Hegewisch. (2018). Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015, Scientific Data https://www.nature.com/articles/sdata2017191; Abbas, F., Afzaal, H., Farooque, A. A., & Tang, S. (2020). Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy, 10(7). https://doi.org/10.3390/AGRONOMY10071046; Abdulridha, J., Ehsani, R., Abd-Elrahman, A., & Ampatzidis, Y. (2019). A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Computers and Electronics in Agriculture, 156, 549–557. https://doi.org/10.1016/j.compag.2018.12.018; Acosta-Rangel, A., Li, R., Mauk, P., Santiago, L., & Lovatt, C. J. (2021). Effects of temperature, soil moisture and light intensity on the temporal pattern of floral gene expression and flowering of avocado buds (Persea americana cv. Hass). Scientia Horticulturae, 280, 109940. https://doi.org/10.1016/j.scienta.2021.109940; Agisoft. (2023). DJI Phantom 4 Multispectral data processing. https://agisoft.freshdesk.com/support/solutions/articles/31000159853-dji-phantom-4-multispectral-data-processing; Ahmed, K., Sachindra, D. A., Shahid, S., Iqbal, Z., Nawaz, N., & Khan, N. (2020). Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmospheric Research, 236 (December 2019), 104806. https://doi.org/10.1016/j.atmosres.2019.104806; Ahmed, M., Stöckle, C. O., Nelson, R., Higgins, S., Ahmad, S., & Raza, M. A. (2019). Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-44251-x; Aiello, S., Click, C., Roark, H., & Rehak, L. (2015). Machine Learning with Python and H2O: First Edition Machine Learning with Python and H2O. H2O. Ai, November. http://h2o.ai/resources/; Albetis, J., Jacquin, A., Goulard, M., Poilvé, H., Rousseau, J., Clenet, H., Dedieu, G., & Duthoit, S. (2019). On the potentiality of UAV multispectral imagery to detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sensing, 11(1). https://doi.org/10.3390/rs11010023; Aldino, A. A., Darwis, D., Prastowo, A. T., & Sujana, C. (2021). Implementation of K-Means Algorithm for Clustering Corn Planting Feasibility Area in South Lampung Regency. Journal of Physics: Conference Series, 1751(1). https://doi.org/10.1088/1742-6596/1751/1/012038; Althoff, D., Dias, S. H. B., Filgueiras, R., & Rodrigues, L. N. (2020). ETo‐Brazil: A Daily Gridded Reference Evapotranspiration Data Set for Brazil (2000–2018). Water Resources Research, 56(7). https://doi.org/10.1029/2020WR027562; Álvarez Bravo, A., Salazar García, S., Ruiz Corral, J. A., & Medina García, G. (2017). Escenarios de cómo el cambio climático modificará las zonas productoras de aguacate ‘hass’ en Michoacán. Revista Mexicana de Ciencias Agrícolas, 19, 4035–4048. https://doi.org/10.29312/remexca.v0i19.671; Anacona Mopan, Y.E., Solis Pino, A.F., Rubiano-Ovalle, O., Paz, H. & I. Ramirez Mejia. (2023). Spatial Analysis of the Suitability of Hass Avocado Cultivation in the Cauca Department, Colombia, Using Multi-Criteria Decision Analysis and Geographic Information Systems. ISPRS Int. J. Geo-Inf. 2023, 12, 136. https://doi.org/10.3390/ijgi12040136; Analdex. (2022). Informe exportaciones de aguacate Hass septiembre 2022. 6 pp. https://www.analdex.org/2022/12/13/informe-exportaciones-de-aguacate-hass-septiembre-2022/; APHIS. (2021). Report Name: Avocado Annual. Country: México. 5 pp. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Avocado%20Annual_Mexico%20City_Mexico_12-01-2021.pdf; Apolo-Apolo, O. E., Pérez-Ruiz, M., Martínez-Guanter, J., & Valente, J. (2020). A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique. Frontiers in Plant Science, 11(July), 1–15. https://doi.org/10.3389/fpls.2020.01086; Arias - García, J.S., Hurtado-Salazar, A., & Ceballos-Aguirre, N. (2021). Current overview of Hass avocado in Colombia. Challenges and opportunities: a review. Ciência Rural, Santa Maria, v.51:8, e20200903. http://doi.org/10.1590/0103-8478cr20200903; Arima, S., & Models, L. (2023). JOURNAL OF ENGINEERING SCIENCES Time Series Prediction of Temperature Using. 9(3), 574–584. https://doi.org/10.30855/gmbd.0705088; Arnell, N. W., Lowe, J. A., Bernie, D., Nicholls, R. J., Brown, S., Challinor, A. J., & Osborn, T. J. (2019). The global and regional impacts of climate change under representative concentration pathway forcings and shared socioeconomic pathway socioeconomic scenarios. Environmental Research Letters, 14(8). https://doi.org/10.1088/1748-9326/ab35a6; Arpaia, M. L., & Heath, R. L. (2004). Avocado Tree Physiology - Understanding the basis of Productivity. Proceedings of the California Avocado Research Symposium, October 30, 2004, 65–88. https://www.californiaavocadogrowers.com/sites/default/files/Avocado-Tree-Physiology–Understanding-the-Basis-of-Productivity-2006.pdf; Ashraf, F. Bin, Kabir, M. R., Shafi, M. S. R., & Rifat, J. I. M. (2020). Finding Homogeneous Climate Zones in Bangladesh from Statistical Analysis of Climate Data Using Machine Learning Technique. ICCIT 2020 - 23rd International Conference on Computer and Information Technology, Proceedings. https://doi.org/10.1109/ICCIT51783.2020.9392689; Ashraf, U., Peterson, A. T., Chaudhry, M. N., Ashraf, I., Saqib, Z., Rashid Ahmad, S., & Ali, H. (2017). Ecological niche model comparison under different climate scenarios: a case study of Olea spp. in Asia. Ecosphere, 8(5). https://doi.org/10.1002/ecs2.1825; Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P. J., Rötter, R. P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A. J., Doltra, J., … Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3(9), 827–832. https://doi.org/10.1038/nclimate1916; Assmann, J. J., Kerby, J. T., Cunliffe, A. M., & Myers-Smith, I. H. (2019). Vegetation monitoring using multispectral sensors — best practices and lessons learned from high latitudes. Journal of Unmanned Vehicle Systems, 7(1), 54–75. https://doi.org/10.1139/juvs-2018-0018; Balaji, E., Brindha, D., Vinodh Kumar, E., & Vikrama, R. (2021). Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network. Applied Soft Computing, 108, 107463. https://doi.org/10.1016/j.asoc.2021.107463; Balaji, N., Bhandary, S. B., Dsouza, R. F., & Karthik Pai, B. (2022). ANN Based Weather Analysis and Prediction. 2022 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2022 - Proceedings, 7–11. https://doi.org/10.1109/DISCOVER55800.2022.9974773; Ballesteros, R., Ortega, J. F., Hernandez, D., & Moreno, M. A. (2018). Onion biomass monitoring using UAV-based RGB imaging. Precision Agriculture, 19(5), 840–857. https://doi.org/10.1007/s11119-018-9560-y; Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120. https://doi.org/10.1080/02757259509532298; Barboza, T. O. C., Ferraz, M. A. J., Pilon, C., Vellidis, G., Valeriano, T. T. B., & dos Santos, A. F. (2024). Advanced Farming Strategies Using NASA POWER Data in Peanut-Producing Regions without Surface Meteorological Stations. AgriEngineering, 6(1), 438–454. https://doi.org/10.3390/agriengineering6010027; Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb), 281-305. https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf; Berio Fortini, L., Kaiser, L. R., Frazier, A. G., & Giambelluca, T. W. (2023). Examining current bias and future projection consistency of globally downscaled climate projections commonly used in climate impact studies. Climatic Change, 176(12), 1–21. https://doi.org/10.1007/s10584-023-03623-z; Bernal-Estrada, J. A., Tamayo-Vélez, A. D. J., & Díaz-Diez, C. A. (2020). Dynamics of leaf, flower and fruit abscission in avocado cv. Hass in Antioquia, Colombia. Revista Colombiana de Ciencias Hortícolas, 14(3), 324–333. https://doi.org/10.17584/rcch.2020v14i3.10850; Bilgili, A., Bilgili, A. V., Tenekeci, M. E., & Karadağ, K. (2023). Spectral characterization and classification of two different crown root rot and vascular wilt diseases (Fusarium oxysporum f.sp. radicis lycopersici and fusarium solani) in tomato plants using different machine learning algorithms. European Journal of Plant Pathology, 165(2), 271–286. https://doi.org/10.1007/s10658-022-02605-8; Biotico, S. F., & Clima, E. L. (2000). Plan básico de ordenamiento territorial.; Bony, S., Srinivasan, J., & Ronald, S. (2007). Climate Models and Their Evaluation. Solar potential assessment over India View project PROGRAMM AMMA. Disponible en: https://www.researchgate.net/publication/233421523. (Último acceso: junio de 2023).; Box, G. (2013). Box and Jenkins: Time Series Analysis, Forecasting and Control BT - A Very British Affair: Six Britons and the Development of Time Series Analysis During the 20th Century (T. C. Mills (ed.); pp. 161–215). Palgrave Macmillan UK. https://doi.org/10.1057/9781137291264_6; Breiman, L. (2001). Random forests. Machine Learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12343 LNCS, 503–515. https://doi.org/10.1007/978-3-030-62008-0_35; Burn, D. H., & Goel, N. K. (2000). La formation de groupes pour l’estimation régionale de la fréquence des crues. Hydrological Sciences Journal, 45(1), 97–112. https://doi.org/10.1080/02626660009492308; Burns, B. W., Green, V. S., Hashem, A. A., Massey, J. H., Shew, A. M., Adviento-Borbe, M. A. A., & Milad, M. (2022). Determining nitrogen deficiencies for maize using various remote sensing indices. Precision Agriculture, 23(3), 791–811. https://doi.org/10.1007/s11119-021-09861-4; Cáceres-Zambrano, J., Ramírez-Gil, J. G., & Barrios, D. (2022). Validating Technologies and Evaluating the Technological Level in Avocado Production Systems: A Value Chain Approach. Agronomy, 12(12). https://doi.org/10.3390/agronomy12123130; Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., & Wise, M. (2017). The SSP4: A world of deepening inequality. Global Environmental Change, 42, 284–296. https://doi.org/10.1016/j.gloenvcha.2016.06.010; Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), 4026–4047. https://doi.org/10.3390/rs70404026; Cao, Y., Li, G. L., Luo, Y. K., Pan, Q., & Zhang, S. Y. (2020). Monitoring of sugar beet growth indicators using wide-dynamic-range vegetation index (WDRVI) derived from UAV multispectral images. Computers and Electronics in Agriculture, 171, 105331. https://doi.org/https://doi.org/10.1016/j.compag.2020.105331; Carbajal-Morán, H., Márquez-Camarena, J. F., Galván-Maldonado, C. A., Zárate-Quiñones, R. H., Galván-Maldonado, A. C., & Muñoz-De la Torre, R. J. (2023). Evaluation of Normalized Difference Vegetation Index by Remote Sensing with Landsat Satellites in the Tayacaja Valley in the Central Andes of Peru. Ecological Engineering and Environmental Technology, 24(7), 208–215. https://doi.org/10.12912/27197050/169530; Cárceles Rodríguez, B., Durán Zuazo, V. H., Franco Tarifa, D., Cuadros Tavira, S., Sacristan, P. C., & García-Tejero, I. F. (2023). Irrigation Alternatives for Avocado (Persea americana Mill.) in the Mediterranean Subtropical Region in the Context of Climate Change: A Review. Agriculture (Switzerland), 13(5). https://doi.org/10.3390/agriculture13051049; Carvalho, M. J., Melo-Gonçalves, P., Teixeira, J. C., & Rocha, A. (2016). Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Physics and Chemistry of the Earth, 94, 22–28. https://doi.org/10.1016/j.pce.2016.05.001; Castillo-Guevara, M. A., Palomino-Quisne, F., Alvarez, A. B., & Coaquira-Castillo, R. J. (2020). Water stress analysis using aerial multispectral images of an avocado crop. Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020. https://doi.org/10.1109/EIRCON51178.2020.9254011; Caswell, T. A., Droettboom, M., Hunter, J., Firing, E., Lee, A., Klymak, J., Stansby, D., Varoquaux, N., Nielsen, J. E., Root, B., May, R., Elson, P., Seppänen, J., Dale, D., Lee, D., Straw, A., Hobson, P., Gohlke, C., Yu, T. S., others. (2021). matplotlib: A comprehensive library for creating static, animated, and interactive visualizations in Python. Journal of Open Source Software, 6(60), 3021.; Cavalcanti, V. P., dos Santos, A. F., Rodrigues, F. A., Terra, W. C., Araújo, R. C., Ribeiro, C. R., Campos, V. P., Rigobelo, E. C., Medeiros, F. H. V., & Dória, J. (2023). Use of RGB images from unmanned aerial vehicle to estimate lettuce growth in root-knot nematode infested soil. Smart Agricultural Technology, 3, 100100. https://doi.org/10.1016/j.atech.2022.100100; Chang, X., Meng, G., Wang, Y., Hou, X. (2012). Seasonal autoregressive integrated moving average model for precipitation time series. Journal of Mathematics and Statistics, 8(4), 500–505. https://doi.org/10.3844/jmssp.2012.500.505; Chang, Y. L., Tan, T. H., Chen, T. H., Chuah, J. H., Chang, L., Wu, M. C., Tatini, N. B., Ma, S. C., & Alkhaleefah, M. (2022). Spatial-Temporal Neural Network for Rice Field Classification from SAR Images. Remote Sensing, 14(8). https://doi.org/10.3390/rs14081929; Charre-Medellín, J. F., Mas, J.-F., & Chang-Martínez, L. A. (2021). Potential expansion of Hass avocado cultivation under climate change scenarios threatens Mexican mountain ecosystems. Crop and Pasture Science, 72(4), 291–301. https://doi.org/10.1071/CP20458; Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953; Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-Augu, 785–794. https://doi.org/10.1145/2939672.2939785; Chollet, F., & others. (2015). Keras. GitHub. Retrieved from https://github.com/fchollet/keras; Chong-Hai, X., & Ying, X. (2012). The Projection of Temperature and Precipitation over China under RCP Scenarios using a CMIP5 Multi-Model Ensemble. Atmospheric and Oceanic Science Letters, 5(6), 527–533. https://doi.org/10.1080/16742834.2012.11447042; Choury, A., Bruinsma, S., & Schaeffer, P. (2013). Neural networks to predict exosphere temperature corrections. Space Weather, 11(10), 592–602. https://doi.org/10.1002/2013SW000969; Chung, S. W., Rho, H., Lim, C. K., Jeon, M. K., Kim, S., Jang, Y. J., & An, H. J. (2022). Photosynthetic response and antioxidative activity of ‘Hass’ avocado cultivar treated with short-term low temperature. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-15821-3; CIPF. (2018). Global warming of 1.5 °C: An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani et al., eds.) Geneva, Switzerland, IPCC. 630 págs. https://www.ipcc.ch/sr15/; CIPF. (2021). Revisión científica del impacto del cambio climático en las plagas de las plantas. Un desafío mundial en la prevención y la mitigación de los riesgos de plagas en la agricultura, la silvicultura y los ecosistemas. Roma. FAO en nombre de la Secretaría de la CIPF. https://doi.org/10.4060/cb4769es; Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., Skakun, S. V., & Justice, C. (2018). The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 219(August), 145–161. https://doi.org/10.1016/j.rse.2018.09.002; Colectivo, M., & American, L. (2023). The Avocados of Wrath. April. https://grain.org/e/6985. (Último acceso: junio de 2023).; Copernicus Open Access Hub by ESA (2020). https:// scihub. copernicus.; Cortés, D., Silva, H., Baginsky, C., & Morales, L. (2017). Climatic zoning of chia (Salvia hispanica L.) in Chile using a species distribution model. Spanish Journal of Agricultural Research, 15(3). https://doi.org/10.5424/sjar/2017153-9935; Crane, T. A., Roncoli, C., & Hoogenboom, G. (2011). Adaptation to climate change and climate variability: The importance of understanding agriculture as performance. NJAS: Wageningen Journal of Life Sciences, 57(3–4), 179–185. https://doi.org/10.1016/j.njas.2010.11.002; Cruz-Cárdenas, G., Villaseñor, J. L., López-Mata, L., Martínez-Meyer, E., & Ortiz, E. (2014). Selection of environmental predictors for species distribution modeling in Maxent. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 20(2), 187–201. https://doi.org/10.5154/r.rchscfa.2013.09.034; da Silveira, F., Lermen, F. H., & Amaral, F. G. (2021). An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, 189, 106405. https://doi.org/10.1016/j.compag.2021.106405; Daniels, L., Eeckhout, E., Wieme, J., Dejaegher, Y., Audenaert, K., & Maes, W. H. (2023). Identifying the Optimal Radiometric Calibration Method for UAV-Based Multispectral Imaging. Remote Sensing, 15(11), 1–22. https://doi.org/10.3390/rs15112909; Dash, J., & Curran, P. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing - INT J REMOTE SENS, 25. https://doi.org/10.1080/0143116042000274015; De Castro, A. I., Ehsani, R., Ploetz, R., Crane, J. H., & Abdulridha, J. (2015). Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado. Remote Sensing of Environment, 171, 33–44. https://doi.org/10.1016/j.rse.2015.09.011; De La Fuente, S. (2014). Series Temporales, Modelo Arima y Metodología de Box - Jenkins. En: https://www.estadistica.net/ECONOMETRIA/SERIES-TEMPORALES/modelo-arima.pdf; De, D., & Alpes, G. (2022). Clustering non paramétrique pour les extrêmes spatiaux. Nonparametric clustering for spatial extremes. https://www.theses.fr/2022GRALU008.pdf; Deng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 124–136. https://doi.org/10.1016/j.isprsjprs.2018.09.008; Dikbas, F., Firat, M., Koc, A. C., & Gungor, M. (2013). Defining Homogeneous Regions for Streamflow Processes in Turkey Using a K-Means Clustering Method. Arabian Journal for Science and Engineering, 38(6), 1313–1319. https://doi.org/10.1007/s13369-013-0542-0; Dilmurat, K., Sagan, V., Maimaitijiang, M., & Moose, S. (2022). from Multisensory UAV Data.; Ding, C., & He, X. (2004). K-means Clustering via Principal Component Analysis.; DJI. (2023). DJI GS Pro en App Store. DJI GS Pro En App Store. https://apps.apple.com/es/app/dji-gs-pro/id1183717144; Doan, Q. Van, Amagasa, T., Pham, T. H., Sato, T., Chen, F., & Kusaka, H. (2023). Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data. Geoscientific Model Development, 16(8), 2215–2233. https://doi.org/10.5194/gmd-16-2215-2023; Dong, T. Y., Dong, W. J., Guo, Y., Chou, J. M., Yang, S. L., Tian, D., & Yan, D. D. (2018). Future temperature changes over the critical Belt and Road region based on CMIP5 models. Advances in Climate Change Research, 9(1), 57–65. https://doi.org/10.1016/j.accre.2018.01.003; Doughty, R., Xiao, X., Köhler, P., Frankenberg, C., Qin, Y., Wu, X., Ma, S., & Moore III, B. (2021). Global-Scale Consistency of Spaceborne Vegetation Indices, Chlorophyll Fluorescence, and Photosynthesis. Journal of Geophysical Research: Biogeosciences, 126(6), e2020JG006136. https://doi.org/https://doi.org/10.1029/2020JG006136; Dumont, M., Saadi, M., Oudin, L., Lachassagne, P., Nugraha, B., Fadillah, A., Bonjour, J. L., Muhammad, A., Hendarmawan, Dörfliger, N., & Plagnes, V. (2022). Assessing rainfall global products reliability for water resource management in a tropical volcanic mountainous catchment. Journal of Hydrology: Regional Studies, 40(August 2021). https://doi.org/10.1016/j.ejrh.2022.101037; Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x; Elsayed, N., ElSayed, Z., & Maida, A. S. (2023). LiteLSTM Architecture Based on Weights Sharing for Recurrent Neural Networks. http://arxiv.org/abs/2301.04794; Erazo-Mesa, E., Echeverri-Sánchez, A., & Ramírez-Gil, J. G. (2022). Advances in Hass avocado irrigation scheduling under digital agriculture approach. Revista Colombiana de Ciencias Horticolas, 16(1). https://doi.org/10.17584/rcch.2022v16i1.13456; Erazo-Mesa, E., Ramírez-Gil, J. G., & Echeverri Sánchez, A. (2021). Avocado cv. Hass Needs Water Irrigation in Tropical Precipitation Regime: Evidence from Colombia. Water, 13(3), 358. https://doi.org/10.3390/w13030358; Erdil, A., & Arcaklioglu, E. (2013). The prediction of meteorological variables using artificial neural network. Neural Computing and Applications, 22(7–8), 1677–1683. https://doi.org/10.1007/s00521-012-1210-0; ESA. (2023). Sentinel-2: Descripción de la misión. Recuperado de: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi; Escoto Castillo, A., Sánchez Peña, L., & Gachuz Delgado, S. (2017). Trayectorias Socioeconómicas Compartidas (SSP): nuevas maneras de comprender el cambio climático y social. Estudios Demográficos y Urbanos, 32(3), 669–693. https://doi.org/10.24201/edu.v32i3.1684; Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016; Fan, H., Si, Q., Dong, W., Lu, G., & Liu, X. (2023). Land Use Change and Landscape Ecological Risk Prediction in Urumqi under the Shared Socio-Economic Pathways and the Representative Concentration Pathways (SSP-RCP) Scenarios. Sustainability (Switzerland), 15(19). https://doi.org/10.3390/su151914214; FAO. (2023). Listos para el cambio: Adaptando la producción de aguacate al cambio climático. Informe Técnico.; FAOSTAT. (2023). Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#home (ultimo acceso: 16 de abril de 2023).; Feng, A., Zhou, J., Vories, E. D., Sudduth, K. A., & Zhang, M. (2020). Yield estimation in cotton using UAV-based multi-sensor imagery. Biosystems Engineering, 193, 101–114. https://doi.org/10.1016/j.biosystemseng.2020.02.014; Feng, S., Hao, Z., Zhang, X., & Hao, F. (2021). Changes in climate-crop yield relationships affect risks of crop yield reduction. Agricultural and Forest Meteorology, 304–305. https://doi.org/10.1016/j.agrformet.2021.108401; Feng, W., Qi, S., Heng, Y., Zhou, Y., Wu, Y., Liu, W., He, L., & Li, X. (2017). Canopy vegetation indices from in situ hyperspectral data to assess plant water status of winter wheat under powdery mildew stress. Frontiers in Plant Science, 8(July), 1–12. https://doi.org/10.3389/fpls.2017.01219; Feng, X., Park, D. S., Walker, C., Peterson, A. T., Merow, C., & Papeş, M. (2019). A checklist for maximizing reproducibility of ecological niche models. Nature Ecology & Evolution, 3(10), 1382–1395. https://doi.org/10.1038/s41559-019-0972-5; Ferro, M. V., Catania, P., Miccichè, D., Pisciotta, A., Vallone, M., & Orlando, S. (2023). Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images. Biosystems Engineering, 231, 36–56. https://doi.org/10.1016/j.biosystemseng.2023.06.001; Fick, S.E. and Hijmans, R.J. (2017) WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086; Figueroa-Figueroa, D. K., Francisco Ramírez-Dávila, J., Antonio-Némiga, X., & González Huerta, A. (2020). Mapping of avocado in the south of the state of Mexico by digital image processing sentinel-2. Revista Mexicana Ciencias Agrícolas, 11(4), 865–879. https://www.scielo.org.mx/pdf/remexca/v11n4/2007-0934-remexca-11-04-865-en.pdf; Filgueiras, R., Neto, F., Pereira, S. B., Lima, A. A., & Santos, J. A. (2022). Evaluating the accuracy of global climate datasets for agricultural studies. Environmental Research, 202, 111704. DOI:10.1016/j.envres.2022.111704; Filgueiras, R., Venancio, L. P., Aleman, C. C., & da Cunha, F. F. (2022). Comparison and calibration of terraclimate climatological variables over the Brazilian territory. Journal of South American Earth Sciences Volume 117. https://doi.org/10.1016/j.jsames.2022.103882; Flynn KC., Frazier AE., Admas S. (2020). Performance of chlorophyllprediction indices for Eragrostis tef at Sentinel-2 MSI and Landsat-8 OLI spectral resolutions. Precis Agric:1–15. https://doi. org/ 10. 1007/ s11119- 020- 09708-4; Forman, R. T. T. & Godron, M. (1986): Landscape Ecology, John Wiley and Sons, Nueva York.; Franco, M., Leos, J., Salas, J., Acosta, M., & García, A. (2018). Análisis de costos y competitividad en la producción de aguacate en Michoacán, México. Revista Mexicana de Ciencias Agrícolas, 9(2), 391–403. http://www.scielo.org.mx/pdf/remexca/v9n2/2007-0934-remexca-9-02-391.pdf; Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451; Gaitan, S. B., & Ríos, M. D. (2020). Socio-economic and technological typology of avocado cv. Hass farms from Antioquia (Colombia). Ciência Rural, 50(7). https://doi.org/10.1590/0103-8478cr20190188; Gallardo-Salazar, J. L., & Pompa-García, M. (2020). Detecting individual tree attributes and multispectral indices using unmanned aerial vehicles: Applications in a pine clonal orchard. Remote Sensing, 12(24), 1–22. https://doi.org/10.3390/rs12244144; Gao, Y., Marpu, P., & Morales Manila, L. M. (2014). Object based image analysis for the classification of the growth stages of Avocado crop, in Michoacán State, Mexico. Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V, 9263, 92630P. https://doi.org/10.1117/12.2068966; García, J. S. A., Hurtado-Salazar, A., & Ceballos-Aguirre, N. (2021). Current overview of hass avocado in Colombia. Challenges and opportunities: A review. Ciencia Rural, 51(8). https://doi.org/10.1590/0103-8478cr20200903; García-Fernández, M., Sanz-Ablanedo, E., & Rodríguez-Pérez, J. R. (2021). High-resolution drone-acquired RGB imagery to estimate spatial grape quality variability. Agronomy, 11(4). https://doi.org/10.3390/agronomy11040655; Gazoni, E., & Clark, C. (2024). openpyxl - A Python library to read/write Excel 2010 xlsx/xlsm files.; Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451–2471. https://doi.org/10.1162/089976600300015015; Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves¶. Photochemistry and Photobiology, 74(1), 38. https://doi.org/10.1562/0031-8655(2001)0742.0.co;2; Gitelson, A. A., Vina, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5), 2–7.; Gómez-Camperos, J., Jaramillo, H., & Guerrero-Gómez, G. (2021). Técnicas de procesamiento digital de imágenes para detección de plagas y enfermedades en cultivos: una revisión. Ingeniería y Competitividad, 24(1). https://doi.org/10.25100/iyc.v24i1.10973; Gong, L., Li, X., Wu, S., & Jiang, L. (2022). Prediction of potential distribution of soybean in the frigid region in China with MaxEnt modeling. Ecological Informatics, 72(April), 101834. https://doi.org/10.1016/j.ecoinf.2022.101834; Goyal, M.K., Shivam, G., Sarma, A.K. (2019). Spatial homogeneity of extreme precipitation indices using fuzzy clustering over northeast India. Natural Hazards. 98, 559–574. https://doi.org/10.1007/s11069-019-03715-z; Grüter, R., Trachsel, T., Laube, P., & Jaisli, I. (2022). Expected global suitability of coffee, cashew and avocado due to climate change. PLOS ONE, 17(1), e0261976. https://doi.org/10.1371/journal.pone.0261976; H. Q. Liu and A. Huete, “A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 2, 1995, pp. 457-465. http://dx.doi.org/10.1109/36.377946; H2O.ai. (2020). H2O AutoML: Scalable Automatic Machine Learning. https://www.h2o.ai/products/h2o-automl/; Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. https://doi.org/10.1016/j.rse.2003.12.013; Han, Y., Bai, S.H., Trueman, S.J., Khoshelham, K., Kämper, W. (2023). Predicting the ripening time of ‘Hass’ and ‘Shepard’ avocado fruit by hyperspectral imaging. Precis Agric. https://doi.org/10.1007/s11119-023-10022-y; Hanberry, B. B. (2023). Global Climate Classification and Comparison to Mid-Holocene and Last Glacial Maximum Climates, with Added Aridity Information and a Hypertropical Class. 552–569. https://doi.org/10.3390/earth4030029; Haralick, R. M., Dinstein, I., & Shanmugam, K. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3(6), 610–621. https://doi.org/10.1109/TSMC.1973.4309314; Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2; Hastie, T., Tibshirani, R. & Friedman, J.H. (2009) The elementsof statistical learning: data mining, inference, and prediction,2nd edn. Springer-Verlag, New York.; Hatfield, J. L., & Prueger, J. H. (2010). Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing, 2(2), 562–578.; Hausfather, Z., & Peters, G. P. (2020). Emissions – the ‘business as usual’ story is misleading. Nature, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3; Hebbar, K. B., Abhin, P. S., Jose, V. S., Neethu, P., Santhosh, A., Shil, S., & Vara Prasad, P. V. (2022). Predicting the Potential Suitable Climate for Coconut (Cocos nucifera L.) Cultivation in India under Climate Change Scenarios Using the MaxEnt Model. Plants, 11(6). https://doi.org/10.3390/plants11060731; Hegyi, B., Stackhouse, P. W., Taylor, P., & Patadia, F. (2024). NASA POWER: Providing Present and Future Climate Services Based on NASA Data for the Energy, Agricultural, and Sustainable Buildings Communities. NASA Technical Reports Server.; Hernández, C. M., Faye, A., Ly, M. O., Stewart, Z. P., Vara Prasad, P. V., Bastos, L. M., Nieto, L., Carcedo, A. J. P., & Ciampitti, I. A. (2021). Soil and climate characterization to define environments for summer crops in Senegal. Sustainability (Switzerland), 13(21). https://doi.org/10.3390/su132111739; Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz-Sabater, J. & Dee, D. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. https://doi.org/10.1002/qj.3803; Hewage, P., Trovati, M., Pereira, E., & Behera, A. (2021). Deep learning-based effective fine-grained weather forecasting model. Pattern Analysis and Applications, 24(1), 343–366. https://doi.org/10.1007/s10044-020-00898-1; Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965-1978. http://dx.doi.org/10.1002/joc.1276; Holden, N. M., & Brereton, A. J. (2004). Definition of agroclimatic regions in Ireland using hydro-thermal and crop yield data. Agricultural and Forest Meteorology, 122(3–4), 175–191. https://doi.org/10.1016/j.agrformet.2003.09.010; Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. www.pnas.orgcgidoi10.1073pnas.0701890104; Hribar, J. & Vidrih, R. (2015). Impacts of climate change on fruit physiology and quality. In: Proceedings. 50th Croatian and 10th International Symposium on Agriculture. Opatija. Croatia. 42- 45.; Hughes, D. A., Kingston, D. G., & Todd, M. C. (2011). Uncertainty in water resources availability in the Okavango River basin as a result of climate change. Hydrology and Earth System Sciences, 15(3), 931–941. https://doi.org/10.5194/hess-15-931-2011; Hunt ML., Blackburn GA., Carrasco L., Redhead JW., Rowland CS. (2019). High-resolution wheat yield mapping using Sentinel-2. Remote Sens Environ 233:11410. https://doi. org/ 10. 1016/j. rse. 2019. 111410; Hunt, E. R., Daughtry, C. S. T., Eitel, J. U. H., & Long, D. S. (2011). Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agronomy Journal, 103(4), 1090–1099. https://doi.org/10.2134/agronj2010.0395; Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95.; ICA. (2023). Instituto Colombiano Agropecuario – ICA. Consulta realizada al Programa de Registros Vegetales de Exportación. Dirección Técnica de Epidemiología y Vigilancia Fitosanitaria.; ICONTEC. (2018). Frutas frescas. Aguacate variedad Hass. Especificaciones. Instituto Colombiano de Normas Técnicas y Certificación, 571, 15.; IDEAM - UNAL. (2018). Variabilidad Climática y el cambio climático en Colombia. Bogotá, D.C., 1–53. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/023778/variabilidad.pdf. (último acceso: junio de 2023).; IFAD. (2024). Republic of Colombia: Country strategic opportunities programme. September, 44–45. https://webapps.ifad.org/members/eb/141/docs/EB-2024-OR-3.pdf; IGAC. (2017). Manual de procedimientos - Generación de Ortofotomosaico. Grupo interno de trabajo generación de datos y productos cartográficos. 11 pp.; Imran, A. B., Khan, K., Ali, N., Ahmad, N., Ali, A., & Shah, K. (2020). Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass. Global Journal of Environmental Science and Management, 6(1), 97–108. https://doi.org/10.22034/gjesm.2020.01.08; Iniyan, S., Akhil Varma, V., & Teja Naidu, C. (2023). Crop yield prediction using machine learning techniques. Advances in Engineering Software, 175(September 2022), 103326. https://doi.org/10.1016/j.advengsoft.2022.103326; Inoue, Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming–a review. In Soil Science and Plant Nutrition (Vol. 66, Issue 6, pp. 798–810). Taylor and Francis Ltd. https://doi.org/10.1080/00380768.2020.1738899; IPCC. (2013). What is a GCM? https://www.ipcc-data.org/guidelines/pages/gcm_guide.html; Iyigun, C., Türkeş, M., Batmaz, I., Yozgatligil, C., Purutçuoǧlu, V., Koç, E. K., & Öztürk, M. Z. (2013). Clustering current climate regions of Turkey by using a multivariate statistical method. Theoretical and Applied Climatology, 114(1–2), 95–106. https://doi.org/10.1007/s00704-012-0823-7; Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S., … Rosenzweig, C. (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873–885. https://doi.org/10.1038/s43016-021-00400-y; Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3, 150–164. https://doi.org/10.1016/j.ijin.2022.09.004; Jeong, H., Bhattarai, R., & Hwang, S. (2019). How climate scenarios alter future predictions of field-scale water and nitrogen dynamics and crop yields. Journal of Environmental Management, 252. https://doi.org/10.1016/j.jenvman.2019.109623; Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2021). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. In Current Opinion in Biotechnology (Vol. 70, pp. 15–22). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2020.09.003; Jurišić, M., Radočaj, D., Plaščak, I., Galić, S. D., & Petrović, D. (2022). the Evaluation of the Rgb and Multispectral Camera on the Unmanned Aerial Vehicle (Uav) for the Machine Learning Classification of Maize. Poljoprivreda, 28(2), 74–80. https://doi.org/10.18047/poljo.28.2.10; K. Boitt, M., N. Mundia, harles, & Pellikka, P. (2014). Modelling the Impacts of Climate Change on Agro-Ecological Zones – a Case Study of Taita Hills, Kenya. Universal Journal of Geoscience, 2(6), 172–179. https://doi.org/10.13189/ujg.2014.020602; Kaplan, G., Fine, L., Lukyanov, V., Manivasagam, V. S., Malachy, N., Tanny, J., & Rozenstein, O. (2021). Estimating Processing Tomato Water Consumption, Leaf Area Index, and Height Using Sentinel-2 and VENµS Imagery. Remote Sensing, 13(6). https://doi.org/10.3390/rs13061046; Karger, D. N., Schmatz, D. R., Dettling, G., & Zimmermann, N. E. (2020). High resolution monthly precipitation and temperature timeseries for the period 2006–2100, Sci. Data, 7, 248. https://doi.org/10.1038/s41597-020-00587-y; Kasimati, A., Espejo-García, B., Darra, N., & Fountas, S. (2022). Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning. Sensors, 22(9). https://doi.org/10.3390/s22093249; Kganyago, M., Adjorlolo, C., Mhangara, P., & Tsoeleng, L. (2024). Optical remote sensing of crop biophysical and biochemical parameters: An overview of advances in sensor technologies and machine learning algorithms for precision agriculture. Computers and Electronics in Agriculture, 218, 108730. https://doi.org/10.1016/j.compag.2024.108730; Khaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., Seman, I. A., & Onwude, D. I. (2018). Early detection of diseases in plant tissue using spectroscopy–applications and limitations. In Applied Spectroscopy Reviews (Vol. 53, Issue 1, pp. 36–64). Taylor and Francis Inc. https://doi.org/10.1080/05704928.2017.1352510; Khalil, T., Asad, S. A., Khubaib, N., Baig, A., Atif, S., Umar, M., Kropp, J. P., Pradhan, P., & Baig, S. (2021). Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent. AIMS Agriculture and Food, 6(2), 663–676. https://doi.org/10.3934/AGRFOOD.2021039; Kiil, L., Houmøller, M., & Hesselberg, T. (2023). General Circulation Models (GCMs). Https://www.Climate-Encyclopedia.Com/Opslag/Liste.; Kiilu, S. N. (2021). Time Series Analysis of Rainfall and Temperature in Rwanda using ARIMA Model Ha wnmmmn. June. https://library.nexteinstein.org/wp-content/uploads/2023/03/AIMSRW21_stephen_kiilu_essay.pdf; Kim, S., Hong, S., Joh, M., & Song, S.-K. (2017).Deeprain: convLstm network for precipitation.; Kior, A., Sukhov, V., & Sukhova, E. (2021). Application of reflectance indices for remote sensing of plants and revealing actions of stressors. Photonics, 8(12).; Klakotskaya, N., Laurson, P., Libek, A. V., & Kikas, A. (2023). Assessment of the Aim Characteristics of Strawberry (Fragaria × Ananassa) Cultivars in Estonia by Using the K-Means Clustering Method. Horticulturae, 9(1). https://doi.org/10.3390/horticulturae9010104; Kong, Z., Cui, Y., Xia, Z., & Lv, H. (2019). Convolution and Long Short-Term Memory Hybrid Deep Neural Networks for Remaining Useful Life Prognostics. Applied Sciences, 9(19), 4156. https://doi.org/10.3390/app9194156; Kottaridi, K., Milionis, A., Demopoulos, V., Nikolaidis, V., Tsalgatidou, P. C., Tsafouros, A., Kotsiras, A., & Vithoulkas, A. (2024). Comparative analysis of machine learning classification algorithms for predicting olive anthracnose disease. Journal of Autonomous Intelligence, 7(5), 1466. https://doi.org/10.32629/jai.v7i5.1466; Kozjek, K., Dolinar, M., & Skok, G. (2017). Objective climate classification of Slovenia. International Journal of Climatology, 37(March), 848–860. https://doi.org/10.1002/joc.5042; Kożuch, A., Cywicka, D., & Adamowicz, K. (2023). A Comparison of Artificial Neural Network and Time Series Models for Timber Price Forecasting. Forests, 14(2). https://doi.org/10.3390/f14020177; Krishna, M. V., Swaroopa, K., SwarnaLatha, G., & Yasaswani, V. (2023). Crop yield prediction in India based on mayfly optimization empowered attention-bi-directional long short-term memory (LSTM). Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-16807-7; Kuska, M. T., & Mahlein, A.-K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology, 152(4), 987–992. https://doi.org/10.1007/s10658-018-1464-1; Kyratzis, A. C., Skarlatos, D. P., Menexes, G. C., Vamvakousis, V. F., & Katsiotis, A. (2017). Assessment of vegetation indices derived by UAV imagery for durum wheat phenotyping under a water limited and heat stressed Mediterranean environment. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01114; Lahav, E., & Trochoulias, T. (1982). The Effect of Temperature on Growth and Dry Matter Production of Avocado Plants. In Aust. J. Agric. Res (Vol. 33).; Lai, Y., & Dzombak, D. A. (2020). Use of the Autoregressive Integrated Moving Average (ARIMA) Model to Forecast Near-Term Regional Temperature and Precipitation. Weather and Forecasting, 35, 959–976. https://doi.org/10.1175/WAF-D-19; Lang, S., Blaschke, T., 2007. Landschaftsanalyse mit GIS. Ulmer, Stuttgart, 404 pp.; Ledell, E., & Poirier, S. (2020). H2O AutoML: Scalable automatic machine learning. 7th ICML Workshop on Automated Machine Learning, 1–16. https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf; Lee, T., Shin, J. Y., Kim, J. S., & Singh, V. P. (2020). Stochastic simulation on reproducing long-term memory of hydroclimatological variables using deep learning model. Journal of Hydrology, 582. https://doi.org/10.1016/j.jhydrol.2019.124540; Leng, G., & Huang, M. (2017). Crop yield response to climate change varies with crop spatial distribution pattern. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01599-2; Leng, G., Huang, M. (2017). Crop yield response to climate change varies with crop spatial distribution pattern. Sci Rep. 7. https://doi.org/10.1038/s41598-017-01599-2; León, R., Díaz, M., & Rodríguez, L. (2020). Management of an artificial vision system for the detection of damage caused by pests in avocado crop using a drone. Revista Ciencia y Tecnología, 16(4), 145–151. https://doi.org/10.17268/rev.cyt.2020.04.14; León-Rueda, W. A., León, C., Caro, S. G.-, & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167. https://doi.org/10.1007/s40858-021-00460-2; Li, H. Q., Liu, X. H., Wang, J. H., Xing, L. G., & Fu, Y. Y. (2019). Maxent modelling for predicting climate change effects on the potential planting area of tuber mustard in China. Journal of Agricultural Science, 157(5), 375–381. https://doi.org/10.1017/S0021859619000686; Li, M., Shamshiri, R. R., Weltzien, C., & Schirrmann, M. (2022). Crop Monitoring Using Sentinel-2 and UAV Multispectral Imagery: A Comparison Case Study in Northeastern Germany. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174426; Liang, S., & Wang Jindi. (2020). Chapter 15 - Estimate of vegetation production of terrestrial ecosystem. In Liang Shunlin & Wang Jindi (Eds.), Advanced Remote Sensing (2nd ed., pp. 581–620).; Lipovac, A., Bezdan, A., Moravčević, D., Djurović, N., Ćosić, M., Benka, P., & Stričević, R. (2022). Correlation between Ground Measurements and UAV Sensed Vegetation Indices for Yield Prediction of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Water (Switzerland), 14(22). https://doi.org/10.3390/w14223786; Liu, S., Peng, Y., Xia, Z., Hu, Y., Wang, G., Zhu, A. X., & Liu, Z. (2019). The Ga-BPNN-based evaluation of cultivated land quality in the PSR framework using Gaofen-1 satellite data. Sensors (Switzerland), 19(23), 1–14. https://doi.org/10.3390/s19235127; Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697. https://doi.org/10.1104/pp.112.208298; Lobell, D.B., Thau, D., Seifert, C., Engle, E. & Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sens Environ. 