-
1Dissertation/ Thesis
المؤلفون: Johansson, Sara
المساهمون: University/Department: Universitat de Girona. Departament d'Enginyeria Química, Agrària i Tecnologia Agroalimentària, University/Department: Universitat de Girona. Institut de Medi Ambient
Thesis Advisors: Colprim Galceran, Jesús, Ruscalleda Beylier, Maël, Saerens, Bart
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Nutrient recovery, Recuperació de nutrients, Recuperación de nutrientes, Biomineralisation, Biomineralització, Biomineralización, Wastewater treatment, Tractament d'aigües residuals, Tratamiento de aguas residuales, Centrate, Centrat, Centrado, Partial nitritation-anammox, Nitritació parcial-anammox, Nitritación parcial-anammox, PNA
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/667585
-
2Academic Journal
المصدر: C3-BIOECONOMY: Circular and Sustainable Bioeconomy; No. 5 (2024): C3-BIOECONOMY: Circular and Sustainable Bioeconomy ; 111-124 ; C3-BIOECONOMY: Circular and Sustainable Bioeconomy; Núm. 5 (2024): C3-BIOECONOMY: Circular and Sustainable Bioeconomy ; 2660-9126 ; 10.21071/c3b.vi5
مصطلحات موضوعية: aguas residuales, matadero, economía circular, bioestimulantes, fertilización, materias primas secundaria, recuperación de nutrientes, escasez de agua, productos agronómicos, waste water, slaughterhouse, circular economy, biostimulants, fertilisation, secondary raw materials, nutrient recovery, water scarcity, agronomic products
وصف الملف: application/pdf
Relation: https://journals.uco.es/bioeconomy/article/view/17109/15842; https://journals.uco.es/bioeconomy/article/view/17109
-
3Conference
المؤلفون: Sara Rodríguez-Rubio, Magdalena Cifuentes-Cabezas, Silvia Álvarez-Blanco, José Antonio Mendoza-Roca
المصدر: DNextGen2, Divulga NextGen 2, Online, 28-30 de noviembre de 2023
مصطلحات موضوعية: Concentrado de lodos, recuperación de nutrientes, precipitación, contactor de membrana, adsorción con resinas
Relation: https://zenodo.org/communities/dnextgen2; https://doi.org/10.5281/zenodo.8413433; https://doi.org/10.5281/zenodo.8413434; oai:zenodo.org:8413434
-
4Academic Journal
المؤلفون: Sepúlveda Muñoz, Cristian Andrés, Hontiyuelo, Gorka, Torres Franco, Andrés Felipe, Muñoz Torre, Raúl
مصطلحات موضوعية: Algae, Algas, Nutrient recovery, Recuperación de nutrientes, Swine manure, Estiércol porcino
وصف الملف: application/pdf
Relation: https://www.sciencedirect.com/science/article/pii/S2214714422002690?via%3Dihub; https://doi.org/10.1016/j.jwpe.2022.102825; Journal of Water Process Engineering, 2022, vol. 47, 102825; https://uvadoc.uva.es/handle/10324/53253
-
5Academic Journal
المؤلفون: Sepúlveda Muñoz, Cristian Andrés, Torres Franco, Andrés Felipe, Godos Crespo, Ignacio de, Muñoz Torre, Raúl
مصطلحات موضوعية: Nutrient recovery, Recuperación de nutrientes, Purple phototrophic bacteria, Bacterias púrpuras, Radiation, Radiación, Rhodopseudomonas palustris
وصف الملف: application/pdf
Relation: https://www.sciencedirect.com/science/article/pii/S2214714422007619?via%3Dihub; https://doi.org/10.1016/j.jwpe.2022.103317; Journal of Water Process Engineering, 2022, vol. 50, 103317; https://uvadoc.uva.es/handle/10324/57050
-
6Academic Journal
المؤلفون: Fernández Delgado, Marina, Amo Mateos, Esther del, Lucas Yagüe, Susana, García Cubero, María Teresa, Coca Sanz, Mónica
مصطلحات موضوعية: Waste compost, Gestión de residuos, Nutrient recovery, Recuperación de nutrientes, Organic fertilizers, Abono orgánico, Sustainability, Sostenibilidad
وصف الملف: application/pdf
Relation: https://www.sciencedirect.com/science/article/pii/S0048969721059829?via%3Dihub; https://doi.org/10.1016/j.scitotenv.2021.150904; Science of The Total Environment, 2022, vol. 806, n. 4, 150904; https://uvadoc.uva.es/handle/10324/49072
-
7Dissertation/ Thesis
المؤلفون: Viruela Navarro, Alexandre
Thesis Advisors: Ferrer Polo, José, Serralta Sevilla, Joaquín, Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient, Generalitat Valenciana, Ministerio de Ciencia e Innovación, Ministerio de Economía y Competitividad
مصطلحات موضوعية: Cultivos de microalgas, Fotobiorreactores de membranas, Aguas residuales, Recuperación de nutrientes, Modelación Matemática, Planta piloto, Outdoor membrane photobioreactor (MPBR), Urban wastewater treatment, Mathematical Modeling, Nutrient recovery, Wastewater, Membrane photobioreactors, Microalgae cultures, TECNOLOGIA DEL MEDIO AMBIENTE
Relation: info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/; info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-02/ES/ESTUDIO EXPERIMENTAL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/; info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F203/; info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/; info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/
الاتاحة: http://hdl.handle.net/10251/195826
-
8Dissertation/ Thesis
المؤلفون: Vargas Páez, Gabriela
المساهمون: Rodríguez Susa, Manuel, Rodríguez Sánchez, Juan Pablo, Galezzo Martínez, María Angélica
مصطلحات موضوعية: Sostenibilidad, Producción de estruvita, Viabilidad económica de producir estruvita, Recuperación de nutrientes presentes en la orina, Ingeniería
وصف الملف: application/pdf
Relation: Achilleos, P., Roberts, K., & Williams, I. (2022). Struvite precipitation within wastewater treatment: A problem or a circular economy opportunity? Obtenido de https://doi.org/10.1016/j.heliyon.2022.e09862; Aguado, D., Barat, R., Bouzas, A. S., & Ferrer, J. (2019). P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Obtenido de https://doi.org/10.1016/j.scitotenv.2019.03.485; Aguilera, D. (2002). Evaluación y diseño de un humedal artificial para el tratamiento de aguas domésticas. Obtenido de https://repositorio.uniandes.edu.co/bitstream/handle/1992/15390/u234778.pdf?s; Antonini, S., Paris, S., Eichert, T., & Clemens, J. (2011). Nitrogen and Phosphorus Recovery from Human Urine by Struvite Precipitation and Air Stripping in Vietnam. Obtenido de https://doi-org.ezproxy.uniandes.edu.co/10.1002/clen.201100036; Banco de la república. (2023). Tasa de inetrés y sector financiero. Obtenido de https://www.banrep.gov.co/es/listado-archivos/2100; Barbosa, S., Peixoto, L., Meulman, B., Alves, M., & Pereira, M. (2016). A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Obtenido de https://doi.org/10.1016/j.cej.2016.03.148; Beltrán, J. (2019). Propuesta de sistema sanitario seco y ecológico con desvió de orina en colegios rurales de Colombia