164, 324–333. https://doi.org/10.1016/j.rse.2015.04.021; Lopes, A.R., Marcolin, J., Johann, J.A., Vilas Boas & M.A., Schuelter, A.R. (2019). Identification of homogeneous rainfall zones during grain crops in Paraná, Brazil. Engenharia Agrícola. 39, 707–714. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n6p707-714/2019; López, D. (2020). El aguacate continúa ocupando el primer lugar de las exportaciones hortofrutícolas colombianas. Frutas y hortalizas. Revistas de la Asociación Hortifrutícola de Colombia. Asohofrucol. Enero – Febrero 2021. Pp 20 -21. https://www.asohofrucol.com.co/img/pdfrevistas/48Balance%20del.pdf; Lussem, U., Bolten, A., Gnyp, M. L., Jasper, J., & Bareth, G. (2018). Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in Grassland. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3), 1215–1219. https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018; Ma, C., Liu, M., Ding, F., Li, C., Cui, Y., Chen, W., Wang, Y. (2022). Wheat growth monitoring and yield estimation based on remote sensing data assimilation into the SAFY crop growth model. Sci Rep. 12. https://doi.org/10.1038/s41598-022-09535-9; Ma, S., Zhou, Y., Gowda, P. H., Dong, J., Zhang, G., Kakani, V. G., Wagle, P., Chen, L., Flynn, K. C., & Jiang, W. (2019). Application of the water-related spectral reflectance indices: A review. Ecological Indicators, 98, 68–79. https://doi.org/10.1016/j.ecolind.2018.10.049; Madonsela, S., Cho, M. A., Naidoo, L., Main, R., & Majozi, N. (2023). Exploring the utility of Sentinel-2 for estimating maize chlorophyll content and leaf area index across different growth stages. Journal of Spatial Science, 68(2), 339–351. https://doi.org/10.1080/14498596.2021.2000898; MADR. (2019). Comienza el ordenamiento de la producción de aguacate Hass. Disponible en: https://www.minagricultura.gov.co/noticias/Paginas/Comienza-el-ordenamiento-de-la-producci%C3%B3n-de-aguacate-hass.aspx. (Último acceso: abril de 2023).; Mahmud, S., Sumana, F. M., Mohsin, M., & Khan, Md. H. R. (2022). Redefining homogeneous climate regions in Bangladesh using multivariate clustering approaches. Natural Hazards, 111(2), 1863–1884. https://doi.org/10.1007/s11069-021-05120-x; Mahsin, M., Akhter, Y., & Begum, M. (2012a). Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis. Journal of Mathematical Modelling and Application, 1(5), 67–73.; Malachy, N., Zadak, I., & Rozenstein, O. (2022). Comparing Methods to Extract Crop Height and Estimate Crop Coefficient from UAV Imagery Using Structure from Motion. In Remote Sensing (Vol. 14, Issue 4). MDPI. https://doi.org/10.3390/rs14040810; Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. In Sustainability (Switzerland) (Vol. 13, Issue 3, pp. 1–21). MDPI. https://doi.org/10.3390/su13031318; Mall, R. K., Gupta, A., & Sonkar, G. (2017). Effect of Climate Change on Agricultural Crops. In Current Developments in Biotechnology and Bioengineering: Crop Modification, Nutrition, and Food Production (pp. 23–46). Elsevier Inc. https://doi.org/10.1016/B978-0-444-63661-4.00002-5; Manideep, A. P. S., & Kharb, S. (2022). A Comparative Analysis of Machine Learning Prediction Techniques for Crop Yield Prediction in India. Turkish Journal of Computer and Mathematics Education, 13(02), 120–133.; Manochandar, S., Punniyamoorthy, M., & Jeyachitra, R. K. (2020). Development of new seed with modified validity measures for k-means clustering. Computers and Industrial Engineering, 141. https://doi.org/10.1016/j.cie.2020.106290; Marino, S., Cocozza, C., Tognetti, R., Alvino, A. (2015). Use of proximal sensing and vegetation indexes to detect the inefficient spatial allocation of drip irrigation in a spot area of tomato field crop. Precision Agriculture (2015) 16:613–629. Springer Science+Business Media New York. http://dx.doi.org/10.1007/s11119-015-9396-7; Martinez, A. & J. Serna. (2018). Validación de las estimaciones de precipitación con CHIRPS e IRE/ IDEAM. Nota Técnica del Ideam. IDEAM – METEO.002. 25 pp. http://bart.ideam.gov.co/wrfideam/new_modelo/DOCUMENTOS/2018/NT_IDEAM-002-2018.pdf; Martínez-Acosta, L., Medrano-Barboza, J. P., López-Ramos, Á., López, J. F. R., & López-Lambraño, Á. A. (2020). SARIMA approach to generating synthetic monthly rainfall in the Sinú river watershed in Colombia. Atmosphere, 11(6), 1–16. https://doi.org/10.3390/atmos11060602; McKinney, W. (2011). pandas: a Foundational Python Library for Data Analysis and Statistics. Python for High Performance and Scientific Computing, December, 1–9.; Mejiá-Cabrera, H. I., Flores, J. N., Sigueñas, J., Tuesta-Monteza, V., & Forero, M. G. (2020). Identification of Lasiodiplodia Theobromae in avocado trees through image processing and machine learning. Proc. SPIE 11510, Applications of Digital Image Processing XLIII, 115102F. https://doi.org/10.1117/12.2567322; Mercado Polo, D., Pedraza Caballero, L., & Martínez Gómez, E. (2015). Comparación de Redes Neuronales aplicadas a la predicción de Series de Tiempo. Prospectiva, 13(2), 88. https://doi.org/10.15665/rp.v13i2.491; Mesa Sánchez, Ó. J., & Peñaranda Vélez, V. M. (2015). Complejidad de la estructura espacio-temporal de la precipitación. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 304. https://doi.org/10.18257/raccefyn.196; Michel, J., Vinasco-salinas, J., Inglada, J., Hagolle, O., Michel, J., Vinasco-salinas, J., Inglada, J., & S, O. H. S. (2022). SEN2VEN µ S , a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms To cite this version : HAL Id : hal-03904203. 0–17.; Milagro-Pérez, J. and. (2020). Copernicus: the European Earth Observation programme. 1–7.; Miranda, C. (2021). Modelización de Series Temporales modelos clásicos y SARIMA. Universidad de Granada. https://masteres.ugr.es/estadistica-aplicada/sites/master/moea/public/inline-files/TFM_MIRANDA_CHINLLI_CARLOS.pdf; Misra, G., Cawkwell, F., & Wingler, A. (2020). Status of phenological research using sentinel-2 data: A review. Remote Sensing, 12(17), 10–14. https://doi.org/10.3390/RS12172760; Mokria, M., Gebrekirstos, A., Said, H., Hadgu, K., Hagazi, N., Dubale, W., & Bräuning, A. (2022). Fruit weight and yield estimation models for five avocado cultivars in Ethiopia. Environmental Research Communications, 4(7). https://doi.org/10.1088/2515-7620/ac81a4; Moriya, É. A. S., Imai, N. N., Tommaselli, A. M. G., Honkavaara, E., & Rosalen, D. L. (2023). Design of Vegetation Index for Identifying the Mosaic Virus in Sugarcane Plantation: A Brazilian Case Study. Agronomy, 13(6).; Muñoz Herrera, W., Bedoya, O. F., & Rincón, M. E. (2020). Aplicación de redes neuronales para la reconstrucción de series de tiempo de precipitación y temperatura utilizando información satelital. Revista EIA, 17(34). https://doi.org/10.24050/reia.v17i34.1292; Mwinuka, P. R., Mbilinyi, B. P., Mbungu, W. B., Mourice, S. K., Mahoo, H. F., & Schmitter, P. (2021). The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L). Agricultural Water Management, 245. https://doi.org/10.1016/j.agwat.2020.106584; Naeem, M. B., & Jahan, S. (2023). Unveiling the Thirst: Revealing the Water Requirements of Gujrat’s Thriving Crops using CROPWAT 8.0. Journal of Plant and Environment, 5(2), 123–134. https://doi.org/10.33687/jpe.005.02.4983; Narkhede, U. P., & Adhiya, K. P. (2014). Evaluation of Modified K-Means Clustering Algorithm in Crop Prediction. In International Journal of Advanced Computer Research.; Narmilan, A., Gonzalez, F., Salgadoe, A. S. A., Kumarasiri, U. W. L. M., Weerasinghe, H. A. S., & Kulasekara, B. R. (2022). Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote Sensing, 14(5). https://doi.org/10.3390/rs14051140; Narvekar, M., Fargose, P., & Mukhopadhyay, D. (2017). Weather forecasting using ANN with error backpropagation algorithm. Advances in Intelligent Systems and Computing, 468, 629–639. https://doi.org/10.1007/978-981-10-1675-2_62; NASA Applied Sciences. (2021). NASA Agriculture 2020 Annual Summary. Applied Sciences Program.; Navrozidis, I., Pantazi, X. E., Lagopodi, A., Bochtis, D., & Alexandridis, T. K. (2023). Application of Machine Learning for Disease Detection Tasks in Olive Trees Using Hyperspectral Data. Remote Sensing, 15(24). https://doi.org/10.3390/rs15245683; Nedkov, R. (2017). Normalized differential greenness index for vegetation dynamics assessment. Comptes Rendus de L’Academie Bulgare Des Sciences, 70(8), 1143–1146.; Nketiah EA, Chenlong L, Yingchuan J, Aram SA. (2023). Recurrent neural network modeling of multivariate time series and its application in temperature forecasting. PLoS ONE 18(5): e0285713. https://doi.org/10.1371/journal.pone.0285713; NOAA. (2022). National Centers for Environmental Information, Monthly Global Climate Report for Annual 2022, published online January 2023, retrieved on May 8, 2023 from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213. Último acceso: diciembre de 2023.; Nusrat, A., Gabriel, H. F., Haider, S., Ahmad, S., Shahid, M., & Jamal, S. A. (2020). Application of machine learning techniques to delineate homogeneous climate zones in river basins of Pakistan for hydro-climatic change impact studies. Applied Sciences (Switzerland), 10(19), 1–26. https://doi.org/10.3390/app10196878; O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016; Olaniyi, O. E. ., Adegbola, O. O. ., & Adefurin, O. M. (2020). Performance of Landsat 8 and Sentinel 2A in vegetation cover mapping of Ise Forest Reserve , Southwest Nigeria.; Pandas Documentation. (2024). pandas.DataFrame.to_excel. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html; Panek, E., Gozdowski, D., Stępień, M., Samborski, S., Ruciński, D., & Buszke, B. (2020). Within-field relationships between satellite-derived vegetation indices, grain yield and spike number of winter wheat and triticale. Agronomy, 10(11), 1–18. https://doi.org/10.3390/agronomy10111842; Pansera, W., Gomes, B., Vilas – Boas, M., Queiroz., Mello & E.L, Sampaio. (2015). Regionalization of monthly precipitation values in the state of Paraná (Brazil) by using multivariate clustering algorithms. Irriga 20(3):473-489. http://dx.doi.org/10.15809/irriga.2015v20n3p473; Pecchi, M., Marchi, M., Burton, V., Giannetti, F., Moriondo, M., Bernetti, I., Bindi, M., & Chirici, G. (2019). Species distribution modelling to support forest management. A literature review. Ecological Modelling, 411(May). https://doi.org/10.1016/j.ecolmodel.2019.108817; Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., … others. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.; Peña, L., Rentería, V., Velásquez, C., Ojeda, M. L., & Barrera, E. (2019). Absorbancia y reflectancia de hojas de Ficus contaminadas con nanopartículas de plata. In Revista Mexicana de Física (Vol. 65).; Pérez-Bueno, M. L., Pineda, M., Vida, C., Fernández-Ortuño, D., Torés, J. A., de Vicente, A., Cazorla, F. M., & Barón, M. (2019). Detection of white root rot in avocado trees by remote sensing. Plant Disease, 103(6), 1119–1125. https://doi.org/10.1094/PDIS-10-18-1778-RE; Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510. https://doi.org/https://doi.org/10.1016/j.tree.2005.05.011; Phillips, S. B., Aneja, V. P., Kang, D., & Arya, S. P. (2006). Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. International Journal of Global Environmental Issues, 6(2–3), 231–252. https://doi.org/10.1016/j.ecolmodel.2005.03.026; Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2005.03.026; Pinto, J., Rueda-Chacón, H., & Arguello, H. (2019). Classification of Hass avocado (persea americana mill) in terms of its ripening via hyperspectral images. TecnoLógicas, 22(45), 109–128. https://doi.org/10.22430/22565337.1232; Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/https://doi.org/10.1016/0034-4257(94)90134-1; Radočaj, D., Šiljeg, A., Plaščak, I., Marić, I., & Jurišić, M. (2023). A Micro-Scale Approach for Cropland Suitability Assessment of Permanent Crops Using Machine Learning and a Low-Cost UAV. Agronomy, 13(2). https://doi.org/10.3390/agronomy13020362; Rahman, M. M., Robson, A., & Brinkhoff, J. (2022). Potential of Time-Series Sentinel 2 Data for Monitoring Avocado Crop Phenology. Remote Sensing, 14(23). https://doi.org/10.3390/rs14235942; Rahman, M., Robson, A., Salgadoe, S., Walsh, K., & Bristow, M. (2020). Exploring the Potential of High Resolution Satellite Imagery for Yield Prediction of Avocado and Mango Crops. 3, 154. https://doi.org/10.3390/proceedings2019036154; Raju, K. S., & Kumar, D. N. (2020). Review of approaches for selection and ensembling of GCMS. Journal of Water and Climate Change, 11(3), 577–599. https://doi.org/10.2166/wcc.2020.128; Ramírez, J., Castañeda, D. & J. Morales J. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Rev. Ceres, Viçosa, 64(1): 050-061.; Ramírez-Gil, J. G., & Morales-Osorio, J. G. (2018). Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv. Hass under ENSO phenomena (El Niño – La Niña). Scientia Horticulturae, 240, 273–280. https://doi.org/10.1016/j.scienta.2018.06.047; Ramírez-Gil, J. G., & Morales-Osorio, J. G. (2021). Diseases and disorders associated with different stages of crop development and factors that determine the incidence in Hass avocado crops. Revista Ceres, 68(1), 071–082. https://doi.org/10.1590/0034-737X202168010009; Ramírez-Gil, J. G., & Peterson, A. T. (2019). Current and potential distributions of the most important diseases affecting Hass avocado in Antioquia Colombia. Journal of Plant Protection Research, 59(2). https://doi.org/10.24425/jppr.2019.129288; Ramírez-Gil, J. G., Gilchrist Ramelli, E., & Morales Osorio, J. G. (2017). Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Protection, 101, 103–115. https://doi.org/10.1016/j.cropro.2017.07.023; Ramírez-Gil, J. G., Henao-Rojas, J. C., & Morales-Osorio, J. G. (2020). Mitigation of the adverse effects of the El Niño (El Niño, La Niña) southern oscillation (ENSO) phenomenon and the most important diseases in Avocado cv. hass crops. Plants, 9(6). https://doi.org/10.3390/plants9060790; Ramírez-Gil, J. G., Henao-Rojas, J. C., Diaz-Diez, C. A., Peña-Quiñones, A. J., León, N., Parra-Coronado, A., & Bernal-Estrada, J. A. (2023). Phenological variations of avocado cv. Hass and their relationship with thermal time under tropical conditions. Heliyon, 9(9), e19642. https://doi.org/10.1016/j.heliyon.2023.e19642; Ramirez-Gil, J. G., Lopera, A. A., & Garcia, C. (2023b). Calcium phosphate nanoparticles improve growth parameters and mitigate stress associated with climatic variability in avocado fruit. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18658; Ramírez-Gil, J. G., López, J. H., & Henao-Rojas, J. C. (2019). Causes of Hass Avocado Fruit Rejection in Preharvest, Harvest, and Packinghouse: Economic Losses and Associated Variables. Agronomy, 10(1), 8. https://doi.org/10.3390/agronomy10010008; Ramírez-Gil, J. G., Morales, J. G., & Peterson, A. T. (2018). Potential geography and productivity of “Hass” avocado crops in Colombia estimated by ecological niche modeling. Scientia Horticulturae, 237, 287–295. https://doi.org/10.1016/j.scienta.2018.04.021; Ramírez-Gil, J.G., Castañeda, D.A., Morales, J.G. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Rev. Ceres 61 (1), 050 -061. https://www.scielo.br/j/rceres/a/8VYhGtYxRcr4GHqtTLWdmjP/; Ramírez-Gil, J.G., Cobos, M.E., Jiménez-García, D., Morales-Osorio, J.G., Peterson, A.T., (2019). Current and potential future distributions of Hass avocados in the face of climate change across the Americas. Crop Pasture Sci. 70, 694–708. https://doi.org/10.1071/CP19094; Ramirez-Guerrero, T., Hernandez-Perez, M. I., Tabares, M. S., Marulanda-Tobon, A., Villanueva, E., & Peña, A. (2023). Agroclimatic and Phytosanitary Events and Emerging Technologies for Their Identification in Avocado Crops: A Systematic Literature Review. Agronomy, 13(8), 1976. https://doi.org/10.3390/agronomy13081976; Rasheed, S. U., Muhammad, W., Qaiser, I., & Irshad, M. J. (2021). A Multispectral Pest-Detection Algorithm for Precision Agriculture. Engineering Proceedings, 12(1). https://doi.org/10.3390/engproc2021012046; Reints, J. (2019). Water Management Practices in California ‘Hass’ Avocado: Technologies Adoption and Impact of Soil Water Relations on Leaf Nutrient Concentrations and Yield [UC Riverside]. https://doi.org/10.1111/oik.05768; Ren, H., Zhou, G., & Zhang, F. (2018). Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sensing of Environment, 209(79), 439–445. https://doi.org/10.1016/j.rse.2018.02.068; Reyes, J., Mesa, N. C., & Kondo, T. (2011). Biology of Oligonychus yothersi (McGregor) (Acari: Tetranychidae) on avocado Persea americana Mill. cv. Lorena (Lauraceae). In Caldasia (Vol. 33, Issue 1). http://www.icn.unal.edu.co/; Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009; Robson, A. J., Petty, J., Joyce, D. C., Marques, J. R., & Hofman, P. J. (2016). High resolution remote sensing, GIS and Google Earth for avocado fruit quality mapping and tree number auditing. Acta Horticulturae, 1130, 589–595. https://doi.org/10.17660/ActaHortic.2016.1130.88; Robson, A., Rahman, M. M., & Muir, J. (2017). Using worldview satellite imagery to map yield in avocado (Persea americana): A case study in Bundaberg, Australia. Remote Sensing, 9(12), 1–18. https://doi.org/10.3390/rs9121223; Robson, A., Rahman, M. M., Muir, J., Saint, A., Simpson, C., & Searle, C. (2017). Evaluating satellite remote sensing as a method for measuring yield variability in Avocado and Macadamia tree crops. Advances in Animal Biosciences, 8(2), 498–504. https://doi.org/10.1017/s2040470017000954; Robson, A., Rahman, M., & Muir, J. (2017). Using Worldview Satellite Imagery to Map Yield in Avocado (Persea americana): A Case Study in Bundaberg, Australia. Remote Sensing, 9(12), 1223. https://doi.org/10.3390/rs9121223; Rocha-Arroyo, J. L., Salazar-García, S., Bárcenas, A., González-Durán, I., & Cossio-Vargas, L. (2011). Fenología del aguacate “Hass” en Michoacán. Revista Mexicana de Ciencias Agrícolas. Revista Mexicana de Ciencias Agrícolas, 2(3), 303–316.; Rodríguez, P., Soto, I., Villamizar, J., & Rebolledo, A. (2023). Fatty Acids and Minerals as Markers Useful to Classify Hass Avocado Quality: Ripening Patterns, Internal Disorders, and Sensory Quality. Horticulturae, 9(4). https://doi.org/10.3390/horticulturae9040460; Rodríguez-Almonacid, D. V., Ramírez-Gil, J. G., Higuera, O. L., Hernández, F., & Díaz-Almanza, E. (2023). A Comprehensive Step-by-Step Guide to Using Data Science Tools in the Gestion of Epidemiological and Climatological Data in Rice Production Systems. Agronomy, 13(11), 2844. https://doi.org/10.3390/agronomy13112844; Rogers, C. A., Chen, J. M., Zheng, T., Croft, H., Gonsamo, A., Luo, X., & Staebler, R. M. (2020). The Response of Spectral Vegetation Indices and Solar-Induced Fluorescence to Changes in Illumination Intensity and Geometry in the Days Surrounding the 2017 North American Solar Eclipse. Journal of Geophysical Research: Biogeosciences, 125(10). https://doi.org/10.1029/2020JG005774; Romero - Sánchez, M. (2012). Comportamiento fisiológico del aguacate (Persea americana mill.) Variedad Lorena en la zona de Mariquita, Tolima. Tesis de investigación presentada como requisito parcial para optar al título de Magister en Ciencias Agrarias, Área Fisiología de Cultivos. Universidad Nacional de Colombia. 135 pp. https://repositorio.unal.edu.co/handle/unal/9437; Rosentrater, L. D. (2010). Representing and using scenarios for responding to climate change. Wiley Interdisciplinary Reviews: Climate Change, 1(2), 253–259. https://doi.org/10.1002/wcc.32; Roy, A., & Inamdar, A. B. (2019). Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon, 5(4), e01478. https://doi.org/10.1016/j.heliyon.2019.e01478; Ruiz, P., Monterroso, A., Conde, A., & Sánchez, G. (2022). Breve guía para la selección descarga y aplicación de escenarios de cambio climático para México de acuerdo con los últimos escenarios del IPCC-2022. UACh-UNAMBUAP-UAT-ISF-México, A.C. http://dx.doi.org/10.13140/RG.2.2.20064.15369; Saha, P. P., Zeleke, K., & Hafeez, M. (2019). Impacts of land use and climate change on streamflow and water balance of two sub-catchments of the Murrumbidgee River in South Eastern Australia. In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation (pp. 175–190). Elsevier. https://doi.org/10.1016/B978-0-12-815998-9.00015-4; Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE, 10(3), 1–21. https://doi.org/10.1371/journal.pone.0118432; Salazar-García, S., Isidro, ¶ ;, Luis González-Durán, J., Luis, ;, & Tapia-Vargas, M. (2011). Influencia del clima, humedad del suelo y época de floración sobre la biomasa y composición nutrimental de frutos de aguacate “hass” en Michoacán, México. In Revista Revista Chapingo Serie Horticultura 17(2): 183-194, 2011.; Salazar-García, s.; Cossio-Vargas, l. E.; Lovatt, C. J.; González-Durán, I. J. L.; Pérez-Barraza, m. H. 2006. Crop load affects vegetative growth flushes and shoot age influences irreversible commitment to flowering of 'Hass' avocado. HortScience 41:1541-1546.; Salazar-Reque, I., Arteaga, D., Mendoza, F., Elena Rojas, M., Soto, J., Huaman, S., & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213. https://doi.org/10.1016/j.compag.2023.108246; Salehnia, N., Salehnia, N., Ansari, H., Kolsoumi, S., & Bannayan, M. (2019). Climate data clustering effects on arid and semi-arid rainfed wheat yield: a comparison of artificial intelligence and K-means approaches. International Journal of Biometeorology, 63(7), 861–872. https://doi.org/10.1007/s00484-019-01699-w; Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. In Computers and Electronics in Agriculture (Vol. 72, Issue 1, pp. 1–13). https://doi.org/10.1016/j.compag.2010.02.007; Schepen, A., Everingham, Y., & Wang, Q. J. (2020). An improved workflow for calibration and downscaling of GCM climate forecasts for agricultural applications – A case study on prediction of sugarcane yield in Australia. Agricultural and Forest Meteorology, 291. https://doi.org/10.1016/j.agrformet.2020.107991; Scikit-learn. (2024). Train/test split and cross-validation. https://scikit-learn.org/stable/modules/cross_validation.html; Selvaratnam, S. (2023). Applications of Robust Methods in Spatial Analysis. Journal of Probability and Statistics, 2023, 1–10. https://doi.org/10.1155/2023/1328265; Serrano, A. & Brooks, A. (2019). Who is left behind in global food systems? Local farmers failed by Colombia’s avocado boom. Global Food History, 5(2), 172-190. https://doi.org/10.1177/2514848619838195; Shapira, O., Chernoivanov, S., Neuberger, I., Levy, S., & Rubinovich, L. (2021). Physiological Characterization of Young ‘Hass’ Avocado Plant Leaves Following Exposure to High Temperatures and Low Light Intensity. Plants, 10(8), 1562. https://doi.org/10.3390/plants10081562; Sharifi, A. (2020), Remotely sensed vegetation indices for crop nutrition mapping. J. Sci. Food Agric., 100: 5191-5196. https://doi.org/10.1002/jsfa.10568; Sheridan, S. C. (2002). The redevelopment of a weather-type classification scheme for North America. International Journal of Climatology, 22(1), 51–68. https://doi.org/10.1002/joc.709; Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena, 404. https://doi.org/10.1016/j.physd.2019.132306; Sigurdsson, J., Armannsson, S. E., Ulfarsson, M. O., & Sveinsson, J. R. (2022). Fusing Sentinel-2 and Landsat 8 Satellite Images Using a Model-Based Method. Remote Sensing, 14(13). https://doi.org/10.3390/rs14133224; Siji George, C. G., & Sumathi, B. (2020). Grid search tuning of hyperparameters in random forest classifier for customer feedback sentiment prediction. International Journal of Advanced Computer Science and Applications, 11(9), 173–178. https://doi.org/10.14569/IJACSA.2020.0110920; Silleos, N. G., Alexandridis, T. K., Gitas, I. Z., & Perakis, K. (2006). Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International, 21(4), 21–28. https://doi.org/10.1080/10106040608542399; Sillero, N., Arenas-Castro, S., Enriquez‐Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-Freiría, F., Real, R., & Barbosa, A. M. (2021). Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 456. https://doi.org/10.1016/j.ecolmodel.2021.109671; Simoes, M., Romero-Alvarez, D., Nuñez-Penichet, C., Jiménez, L., & E. Cobos, M. (2020). General Theory and Good Practices in Ecological Niche Modeling: A Basic Guide. Biodiversity Informatics, 15(2), 67–68. https://doi.org/10.17161/bi.v15i2.13376; Soltanikazemi, M., Minaei, S., Shafizadeh-Moghadam, H., & Mahdavian, A. (2022). Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression. Computers and Electronics in Agriculture, 200, 107130. https://doi.org/https://doi.org/10.1016/j.compag.2022.107130; Sommaruga, R., & Eldridge, H. M. (2021). Avocado Production: Water Footprint and Socio-economic Implications. EuroChoices, 20(2), 48–53. https://doi.org/10.1111/1746-692X.12289; Sparks A. (2018). “nasapower: A NASA POWER Global Meteorology, Surface Solar Energy and Climatology Data Client for R.” The Journal of Open Source Software, 3(30), 1035. http://dx.doi.org/10.21105/joss.01035; Sterling, A., & Melgarejo, L. M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology, 156(4), 1063–1076. https://doi.org/10.1007/s10658-020-01961-7; Stöckle, C. O., Marsal, J., & Villar, J. M. (2011). Impact of climate change on irrigated tree fruit production. In Acta Horticulturae (Vol. 889, pp. 41–52). International Society for Horticultural Science. https://doi.org/10.17660/ActaHortic.2011.889.2; Stroppiana, D., Migliazzi, M., Chiarabini, V., Crema, A., Musanti, M., Franchino, C., & Villa, P. (2015). Rice yeld estimation using multispectral data from UAV: A preliminary experiment in northen Italy. 46664–4667.; Su, P., Zhang, A., Wang, J., & Xu, W. (2023). Plausible maize planting distribution under future global change scenarios. Field Crops Research, 302(July), 109079. https://doi.org/10.1016/j.fcr.2023.109079; Tan, P.N., Steinbach, M., Kumar & V. A. Karpatne. (2019). Introduction to Data Mining EBook: Global Edition. Pearson Education. ISBN=9780273775324, Disponible en: https://books.google.com.co/books?id=i8AoEAAAQBAJ. (Último acceso: junio de 2023); Tao, H., Feng, H., Xu, L., Miao, M., Yang, G., Yang, X., & Fan, L. (2020). Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors (Switzerland), 20(4). https://doi.org/10.3390/s20041231; Technology Transfer Program. (2021). NASA Brings Space Technology to Agricultural Applications. NASA.; Tektaş, M. (2010). Weather Forecasting Using ANFIS and ARIMA MODELS. A Case Study for Istanbul. 1, 5–10. http://dx.doi.org/10.5755/j01.erem.51.1.58; Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., & Edmonds, J. A. (2011). RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1), 77–94. https://doi.org/10.1007/s10584-011-0151-4; Timsina, J., & Humphreys, E. (2006). Applications of CERES-Rice and CERES-wheat in research, policy and climate change studies in Asia: A review. International Journal of Agricultural Research, 1(3), 202–225. https://doi.org/10.3923/ijar.2006.202.225; Title, P. O., & Bemmels, J. B. (2018). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41(2), 291–307. https://doi.org/https://doi.org/10.1111/ecog.02880; Tongal, H., & Booij, M. J. (2018). Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 564, 266–282. https://doi.org/10.1016/j.jhydrol.2018.07.004; Torres-Madronero, M. C., Rondón, T., Franco, R., Casamitjana, M., & Trochez González, J. (2023). Spectral Characterization of Avocado Persea Americana Mill. Cv. Hass Using Spectrometry and Imagery from the Visible to Near-Infrared Range. TecnoLógicas, 26(56), e2567. https://doi.org/10.22430/22565337.2567; Tu, Y. H., Phinn, S., Johansen, K., & Robson, A. (2018). Assessing radiometric correction approaches for multi-spectral UAS imagery for horticultural applications. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111684; Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0; Tzatzani, T. T., Morianou, G., Tül, S., & Kourgialas, N. N. (2023). Air Temperature as a Key Indicator of Avocado (Cvs. Fuerte, Zutano, Hass) Maturation Time in Mediterranean Climate Areas: The Case of Western Crete in Greece. Agriculture (Switzerland), 13(7). https://doi.org/10.3390/agriculture13071342; UPRA. (2019). Zonificación de aptitud para el cultivo comercial de aguacate (Persea americana Mill.) variedad Hass en Colombia, escala 1:100.000. Disponible en: https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Zonificaci-n-de-aptitud-para-el-cultivo-comercial-/tx7u-frn2/data. (Último acceso: abril de 2023).; Valencia-García Gema Alcaraz-Mármol Javier Del Cioppo-Morstadt Néstor Vera-Lucio Martha Bucaram-Leverone, R. (2018). Technologies and Innovation Communications in Computer and Information Science 883. In Citi. http://www.springer.com/series/7899; Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8), 5929–5955. https://doi.org/10.1007/s10462-020-09838-1; Van Loi. (2008). Use of GIS Modelling in Assessment of Forestry Land's Potential in Thua Thien Hue Province of Central Vietnam. Disponible en: https://d-nb.info/990716163/34 (Último acceso: diciembre de 2023).; van Vuuren, D. P., Riahi, K., Calvin, K., Dellink, R., Emmerling, J., Fujimori, S., KC, S., Kriegler, E., & O’Neill, B. (2017). The Shared Socio-economic Pathways: Trajectories for human development and global environmental change. In Global Environmental Change (Vol. 42, pp. 148–152). Elsevier Ltd. https://doi.org/10.1016/j.gloenvcha.2016.10.009; Viera, W., Gaona, P., Samaniego, I., Sotomayor, A., Viteri, P., Noboa, M., Merino, J., Mejía, P., & Park, C. H. (2023). Mineral Content and Phytochemical Composition of Avocado var. Hass Grown Using Sustainable Agriculture Practices in Ecuador. Plants, 12(9). https://doi.org/10.3390/plants12091791; Vishnoi, V. K., Kumar, K., & Kumar, B. (2021). Plant disease detection using computational intelligence and image processing. In Journal of Plant Diseases and Protection (Vol. 128, Issue 1). Springer Berlin Heidelberg. https://doi.org/10.1007/s41348-020-00368-0; Waltari, E., Hijmans, R. J., Peterson, A. T., Nyári, Á. S., Perkins, S. L., & Guralnick, R. P. (2014). Locating Pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. PLoS One, 9(7), e106552. DOI:10.1371/journal.pone.0106552; Waltari, E., Schroeder, R., McDonald, K., Anderson, R. P., & Carnaval, A. (2014). Bioclimatic variables derived from remote sensing: assessment and application for species distribution modelling. Methods in Ecology and Evolution. 