para niñas en pubertad. Obtenido de https://repositorio.uniandes.edu.co/bitstream/handle/1992/45050/u831409.pdf?sequence=1; Bischel, H., Schindelholz, S., Schoger, M., Decrey, L., Buckley, C., Udert, K., & Kohn, T. (2016). Bacteria Inactivation during the Drying of Struvite Fertilizers Produced from Stored Urine. Obtenido de https://doi-org.ezproxy.uniandes.edu.co/10.1021/acs.est.6b03555; Bradford-Hartke, Z., Razmjou, A., & Gregory, L. (2021). Factors affecting phosphorus recovery as struvite: Effects of alternative magnesium sources. Obtenido de https://doi.org/10.1016/j.desal.2021.114949; Brentrup, F., Hoxha, A., & Christensen, B. (2017). Carbon footprint analysis of mineral fertilizer production in Europe and other world regions. Obtenido de https://www.researchgate.net/publication/312553933; Bridger, G., Salutsky, M., & Starostka, R. (1962). Micronutrient Sources, Metal Ammonium Phosphates as Fertilizers. Obtenido de https://doi.org/10.1021/jf60121a006; Calizaya, J., & Gauss, M. (2006). Saneamiento Ecológico: Lecciones aprendidas en zonas periurbanas de Lima. Obtenido de https://documents1.worldbank.org/curated/en/170191468146968918/pdf/469000SPANISH01EcoSan1Final11012006.pdf; Chojnacka, K., Kowalski, Z., Kulczycka, J., Dmytryk, A., Górecki, H., Ligas, B., & Gramza, M. (s.f.). Carbon footprint of fertilizer technologies. Obtenido de https://doi.org/10.1016/j.jenvman.2018.09.108; Clarkson, M., Magee, C., & Brenner, B. (2011). Laboratory Assessment of Kidney Disease. En Pocket Companion to Brenner and Rector's The Kidney (págs. 27-28).; Cook, J., Strauss, K., Caplan, Y., LoDico, C., & Bush, D. (2007). Urine pH: the Effects of Time and Temperature after Collection. Obtenido de https://doi-org.ezproxy.uniandes.edu.co/10.1093/jat/31.8.486; Cooperación Suiza en América Latina. (2008). Compendio de Sistemas y Tecnologías de Saneamiento. Obtenido de https://www.pseau.org/outils/ouvrages/eawag_wsscc_compendio_de_sistemas_y_tecnologias_de_saneamiento_2008.pdf; Corona, F. (2020). Estudio de la recuperación de nutrientes presentes en efluentes de sistemas de digestión anaerobia en forma de estruvita. Obtenido de https://uvadoc.uva.es/bitstream/handle/10324/45332/Tesis1783-210222%20.pdf;jsessionid=0C87042A7664CBEA05D26741BC53A9EB?sequence=1; CVN. (2021). Importación de fertilizantes en Colombia superó los 620 millones de dólares en 2020. Obtenido de https://www.cvn.com.co/admincvn/importacion-de-fertilizantes-en-colombia-supero-los-620-millones-de-dolares-en-2020/; Dabbah, F. (2016). Sistemas de saneamiento seco, baño seco.; Dalecha, T., Assefa, E., Krasteva, K., & Meinhold, K. (2014). Struvite production from source separated urine: Application and economic feasibility in Arba Minch, Ethiopia. Obtenido de http://www.ecosan.at/ssp/issue-19-the-clara-project/SSP-19_Apr2014.pdf; DANE. (2020). Perfil socioeconómico de Santa Catalina. Obtenido de https://colaboracion.dnp.gov.co/CDT/Desarrollo%20Territorial/Portal%20Territorial/Bioceanica/Muns/Santa%20Catalina-BOLIVAR.pdf; DANE. (2020). Perfil socioeconómico municipal de Manaure. Obtenido de https://colaboracion.dnp.gov.co/CDT/Desarrollo%20Territorial/Portal%20Territorial/Bioceanica/Muns/Manaure-GUAJIRA.pdf; DANE. (2021). Encuesta Nacional de calidad de vida ECV. Obtenido de https://www.dane.gov.co/files/investigaciones/condiciones_vida/calidad_vida/2021/presentacion_rueda_de_prensa_ECV_2021.pdf; DANE. (2022). Pobreza monetaria en Colombia. Obtenido de https://www.dane.gov.co/files/investigaciones/condiciones_vida/pobreza/2021/Comunicado-pobreza-monetaria_2021.pdf; Data Commons. (2020). Población colombiana. Obtenido de https://datacommons.org/place/country/COL?utm_medium=explore&mprop=count&popt=Person&hl=es; Decrey, L., Udertc, E., Pecson, B., & Kohn, T. (2011). Fate of the pathogen indicators phage ¿X174 and Ascaris suum eggs during the production of struvite fertilizer from source-separated urine. Obtenido de https://doi.org/10.1016/j.watres.2011.06.042; Delgadillo, O., Camacho, A., Pérez, L., & Andrade, M. (2010). Depuración de aguas residuales por medio de humedales artificiales. Obtenido de https://core.ac.uk/download/pdf/48017573.pdf; DNP. (2021). Proyecto Tipo construcción de unidades sanitarias para vivienda rural dispersa. Obtenido de https://proyectostipo.dnp.gov.co/index.php?option=com_k2&view=item&id=135:construccion-de-unidades-sanitarias-para-vivienda-rural-dispersa&Itemid=212#:~:text=El%20Proyecto%20Tipo%20Construcci%C3%B3n%20de,en%20zonas%20con%20estas%20caracter%C3%ADsticas.&te; DNP. (2022). Plan Nacional de Desarrollo 2022-2026. Obtenido de https://www.dnp.gov.co/plan-nacional-desarrollo/pnd-2022-2026; ECOTEC. (s.f.). Manual de construcción de baño ecológico seco. Obtenido de https://ecotec.unam.mx/wp-content/uploads/Manual-de-construccion-de-ba--o-ecologico-seco.pdf; Ellis, G., & Miles, A. (2001). Struvite precipitation potential for nutrient recovery from anaerobically treated wastes. Obtenido de https://doi.org/10.2166/wst.2001.0690; Enel. (2023). Tarifas de energía. Obtenido de https://www.enel.com.co/content/dam/enel-co/espa%C3%B1ol/personas/1-17-1/2023/Tarifario%20Abril%202023.pdf; Escher, B., Pronk, W., Suter, M., & Maurer, M. (2006). Monitoring the Removal Efficiency of Pharmaceuticals and Hormones in Different Treatment Processes of Source-Separated Urine with Bioassays. Obtenido de https://doi-org.ezproxy.uniandes.edu.co/10.1021/es060598w; Etter, B., Tilley, E., Khadka, R., & Udert, K. (2010). Low-cost struvite production using source-separated urine in Nepal. Obtenido de https://doi.org/10.1016/j.watres.2010.10.007; FAO. (2022). El mercado mundial de fertilizantes: balance de la situación de un mercado en dificultades . Obtenido de https://www.fao.org/3/ni280es/ni280es.pdf; fisherscientific. (2022). Productos quimicos. Obtenido de https://www.fishersci.es/shop/products/magnesium-chloride-hexahydrate-fisher-bioreagents/10386743#?keyword=cloruro%20de%20magnesio%20hexahidratado; García, D., Osorio, J., & Barahona, R. (2016). Estimation of greenhouse gas emissions from agricultural activities in the Aburra valley Metropolitan Area - Colombia. Obtenido de https://doi.org/10.15446/rfna.v69n1.54746; García, J. (2020). Estudio de viabilidad económica en un proyecto de bicicletas eléctricas. Obtenido de https://riunet.upv.es/bitstream/handle/10251/174619/Garcia%20-%20ESTUDIO%20DE%20VIABILIDAD%20ECONOMICA%20EN%20UN%20PROYECTO%20DE%20BICICLETAS%20ELECTRICAS.pdf?sequence=1&isAllowed=y; Gómez, E., Schrotter, R., & Haussuhl, W. (1991). Dispersión angular fonónica de un cristal triclínico. Obtenido de https://www.fis.cinvestav.mx/~smcsyv/supyvac/3/sv030691.pdf; Gönder, Z., Kaya, Y., Vergili, I., & Barlas, H. (2006). Capacity loss in an organically fouled anion exchanger. Obtenido de https://doi.org/10.1016/j.desal.2005.07.012; Grueso, N., & Perdomo, M. (2012). Implementación del programa de sanitarios ecológicos como estrategia para disminuir enfermedades en el corregimiento de Caimalito del municipio de Pereira. Obtenido de https://repositorio.utp.edu.co/server/api/core/bitstreams/ac482fac-b155-4f80-993d-2122c87b4b57/content; Hirooka, K., & Ichihashi, O. (2013). Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation. Obtenido de https://doi.org/10.1016/j.biortech.2013.03.067; Höglund, C., Ashbolt, N., Stenström, T. A., & Svensson, L. (2002). Viral persistence in source-separated human urine. Obtenido de https://doi.org/10.1016/S1093-0191(01)00057-0; Huang, H., Zhang, D., Wang, W., Li, B., Zhao, N., & Li, J. D. (2019). Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources. Obtenido de https://doi.org/10.1016/j.scitotenv.2018.11.259; Huang, J., Xu, C., Ridoutt, B., & Chen, F. (2015). Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region. Obtenido de https://doi.org/10.3390/w7126674; IBRD. (2020). Consumo de fertilizantes (kilogramos por hectárea de tierras cultivables). Obtenido de https://datos.bancomundial.org/indicator/AG.CON.FERT.ZS?name_desc=false; IBRD. (2023). Metadata Glossary. Obtenido de https://databank.worldbank.org/metadataglossary/world-development-indicators/series/AG.CON.FERT.PT.ZS; ICA. (2020). Boletín de comercialización de fertilizantes 2020. Obtenido de https://www.ica.gov.co/getdoc/bc02bf1f-68b4-4d82-b776-722e261b4ca8/estadisticas.aspx; INSST. (2018). Cloruro de magnesio. Obtenido de https://www.ilo.org/dyn/icsc/showcard.display?p_lang=es&p_card_id=0764&p_version=2; INTI. (2016). Sistemas de saneamiento seco con separación de orina.; IPCC. (2019). El cambio climático y la tierra. Obtenido de https://www.ipcc.ch/site/assets/uploads/sites/4/2020/06/SRCCL_SPM_es.pdf; Ishii, S., & Boyer, T. (2015). Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management. Obtenido de https://doi.org/10.1016/j.watres.2015.04.010; Jiménez, I. (2019). Estruvita: Fuente de fósforo reciclada obtenida a partir de residuos urbanos y agroindustriales. Obtenido de https://biblus.us.es/bibing/proyectos/abreproy/71421/fichero/TFM-1421-JIM%C3%89NEZ+GARC%C3%8DA.pdf; Kabda¿l¿, I., Tünay, O., ¿¿lek, C., Erdinç, E., Hüskalar, S., & Tatl¿, M. (2006). Nitrogen recovery by urea hydrolysis and struvite precipitation from anthropogenic urine. Obtenido de https://doi.org/10.2166/wst.2006.433; Kataki, S., West, H., Clarke, M., & Baruah, D. (2016). Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments. Obtenido de https://doi.org/10.1016/j.wasman.2016.01.003; Khan, M., Mobin, M., Abbas, Z., & Alamri, S. (2018). Fertilizers and Their Contaminants in Soils, Surface and Groundwater. Obtenido de https://faculty.ksu.edu.sa/sites/default/files/fertilizers_and_their_contaminants_in_soils_surface_and_groundwater.pdf; Krishnamoorthy, N., Dey, B., Arunachalam, T., & Paramasivan, B. (2020). Effect of storage on physicochemical characteristics of urine for phosphate and ammonium recovery as struvite. Obtenido de https://doi.org/10.1016/j.ibiod.2020.105053; Kundu, S., Pramanik, K., Halder, P., Patel, S., Ramezani, M., Khairul, M., . . . Shah, K. (2022). Source and central level recovery of nutrients from urine and wastewater: A state-of-art on nutrients mapping and potential technological solutions. Obtenido de https://doi.org/10.1016/j.jece.2022.107146; Lahr, R., Goetsch, H., Haig, S., Hays, A., Amor, N., Agá, D., . . . Wigginton, K. (2016). Urine Bacterial Community Convergence through Fertilizer Production: Storage, Pasteurization, and Struvite Precipitation. Obtenido de https://doi-org.ezproxy.uniandes.edu.co/10.1021/acs.est.6b02094; Lapeña, A. (2014). Recuperación de fósforo en forma de estruvita a partir de la orina y el agua de mar. Obtenido de http://hdl.handle.net/10251/47782; Larrahondo, D. (2019). Recuperación de nutrientes en forma de estruvita a partir del agua residual generada en campus universitarios: caso de estudio Universidad Autónoma de Occidente. Obtenido de https://red.uao.edu.co/bitstream/handle/10614/11707/T08796.pdf?sequence=5&isAllowed=y; Larsen, T., Gruendl, H., & Binz, C. (2021). The potential contribution of urine source separation to the SDG agenda ¿ a review of the progress so far and future development options. Obtenido de https://pubs.rsc.org/en/content/articlehtml/2021/ew/d0ew01064b; Latifiam, M., Jing, L., & Mattiasson, B. (2012). Struvite-based fertilizer and its physical and chemical properties. Obtenido de https://doi-org.ezproxy.uniandes.edu.co/10.1080/09593330.2012.676073; Liu, Z., Zhao, Q., Wang, K., Lee, D., Qiu, W., & Wang, J. (2008). Urea hydrolysis and recovery of nitrogen and phosphorous as MAP from stale human urine. Obtenido de https://doi.org/10.1016/S1001-0742(08)62202-0; Martin, T., Esculier, F., Levavasseur, F., & Houot, S. (2020). Human urine-based fertilizers: A review. Obtenido de https://doi-org.ezproxy.uniandes.edu.co/10.1080/10643389.2020.1838214; Martínez, A., Grandett, L., Tordecilla, L., Rodríguez, M., Cordero, C., & Tofiño, A. (2021). Technological and socio-economic analysis of the local production system of the pink Zaragoza bean (Phaseolus vulgaris L.) in the Caribbean of Colombia. Obtenido de https://doi.org/10.17584/rcch.2021v15i1.11520; Mayer, B., Baker, L., Boyer, T., Drechsel, P., Gifford, M., Hanjra, M., . . . Rittmann, B. (2016). Total Value of Phosphorus Recovery. Obtenido de https://doi.org/10.1021/acs.est.6b01239; Mendinox. (2016). Agitadores industriales. Obtenido de https://www.mendinox.com/catalogos/agitadores.pdf; Menegat, S., Ledo, A., & Tirado, R. (2022). Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Obtenido de https://www.nature.com/articles/s41598-022-18773-w#Tab1; Mercury. (2023). Motobomba Bomba Agua Eléctrica Periferica 370wts 1/2 Hp. Obtenido de https://articulo.mercadolibre.com.co/MCO-467438735-motobomba-bomba-agua-electrica-periferica-370wts-12-hp-_JM#position=6&search_layout=stack&type=item&tracking_id=cac168cd-a0db-419a-974c-bd4082c5c28a; MinAgricultura. (2021). Boletín de precios de insumos agropecuarios. Obtenido de https://sioc.minagricultura.gov.co/Boletines/BOLETI%CC%81N%20DE%20PRECIOS%20DE%20INSUMOS%20AGROPECUARIOS%20No.%204%20de%202021.pdf; Ministerio de Salud. (2017). Directrices sanitarias para baños secos. Obtenido de https://www.argentina.gob.ar/sites/default/files/0000000974cnt-resolucion_msn_378-2017_directrices_banos_secos.pdf; Ministry of water, lands and environment. (2003). Obtenido de https://www.susana.org/_resources/documents/default/2-1678-ecosan--design-construction-manual.pdf; Miura, N., & Kato, K. (s.f.). Effect of matured compost as a bulking and inoculating agent on the microbial community and maturity of cattle manure compost. Obtenido de https://doi.org/10.1016/j.biortech.2007.08.019; Molinos, M., Sancho, H., Garrido, R., & Garrido, M. (2010). Economic Feasibility Study for Phosphorus Recovery Processes. Obtenido de https://link-springer-com.ezproxy.uniandes.edu.co/article/10.1007/s13280-010-0101-9#Tab4; Morales, C., Fernández, B., Molina, F., Naranjo, D., Matamoros, A., & Alonso, M. (2021). Influence of pH and Temperature on Struvite Purity and Recovery from Anaerobic Digestate. Obtenido de https://doi.org/10.3390/su131910730; Munar, E., Aldana, C., & Bahamon, A. (2018). Determinación del comportamiento térmico de un invernadero espacial colombiano mediante dinámica de fluidos computacional. Obtenido de https://revistas.udca.edu.co/index.php/ruadc/article/view/1070/1519; Muys, M., Phukan, R., Brader, G., Samad, A., Moretti, M., Haiden, B., . . . Spiller, M. (2021). A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Obtenido de https://doi.org/10.1016/j.scitotenv.2020.143726; MVCT. (2022). Política de Vivienda Rural. Obtenido de https://www.minvivienda.gov.co/viceministerio-de-vivienda/politica-de-vivienda-rural#:~:text=Vivienda%20social%20para%20el%20campo,recibe%20la%20vivienda%20nueva%20construida; Nagy, Judit, Mikola, A., Pradhan, S., & Zseni, A. (2019). The Utilization of Struvite Produced from Human Urine in Agriculture as a Natural Fertilizer: A Review. Obtenido de https://doi.org/10.3311/PPch.12689; Navarro, G., & García, S. (2014). Fertilizantes: química y acción. Ediciones Mundi-Prensa.; ONU. (2015). Objetivos de desarrollo sostenible. Obtenido de https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/; ONU. (s.f.). Efectos de plaguicidas y fertilizantes sobre el medio ambientey la salud y formas de reducirlos. Obtenido de https://wedocs.unep.org/bitstream/handle/20.500.11822/34463/JSUNEPPF_Sp.pdf; Ortíz, J., Masera, O., & Fuentes, A. (2014). La ecotecnología en México. Obtenido de https://sswm.info/sites/default/files/reference_attachments/ORTIZ%20MORENO%20et%20al.%20%282014%29.%20La%20ecotecnolog%C3%ADa%20en%20M%C3%A9xico.pdf; Pastor, L. (2008). Estudio de la precipitación y recuperación del fósforo presente en las aguas residuales en forma de estruvita . Obtenido de https://dialnet.unirioja.es/servlet/tesis?codigo=18104; Patel, A., & Mungray, A. (2020). Technologies for the recovery of nutrients, water and energy from human urine: A review. Obtenido de https://pdf.sciencedirectassets.com/271852/1-s2.0-S0045653520X00142/1-s2.0-S0045653520315654/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjENX%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQC89KRgR9YM6LA9h5%2BbOA95Mo6cV0shFP%2FeQDCrYPsX7QIhAKNL46sk; Pérez, D. (2012). Estudio de viabilidad para la recuperación de fósforo en forma de estruvita (NH4MgPO4¿6H2O) a partir de aguas amarillas y aguas residuales domésticas. Obtenido de https://repositorio.uniandes.edu.co/bitstream/handle/1992/25161/u627870.pdf?sequence=1; Pikar, L., Guest, J., Ganigué, R., jensen, P., Rabaey, K., Seviour, T., . . . Verstraete, W. (2022). En Resource Recovery from Water: Principles and Application (págs. 246-248). IWA Publishing. Obtenido de https://doi.org/10.2166/9781780409566; Pynnönen, K. (2011). Ecosan in Schools: Post-evaluation of the Operation of Urine Diverting Dry Toilets in Rural Schools in Kenya - Factors Affecting their Sustainability. Obtenido de https://www.susana.org/_resources/documents/default/2-1581-kirsikkapynnonendippa.pdf; Rahman, M., Liu, Y., Kwag, J.-H., & Ra, C. (2011). Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. Obtenido de https://doi.org/10.1016/j.jhazmat.2010.12.103; RAS. (2000). Título E: Tratamiento de aguas residuales. Obtenido de https://www.minvivienda.gov.co/sites/default/files/documentos/010710_ras_titulo_e_.pdf; RAS. (2010). Título J: Alternativas Tecnológicas en Agua y Saneamiento para el Sector Rural. Obtenido de https://minvivienda.gov.co/sites/default/files/documentos/100811_titulo_j_ras-_.pdf; Ray, H., Saetta, D., & H., B. T. (2017). Characterization of urea hydrolysis in fresh human urine and inhibition by chemical addition. Obtenido de https://pubs.rsc.org/en/content/articlelanding/2018/EW/C7EW00271H; Reyes, J. (2015). Evaluación del potencial de eutrofización y huella hídrica en sistemas de producción de rosas de corte en la sabana de Bogotá. Obtenido de https://expeditiorepositorio.utadeo.edu.co/bitstream/handle/20.500.12010/1478/T015.pdf?sequence=1&isAllowed=y; Reyes, R. (2017). Manejo y reutilización de la orina humana como fertilizante en plantas de maíz. Obtenido de https://revistas.usac.edu.gt/index.php/asa/article/view/1152/795; Ritchie, H., & Roser, M. (2020). Fertilizers. Obtenido de https://ourworldindata.org/fertilizers; Rotaria. (s.f.). Baño Seco con Eco-Sanitario. Obtenido de https://docplayer.es/67582228-Bano-seco-con-eco-sanitario-construccion-de-sistema-de-dos-camaras-y-otras-de-construccion.html; Sakthivel, R., Azizurrahaman, M., Prabhu, G., & Chariar, M. (2020). Recovery of phosphorus from stored urine using continuous flow reactor in decentralised level operations. Obtenido de https://doi.org/10.2166/bgs.2020.005; Sakthivel, R., Tilley, E., & Udert, K. (2012). Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Obtenido de https://doi.org/10.1016/j.scitotenv.2011.12.065; Sánchez, J. (2022). Gremios del agro dicen que subsidio a insumos para pequeños productores es importante pero no suficiente. Obtenido de https://www.elcolombiano.com/negocios/gobierno-subsidiara-20-de-insumos-a-campesinos-LG18877387; Sánchez, M. (s.f.). Recuperación de fósfóro de orina seprarada en origen mediante precipitación de estruvita. Obtenido de https://repositorio.unican.es/xmlui/bitstream/handle/10902/14216/409507.pdf?sequence=1; Sanint, L. (1995). Crop biotechnology and sustainability: A case study of Colombia. Obtenido de https://www.oecd.org/colombia/1920402.pdf; Santos, G. (2002). Análisis de la relación Beneficio/Costo de la implementación de obras de conservación de suelo: Ocho estudios de caso en la comunidad de La Ciénega, San Antonio de Oriente,Honduras. Obtenido de https://bdigital.zamorano.edu/server/api/core/bitstreams/d18e12ce-6121-49cd-b153-cae05b7f8fd1/content; Sathiasivan, K., Ramaswamy, J., & Rajesh, M. (2019). Optimization studies on the production of struvite from human urine ¿ waste into value. Obtenido de https://10.5004/dwt.2019.24063; Seppala, J., Knuuttila, S., & Silvo, K. (2004). Eutrophication of Aquatic Ecosystems A New Method for Calculating the Potential Contributions of Nitrogen and Phosphorus. Obtenido de http://dx.doi.orcj/10.1065/Ica2004.02.145; Shaddel, S., Grini, T., Ucar, S., Azrague, K., Andreassen, J.-P., & W.Østerhus, S. (2020). Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality. Obtenido de https://doi.org/10.1016/j.watres.2020.115572; Sherwood, C. (2006). Natural wastewater treatment systems. Obtenido de http://amac.md/Biblioteca/data/30/14/10/87.2.pdf; Sigurdarson, J., Svane, S., & Karring, H. (2018). The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Obtenido de https://doi.org/10.1007/s11157-018-9466-1; Silva, R., & Quesada, B. (2010). El proceso Haber-Bosch en la sociedad agroindustrial: peligro y alternativas. Obtenido de http://biblioteca.clacso.edu.ar/Colombia/ilsa/20130711050649/3.pdf; Souza, E. (2022). Dimensiones mínimas y configuraciones eficientes para baños pequeños . Obtenido de https://www.archdaily.co/co/942317/dimensiones-minimas-y-configuraciones-eficientes-para-banos-pequenos; Stenström, T. A., & Schönning, C. (2004). Guidelines for the Safe Use of Urine and Faeces in Ecological Sanitation Systems. Obtenido de http://www.ecosanres.org/pdf_files/Uso_Orina_Heces_Ecosan_2004-1.pdf; Syahril, S., Schlick, J., Klingel, F., Bracken, P., & Werner, C. (2005). Gebers collective housing project, Orhem, Sweden. Obtenido de https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/1216#; Tao, W., Bayrakdar, A., Wang, Y., & Agyemana, F. (2019). Three-stage treatment for nitrogen and phosphorus recovery from human urine: Hydrolysis, precipitation and vacuum stripping. Obtenido de https://doi.org/10.1016/j.jenvman.2019.109435; Theregowda, A., Gonzáles, X., & Ma, Y. (2019). Nutrient Recovery from Municipal Wastewater for Sustainable Food Production Systems: An Alternative to Traditional Fertilizers. Obtenido de https://doi.org/10.1089/ees.2019.0053; Tilley, E., Gantenbein, B., Khadka, R., Zurbrügg, C., & Udert, K. (2009). Social and economic feasibility of struvite recovery from urine at the community level in Nepal. Obtenido de https://www.eawag.ch/fileadmin/Domain1/Abteilungen/sandec/schwerpunkte/ewm/STUN/Struvite_pdfs/Tilley_2009_Social___economic_feasibility_struvite.pdf; Tilley, E., Ulrich, L., Lüthi, C., Reymond, P., Schertenleib, R., & Zurbrügg, C. (2018). Compendio de sistemas y tecnologías de saneamiento. Obtenido de https://sswm.info/sites/default/files/reference_attachments/TILLEY%20et%20al%202018.%20Compendio%20de%20sistemas%20y%20tecnolog%C3%ADas%20de%20saneamiento.pdf; Tilley, E., Ulrich, L., Lüthi, C., Reymond, P., Schertenleib, R., & Zurbrügg, C. (2018). Sanitario seco con desviación de orina. Obtenido de https://sswm.info/es/gass-perspective-es/tecnologias-de/tecnologias-de-saneamiento/sanitario-seco-con-desviaci%C3%B3n-de-orina; Torres, C. (s.f.). Nitrogen fertilization, baseline and projections of greenhouse gases in Colombia. Obtenido de https://cgspace.cgiar.org/bitstream/handle/10568/111472/WORKSHOP_REPORT.pdf; Udert, K., Buckley, C., Wächter, M., McArdell, C., Kohn, T., Strande, L., . . . Etter, B. (2015). Technologies for the treatment of source-separated urine in the eThekwini Municipality. Obtenido de http://dx.doi.org/10.4314/wsa.v41i2.06; Universidad de los Andes. (2020). Laboratorio ambiental.; USDA. (2022). Impacts and Repercussions of Price Increases on the Global Fertilizer Market. Obtenido de https://www.fas.usda.gov/data/impacts-and-repercussions-price-increases-global-fertilizer-market; Vaneeckhaute, C., Janda, J., Meers, E., & Tack, F. (2015). Efficiency of Soil and Fertilizer Phosphorus Use in Time: A Comparison Between Recovered Struvite, FePO4-Sludge, Digestate, Animal Manure, and Synthetic Fertilizer. Obtenido de https://doi10.1007/978-81-322-2169-2_6; Vinnerås, B., Nordin, A., Niwagaba, C., & Nyberg, K. (2008). Inactivation of bacteria and viruses in human urine depending on temperature and dilution rate. Obtenido de https://doi.org/10.1016/j.watres.2008.06.014; Vries, S., Postma, R., Van Scholl, L., Blom-Zandstra, G., Verhagen, J., & Harms, I. (2017). Economic feasibility and climate benefits of using struvite from the Netherlands as a phosphate (P) fertilizer in West Africa. Obtenido de https://edepot.wur.nl/417821; Wang, C., Hao, X., Guo, G., & Loosdrecht, M. (2010). Formation of pure struvite at neutral pH by electrochemical deposition. Obtenido de https://doi.org/10.1016/j.cej.2010.02.026; Wei, S., Rossum, F., Jan van de Pol, G., Karoliina, M., & Winkler, H. (2018). Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing: A pilot study. Obtenido de https://doi-org.ezproxy.uniandes.edu.co/10.1016/j.chemosphere.2018.08.154; Wilsenach, A., Schuurbiers, C., & Loosdrecht, M. (2007). Phosphate and potassium recovery from source separated urine through struvite precipitation. Obtenido de https://doi.org/10.1016/j.watres.2006.10.014; Xu, S., Luo, L., He, H., Liu, H., & Cui, L. (2015). Nitrogen and Phosphate Recovery from Source-Separated Urine by Dosing with Magnesite and Zeolite. Obtenido de https://doi.org/10.15244/pjoes/43611; Yang, W., & Zhang, L. (s.f.). Addition of mature compost improves the composting of green waste. Obtenido de https://doi.org/10.1016/j.biortech.2022.126927; Yetilmezsoy, K., Ilhan, F., Kocak, E., & Akbin, H. (2017). Feasibility of struvite recovery process for fertilizer industry: A study of financial and economic analysis. Obtenido de https://doi.org/10.1016/j.jclepro.2017.03.106; Ysunza, A., López, L., Martínez, M., & Díez, S. (2010). Sanitarios secos con separación de orina en una área rural, Tututepec, Oaxaca, México . Obtenido de https://sswm.info/sites/default/files/reference_attachments/YSUNZA%20et%20al%202010%20Sanitarios%20Secos%20con%20Separacion%20de%20Orina.pdf; Zamora, P., Georgieva, T., Salcedo, I., Elzinga, N., Kuntke, P., & Buisman, C. (2016). Long-term operation of a pilot-scale reactor for phosphorus recovery as struvite from source-separated urine. Obtenido de https://doi-org.ezproxy.uniandes.edu.co/10.1002/jctb.5079; Zeng, F., Zhao, Q., Jin, W., Liu, Y., Wang, K., & Lee, D. (2018). Struvite precipitation from anaerobic sludge supernatant and mixed fresh/stale human urine. Obtenido de https://doi.org/10.1016/j.cej.2018.03.088; Zhang, J., Giannis, A., Chang, V., J, B., & Wang, J.-Y. (2013). Adaptation of urine source separation in tropical cities: Process optimization and odor mitigation. Obtenido de https://doi.org/10.1080/10962247.2013.763306; http://hdl.handle.net/1992/67629; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/