5. 1033-1042. https://doi.org/10.1111/2041-210X.12264; Wan, L., Cen, H., Zhu, J., Zhang, J., Zhu, Y., Sun, D., Du, X., Zhai, L., Weng, H., Li, Y., Li, X., Bao, Y., Shou, J., & He, Y. (2020). Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer – a case study of small farmlands in the South of China. Agricultural and Forest Meteorology, 291. https://doi.org/10.1016/j.agrformet.2020.108096; Wang, D., Liu, J., Shao, W., Mei, C., Su, X., & Wang, H. (2021). Comparison of CMIP5 and CMIP6 Multi-Model Ensemble for Precipitation Downscaling Results and Observational Data: The Case of Hanjiang River Basin. Atmosphere, 12(7), 867. https://doi.org/10.3390/atmos12070867; Wang, N., Guo, Y., Wei, X., Zhou, M., Wang, H., & Bai, Y. (2022). UAV-based remote sensing using visible and multispectral indices for the estimation of vegetation cover in an oasis of a desert. Ecological Indicators, 141. https://doi.org/10.1016/j.ecolind.2022.109155; Wang, X., Ouyang, Y. Y., Liu, J., Zhao, G. (2019). Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. British Journal of Nutrition, 121(5), 474-484. https://doi.org/10.1017/S0007114518003628; Wang, Y., Zhao, W., Tang, X., Liu, Y., Tang, H., Guo, J., Lin, Z., & Huang, F. (2023). Plasma rice yield prediction based on Bi-LSTM model. In X. Kong (Ed.), Second International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2023) (p. 68). SPIE. https://doi.org/10.1117/12.2674801; Warren, T. (2005). Clustering of time series data - A survey. Pattern Recognition, 38(11), 1857–1874. https://doi.org/10.1016/j.patcog.2005.01.025; Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021; Waskom, M., Botvinnik, O., Gelbart, M., Ostblom, J., Lukauskas, S., Hobson, P., Halchenko, Y., Warmenhoven, J., Cole, J. B., Hoyer, S., Vanderplas, J., Villalba, S., Kunter, T., Quintero, E., Bachant, P., Martin, M., Meyer, K., Augspurger, T., Yarkoni, T., … Subramanian, S. (2020). Waskom Seaborn: v0.10.1. Zenodo. https://doi.org/10.5281/zenodo.3767070; Weil, A., Rubinovich, L., Tchernov, D., & Liran, O. (2022). Comparative Study between the Photosynthetic Parameters of Two Avocado (Persea americana) Cultivars Reveals Natural Variation in Light Reactions in Response to Frost Stress. Agronomy, 12(5). https://doi.org/10.3390/agronomy12051129; Wilkie, J. D., Conway, J., Griffin, J., & Toegel, H. (2019). Relationships between canopy size, light interception and productivity in conventional avocado planting systems. Journal of Horticultural Science and Biotechnology, 94(4), 481–487. https://doi.org/10.1080/14620316.2018.1544469; Wójtowicz M., Wójtowicz A., Piekarczyk J. (2016). Application of remote sensing methods in agriculture. Communications in Biometry and Crop Science 11, 31–50. http://agrobiol.sggw.waw.pl/~cbcs/articles/CBCS_11_1_3.pdf; Wolstenholme, B. N. (2013). Ecology: climate and soils. In The avocado: botany, production and uses (pp. 86–117). CABI. https://doi.org/10.1079/9781845937010.0086; Wolstenholme, B. y A. Whiley. (1995). Strategies for maximising avocado productivity: An overview. pp 61-70. En: Proceedings III World Avocado Congress. Israel. https://www.avocadosource.com/WAC3/wac3_p061.pdf; WorldClim. (2020). Global climate and weather data. https://www.worldclim.org/data/cmip6/cmip6climate.html; Wu, B., Zhang, M., Zeng, H., Tian, F., Potgieter, A. B., Qin, X., Yan, N., Chang, S., Zhao, Y., Dong, Q., Boken, V., Plotnikov, D., Guo, H., Wu, F., Zhao, H., Deronde, B., Tits, L., & Loupian, E. (2022). Challenges and opportunities in remote sensing-based crop monitoring: a review. December. https://academic.oup.com/nsr/article/10/4/nwac290/6939854; Wu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148(8–9), 1230–1241. https://doi.org/10.1016/j.agrformet.2008.03.005; Wu, D., Johansen, K., Phinn, S., Robson, A., & Tu, Y.-H. (2020). Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns; Xiao, C., Ye, J., Esteves, R. M., and Rong, C. (2016). Using Spearman's correlation coefficients for exploratory data analysis on big dataset. Concurrency and Computation: Practice and Experience, Vol. 28, No. 14, pp. 3866-3878; Yadav, D., Gupta, A. K., & Badhai, S. (2020). Effects of Climate Change on Agriculture Effects of Climate Change on Agriculture View project Training and achivement. View project. https://www.researchgate.net/publication/344064949; Yahya, B. M., & Seker, D. Z. (2019). Designing Weather Forecasting Model Using Computational Intelligence Tools. Applied Artificial Intelligence, 33(2), 137–151. https://doi.org/10.1080/08839514.2018.1530858; Yan, K., Gao, S., Chi, H., Qi, J., Song, W., Tong, Y., Mu, X., & Yan, G. (2022). Evaluation of the Vegetation-Index-Based Dimidiate Pixel Model for Fractional Vegetation Cover Estimation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2020.3048493; Yohannes, H. (2015). A Review on Relationship between Climate Change and Agriculture. J Earth Sci Clim Change 07. https://doi.org/10.4172/2157-7617.1000335; Yue, Y., Zhang, P., & Shang, Y. (2019). The potential global distribution and dynamics of wheat under multiple climate change scenarios. Science of the Total Environment, 688(19), 1308–1318. https://doi.org/10.1016/j.scitotenv.2019.06.153; Zambon, I., Cecchini, M., Egidi, G., Saporito, M.G., Colantoni, A. (2019). Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes 7, 36. https://doi.org/10.3390/pr7010036; Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J., Joiner, J., Frankenberg, C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., & Chen, M. (2022). Optical vegetation indices for monitoring terrestrial ecosystems globally 2 3. https://doi.org/10.1038/s43017-022-00298-5; Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., & Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, 104943. https://doi.org/10.1016/j.compag.2019.104943; Zhang, K., Yao, L., Meng, J., & Tao, J. (2018). Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326–1334. https://doi.org/10.1016/j.scitotenv.2018.04.112; Zhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., & Li, Z. (2020). The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240(June 2019). https://doi.org/10.1016/j.rse.2020.111686; Zhou, X., Zheng, H. B., Xu, X. Q., He, J. Y., Ge, X. K., Yao, X., Cheng, T., Zhu, Y., Cao, W. X., & Tian, Y. C. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 246–255. https://doi.org/10.1016/j.isprsjprs.2017.05.003; Zhu, L., Liu, X., Wang, Z., & Tian, L. (2023). High-precision sugarcane yield prediction by integrating 10-m Sentinel-1 VOD and Sentinel-2 GRVI indexes. European Journal of Agronomy, 149, 126889. https://doi.org/https://doi.org/10.1016/j.eja.2023.126889; Zuazo, V. H. D., Lipan, L., Rodríguez, B. C., Sendra, E., Tarifa, D. F., Nemś, A., Ruiz, B. G., Carbonell-Barrachina, Á. A., & García-Tejero, I. F. (2021). Impact of deficit irrigation on fruit yield and lipid profile of terraced avocado orchards. Agronomy for Sustainable Development, 41(5), 1–16. https://doi.org/10.1007/s13593-021-00731-x; https://repositorio.unal.edu.co/handle/unal/86890; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
17Dissertation/ Thesis
المؤلفون: Terán Quezada, Alvaro
مصطلحات موضوعية: traduccion, señas, LSP, redes neuronales profundas, machine learning, tiempo real
وصف الملف: application/pdf
-
18Dissertation/ Thesis
المؤلفون: Ribes Serrano, Rubén
المساهمون: Morillas Gómez, Samuel, Naranjo Alcázar, Javier, Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada, Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
مصطلحات موضوعية: Audición por Computador, Redes Neuronales Profundas, Aprendizaje Activo, Sonidos Ambientales, Machine Listening, Deep Neural Networks, Active Learning, Ambient Sounds, MATEMATICA APLICADA, Grado en Ciencia de Datos-Grau en Ciència de Dades
جغرافية الموضوع: east=-0.3105582000000001, north=39.4444615, name=Puerto de Valencia, 46011 Valencia, Espanya
Time: name=Puerto de Valencia, Poblados Marítimos, 46011 Valencia, Espanya
Relation: http://hdl.handle.net/10251/206923
الاتاحة: http://hdl.handle.net/10251/206923
-
19Academic Journal
المؤلفون: Murillo, Raúl, Del Rio, Alberto A., Botella Juan, Guillermo
مصطلحات موضوعية: Aritmética de computadores, Posit, Punto flotante, Redes neuronales profundas
Relation: Nº 10 - 2020; http://hdl.handle.net/10481/64781
الاتاحة: http://hdl.handle.net/10481/64781
-
20Dissertation/ Thesis
المؤلفون: Hernández Vicente, Daniel
Thesis Advisors: Cecilia Canales, José María, Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors, Agencia Estatal de Investigación
مصطلحات موضوعية: Heurísticas, Inteligencia artificial (IA), Vehículos aéreos no tripulados (UAV), Algoritmo de Kuhn-Munkres, Unidad de procesamiento gráfico, Redes neuronales profundas, Detección de inundaciones, Catástrofes naturales, Segmentación semántica, Informática de borde, Cambio climático, Aprendizaje profundo, Visión artificial, Tecnologías sostenibles, Enjambres de drones, Heuristics, Artificial Intelligence (AI), Unmanned Aerial Vehicles (UAVs), Kuhn-Munkres algorithm, Graphics Processing Unit, Deep Neural Networks, Flood detection, Natural disasters, Semantic segmentation, Edge computing, Climate Change, Deep Learning, Artificial Vision, Sustainable ICT, Assignment problem, Swarm, Safe takeoff, Optimization
Relation: info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/
الاتاحة: http://hdl.handle.net/10251/192605