الاتاحة: http://hdl.handle.net/1992/67629
-
9
المؤلفون: Marina Fernández-Delgado
المساهمون: Coca Sanz, Mónica, Lucas Yagüe, Susana, Universidad de Valladolid. Escuela de Ingenierías Industriales
المصدر: UVaDOC. Repositorio Documental de la Universidad de Valladolid
instnameمصطلحات موضوعية: Economía circular, Material bioestabilizado, Fertilizantes orgánicos, Recuperación de nutrientes
وصف الملف: application/pdf
-
10
المؤلفون: Vila Tojo, Sergio
المساهمون: Sabucedo Cameselle, José Manuel, Andrade Fernández, Elena María, Universidade de Santiago de Compostela. Escola de Doutoramento Internacional (EDIUS), Universidade de Santiago de Compostela. Programa de Doutoramento en Procesos Psicolóxicos e Comportamento Social
المصدر: Minerva. Repositorio Institucional de la Universidad de Santiago de Compostela
instnameمصطلحات موضوعية: Aceptación pública, Investigación::61 Psicología::6114 Psicología social::611403 Comportamiento colectivo [Materias], Recuperación de Nutrientes, Agua reciclada, Investigación::61 Psicología::6114 Psicología social::611406 Comportamiento del consumidor [Materias]
وصف الملف: application/pdf
-
11
المؤلفون: M. Teresa García-Cubero, Esther del Amo-Mateos, Mónica Coca, Marina Fernández-Delgado, Susana Lucas
المصدر: UVaDOC. Repositorio Documental de la Universidad de Valladolid
instnameمصطلحات موضوعية: Technology, Environmental Engineering, engineering.material, Environment, Recuperación de nutrientes, Organic fertilizers, Environmental Chemistry, Fertilizers, Microwaves, Waste Management and Disposal, Abono orgánico, Waste management, business.industry, Extraction (chemistry), Water extraction, Agriculture, Biodegradable waste, Pollution, Sostenibilidad, Renewable energy, Gestión de residuos, Nutrient recovery, Sustainability, Waste compost, engineering, Environmental science, Fertilizer, business, Organic fertilizer
وصف الملف: application/pdf
-
12
المؤلفون: Pasos Panqueva, Johan Andrés
المساهمون: Godoy Silva, Rubén Darío, Rodríguez Varela, Luis Ignacio
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: 660 - Ingeniería química, Wastewater treatment, Advanced oxidation process, 624 - Ingeniería civil [620 - Ingeniería y operaciones afines], Recuperación de nutrientes, Oxidación hidrotermal con peroxido, Hydrothernal liquefaction, Nutrient recovery, Wet peroxide oxidation, Tratamiento de aguas residuales, Procesos avanzados de oxidación, Microalgae, Licuefacción hidrotermal, Chlorella vulgaris, Microalga
وصف الملف: 190 páginas; application/pdf
-
13
المساهمون: Vásquez Sarria, Nancy
مصطلحات موضوعية: Sewage-Purification, Cristalización, DRX, Usos de estruvita, SEM, Aguas residuales-Purificación, Ingeniería Ambiental, Precipitación química, Recuperación de nutrientes, EDS
وصف الملف: 140 páginas; application/pdf; application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
-
14Dissertation/ Thesis
المؤلفون: Ruiz Barriga, Patricia
المساهمون: Bouzas Blanco, Alberto, Carrillo Abad, Jordi, Ferrer Polo, José, Departament d'Enginyeria Química
مصطلحات موضوعية: electrodiálisis, recuperación de nutrientes, aguas residuales, reactor anaerobio de membranas (AnMBR), UNESCO::CIENCIAS TECNOLÓGICAS::Ingeniería y tecnología del medio ambiente::Tecnología de aguas residuales, UNESCO::CIENCIAS TECNOLÓGICAS::Ingeniería y tecnología del medio ambiente::Regeneración del agua
وصف الملف: 310 p.; application/pdf
Relation: https://hdl.handle.net/10550/97976
الاتاحة: https://hdl.handle.net/10550/97976
-
15
المؤلفون: González Morales, Carolina
المساهمون: Molina Pérez, Francisco José, Fernández García, Belén, Camargo Valero, Miller Alonso, Peláez Jaramillo, Carlos Alberto
المصدر: Repositorio UdeA
Universidad de Antioquia
instacron:Universidad de Antioquiaمصطلحات موضوعية: Lucha contra la contaminación, Wastewater treatment plant, vocabularies.unesco.org/thesaurus/concept3180 [http], vocabularies.unesco.org/thesaurus/concept233 [http], Recuperación de nutrientes, Pollution control, vocabularies.unesco.org/thesaurus/concept8425 [http], vocabularies.unesco.org/thesaurus/concept4100 [http], Saneamiento, Tratamiento del agua, Resources development, Centrate, Nutrients recovery, Sustainable development, Natural sciences, Sciences naturelles, Water treatment, Sanitation, vocabularies.unesco.org/thesaurus/concept200 [http], Aprovechamiento de recursos, Struvite crystallization
وصف الملف: application/pdf
-
16
المؤلفون: Villa Ruíz, Juan Sebastián
المساهمون: Orozco Holguín, Jorge Leonardo
المصدر: Universidad Autónoma de Occidente
Repositorio Institucional UAOمصطلحات موضوعية: Carpas Koi, Pasto vetiver, Calidad del agua, Acuarios-Zoológico de Cali, Hidroponía, Sistema acuapónico, Aquarium water, Ingeniería Ambiental, Agua de acuarios, Aguas residuales como fertilizante, Sewage as fertilizer, Recuperación de nutrientes
وصف الملف: application/pdf; 85 páginas; application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
-
17Dissertation/ Thesis
المؤلفون: Pasos Panqueva, Johan Andrés
المساهمون: Godoy Silva, Rubén Darío, Rodríguez Varela, Luis Ignacio
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines::624 - Ingeniería civil, 660 - Ingeniería química, Microalga, Licuefacción hidrotermal, Tratamiento de aguas residuales, Procesos avanzados de oxidación, Recuperación de nutrientes, Oxidación hidrotermal con peroxido, Chlorella vulgaris, Microalgae, Hydrothernal liquefaction, Wastewater treatment, Wet peroxide oxidation, Nutrient recovery, Advanced oxidation process
وصف الملف: 190 páginas; application/pdf
Relation: Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. BIORESOURCE TECHNOLOGY, 118, 61–66. https://doi.org/10.1016/j.biortech.2012.05.055; Aida, T., Maruta, R., Tanabe, Y., Oshima, MinNonaka, T., Kujiraoka, H., Kumagai, Y., & Ota, M. (2016). Nutrient recycle from defatted microalgae (Aurantiochytrium ) with hydrothermal treatment for microalgae cultivation. Bioresource Technology. https://doi.org/10.1016/j.biortech.2016.12.078; Al-duri, B., & Alsoqyani, F. (2017). Supercritical water oxidation ( SCWO ) for the removal of nitrogen containing heterocyclic waste hydrocarbons . Part II : System kinetics. The Journal of Supercritical Fluids, 128(May), 412–418. https://doi.org/10.1016/j.supflu.2017.05.010; Al Hattab, M., & Ghaly, A. (2015). Production of Biodiesel from Marine and Freshwater Microalgae : A Review. Advances in Research, 3(2), 107–155. https://doi.org/10.9734/AIR/2015/7752; Alcaraz, M. R., Fabiano, S. N., & Cámara, M. S. (2012). Determinación De Contenido Fenólico Total En Agua Superficial De Distintos Puntos De La Provincia De Santa Fe – Argentina – Haciendo Uso De Un Biosensor Enzimático Mediante Calibración Multivariada Por Cuadrados Parciales Mínimos , Pls. Septimo Congreso de Medio Ambiente, 1–22.; Alimoradi, S., Stohr, H., Stagg-Williams, S., & Sturm, B. (2020). Effect of temperature on toxicity and biodegradability of dissolved organic nitrogen formed during hydrothermal liquefaction of biomass. Chemosphere, 238, 124573. https://doi.org/10.1016/j.chemosphere.2019.124573; Alnaizy, R., & Akgerman, A. U. (2000). Advanced oxidation of phenolic compounds. Advances in Environmental Research, 4(May), 233–244.; Anastasakis, K., & Ross, A. B. (2011). Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresource Technology, 102(7), 4876–4883. https://doi.org/10.1016/j.biortech.2011.01.031; Andersen, R. A. (2005). Algal Culturing Techniques (1st ed.). Elsevier Academic Press.; Anku, W., Mamo, M., & Govender, P. (2017). Phenolic compounds in Water: Sources, reactivity, toxicity and treatment methods. In M. Soto-Hernandez, M. Palma-Tenango, & M. del R. Garcia-Mateos (Eds.), Phenolic Compounds - Natural Sources, Importance and Applications abundant (p. 444). InTech. https://doi.org/http://dx.doi.org/10.5772/66927; Ansari, F. A., Gupta, S. K., Nasr, M., Rawat, I., & Bux, F. (2018). Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, 182, 634–643. https://doi.org/10.1016/j.jclepro.2018.02.098; APHA. (1999). Standard Methods for the Examination of Water and Wastewater (21st ed.).; Armandina, E., Tercero, R., Bertucco, A., & Brilman, D. W. F. W. (2015). Process water recycle in Hydrothermal Liquefaction of microalgae to enhance bio-oil yield. Energy and Fuels, 3. https://doi.org/10.1021/ef502773w; Arun, J., Varshini, P., Prithvinath, P. K., Priyadarshini, V., & Gopinath, K. P. (2018). Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Bioresource Technology, 4. https://doi.org/10.1016/j.biortech.2018.04.029; Azov, Y., & Goldman, J. C. (1982). Free Ammonia Inhibition of Algal Photosynthesis in Intensive Culturest. Applied And, 43(4), 735–739.; Bagnoud-Velásquez, M., Schmid-Staiger, U., Peng, G., Vogel, F., & Ludwig, C. (2015). First developments towards closing the nutrient cycle in a biofuel production process. Algal Research, 8, 76–82. https://doi.org/10.1016/j.algal.2014.12.012; Baier, S. L., Clements, M., Griffiths, C. W., & Ihrig, J. E. (2009). Biofuels Impact on Crop and Food Prices: Using an Interactive Spreadsheet. Social Science Research Network, 967. https://doi.org/10.2139/ssrn.1372839; Barbarino, E., & Louren, S. O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. Journal of Applied Phycology, 17, 447–460. https://doi.org/10.1007/s10811-005-1641-4; Bashan, Y., Lopez, B. R., Huss, V. A. R., Amavizca, E., & de-Bashan, L. E. (2016). Chlorella sorokiniana (formerly C. vulgaris) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain. Journal of Applied Phycology, 28(1), 113–121. https://doi.org/10.1007/s10811-015-0571-z; Baup, S., Jaffre, C., Wolbert, D., & Laplanche, A. (2000). Adsorption of pesticides onto granular activated carbon: Determination of surface diffusivities using simple batch experiments. Adsorption, 6(3), 219–228. https://doi.org/10.1023/A:1008937210953; Becker, R., Dorgerloh, U., Paulke, E., Mumme, J., & Nehls, I. (2014). Hydrothermal Carbonization of Biomass : Major Organic Components of the Aqueous Phase. Chemical Engineering and Technology, 3, 511–518. https://doi.org/10.1002/ceat.201300401; Benatti, C. T., Granhen Tavares, C. R., & Guedes, T. A. (2006). Optimization of Fenton ’ s oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Engineering (United States), 80, 66–74. https://doi.org/10.1016/j.jenvman.2005.08.014; Benvenuti, G., Bosma, R., Cuaresma, M., Janssen, M., Barbosa, M. J., & Wijffels, R. H. (2015). Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. Journal of Applied Phycology, 27(4), 1425–1431. https://doi.org/10.1007/s10811-014-0470-8; Bermejo, M. D., & Cocero, M. J. (2006). Supercritical Water Oxidation: A Technical Review. AIChE Journal, 52(11), 3933–3951. https://doi.org/10.1002/aic; Biller, P., & Ross, A. B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 102(1), 215–225. https://doi.org/10.1016/j.biortech.2010.06.028; Biller, P., Ross, A. B., Skill, S. C., Lea-Langton, A., Balasundaram, B., Hall, C., Riley, R., & Llewellyn, C. A. (2012). Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research, 1(1), 70–76. https://doi.org/10.1016/j.algal.2012.02.002; Biller, Patrick, Madsen, R. B., Klemmer, M., Becker, J., Iversen, B. B., & Glasius, M. (2016). Effect of hydrothermal liquefaction aqueous phase recycling on bio- crude yields and composition. Bioresource Technology, 220, 190–199. https://doi.org/10.1016/j.biortech.2016.08.053; Bio-Rad. (2006). Protein Assay. Cold Spring Harbor Protocols. https://doi.org/10.1101/pdb.prodprot15; Blair, M. F., Kokabian, B., & Gude, V. G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2(1), 665–674. https://doi.org/10.1016/j.jece.2013.11.005; Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.; Boer, K. De, & Moheimani, N. R. (2012). Extraction and conversion pathways for microalgae to biodiesel : a review focused on energy consumption. Journal of Applied Phycology, 24, 1681–1698. https://doi.org/10.1007/s10811-012-9835-z; Bradford, Marion M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3; Brand, S., Hardi, F., Kim, J., & Suh, D. J. (2014). Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol. Energy, 68, 420–427. https://doi.org/10.1016/j.energy.2014.02.086; Brennan, L., & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. https://doi.org/10.1016/j.rser.2009.10.009; Brown, M. R., & Mccausland, M. A. (1998). The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture, 165, 281–293.; Brown, T. M., Duan, P., & Savage, P. E. (2010). Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy and Fuels, 24(6), 3639–3646. https://doi.org/10.1021/ef100203u; Byreddy, A. R., Gupta, A., Barrow, C. J., & Puri, M. (2016). A quick colorimetric method for total lipid quantification in microalgae. Journal of Microbiological Methods, 125, 28–32. https://doi.org/10.1016/j.mimet.2016.04.002; Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030; Cao, Y., Wang, Y., Riley, J. T., & Pan, W. P. (2006). A novel biomass air gasification process for producing tar-free higher heating value fuel gas. Fuel Processing Technology, 87(4), 343–353. https://doi.org/10.1016/j.fuproc.2005.10.003; Chang, I. S., & Kim, S. N. (2005). Wastewater treatment using membrane filtration - Effect of biosolids concentration on cake resistance. Process Biochemistry, 40(3–4), 1307–1314. https://doi.org/10.1016/j.procbio.2004.06.019; Chen, C., Lu, Z., Ma, X., Long, J., Peng, Y., Hu, L., & Lu, Q. (2013). Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresource Technology, 144, 563–571. https://doi.org/10.1016/j.biortech.2013.07.011; Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81. https://doi.org/10.1016/j.biortech.2010.06.159; Chen, W.-T., Tang, L., Qian, W., Scheppe, K., Nair, K., Wu, Z., Gai, C., Zhang, P., & Zhang, Y. (2016). Extract Nitrogen-Containing Compounds in Biocrude Oil Converted from Wet Biowaste via Hydrothermal Liquefaction. Sustainable Chemistry and Engineering, 2. https://doi.org/10.1021/acssuschemeng.5b01645; Chen, W.-T., Zhang, Y., Zhang, J., Schideman, L., Yu, G., Zhang, P., & Minarick, M. (2014). Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Applied Energy, 128, 209–216. https://doi.org/10.1016/J.APENERGY.2014.04.068; Chen, W. H., Huang, M. Y., Chang, J. S., & Chen, C. Y. (2015). Torrefaction operation and optimization of microalga residue for energy densification and utilization. Applied Energy, 154, 622–630. https://doi.org/10.1016/j.apenergy.2015.05.068; Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847–866. https://doi.org/10.1016/j.rser.2014.12.039; Chen, X., Ma, X., Peng, X., Lin, Y., Wang, J., & Zheng, C. (2018). Effects of aqueous phase recirculation in hydrothermal carbonization of sweet potato waste. Bioresource Technology, 267(381), 167–174. https://doi.org/10.1016/j.biortech.2018.07.032; Cheng, Y. S., Zheng, Y., & VanderGheynst, J. S. (2011). Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids, 46(1), 95–103. https://doi.org/10.1007/s11745-010-3494-0; Cherad, R., Onwudili, J. A., Biller, P., Williams, P. T., & Ross, A. B. (2016a). Hydrogen production from the catalytic supercritical water gasification of process water generated from hydrothermal liquefaction of microalgae. Fuel, 166, 24–28. https://doi.org/10.1016/j.fuel.2015.10.088; Chiaramonti, D., Oasmaa, A., & Solantausta, Y. (2007). Power generation using fast pyrolysis liquids from biomass. Renewable and Sustainable Energy Reviews, 11(6), 1056–1086. https://doi.org/10.1016/j.rser.2005.07.008; Christensen, P. S., Peng, G., Vogel, F., & Iversen, B. B. (2014). Hydrothermal liquefaction of the microalgae Phaeodactylum tricornutum: Impact of reaction conditions on product and elemental distribution. Energy and Fuels, 28(9), 5792–5803. https://doi.org/10.1021/ef5012808; Ciabatti, I., Tognotti, F., & Lombardi, L. (2010). Treatment and reuse of dyeing effluents by potassium ferrate. Desalination, 250(1), 222–228. https://doi.org/10.1016/j.desal.2009.06.019; Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R., & Steyer, J. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207–214. https://doi.org/10.1016/j.biortech.2010.06.154; Corley, R. (1998). Productividad de la palma de aceite Aspectos fisiológicos. Palmas, 19(Especial), 162–168.; Costanzo, W., Jena, U., Hilten, R., Das, K. C., & Kastner, J. R. (2015). Low temperature hydrothermal pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams. Algal Research, 12, 377–387. https://doi.org/10.1016/j.algal.2015.09.019; Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9; Croiset, E., Rice, S. F., & Hanush, R. G. (1997). Hydrogen Peroxide Decomposition in Supercritical Water. AIChE Journal, 43(9), 2343–2352. https://doi.org/10.1002/aic.690430919; Cui, S., & Brummer, Y. (2010). Understanding Carbohydrate Analysis. In Food Carbohydrates (pp. 67–104). Taylor & Francis Group. https://doi.org/10.1201/9780203485286.ch2; Dannis, M. (1951). Determination of Phenols by the Amino-Antipyrine Method. Sewage and Industrial Wastes, 23(12), 1516–1522.; Debellefontaine, H., Chakchouk, M., Foussard, J. N., Tissot, D., & Striolo, P. (1996). Treatment of organic aqueous wastes: Wet air oxidation and wet peroxide oxidation ®. Environmental Pollution, 92(2), 155–164. https://doi.org/10.1016/0269-7491(95)00100-X; Demirbas, A. (2016). Calculation of higher heating values of fatty acids. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(18), 2693–2697. https://doi.org/10.1080/15567036.2015.1115924; Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0; Deniel, M., Haarlemmer, G., Roubaud, A., Weiss-hortala, E., & Fages, J. (2016). Bio-oil Production from Food Processing Residues: Improving the Bio-oil Yield and Quality by Aqueous Phase Recycle in Hydrothermal Liquefaction of Blackcurrant ( Ribes nigrum L .) Pomace Maxime De n. Energy and Fuels, 5. https://doi.org/10.1021/acs.energyfuels.6b00441; Dhankhar, R., & Hooda, A. (2011). Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467–491. https://doi.org/10.1080/09593330.2011.572922; Du, Z., Hu, B., Shi, A., Ma, X., Cheng, Y., Chen, P., Liu, Y., Lin, X., & Ruan, R. (2012). Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresource Technology, 126, 354–357. https://doi.org/10.1016/j.biortech.2012.09.062; Duan, P., Yang, S., Xu, Y., Wang, F., Zhao, D., Weng, Y., & Shi, X. (2018). Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy. https://doi.org/10.1016/j.energy.2018.05.044; Dubber, D., & Gray, N. F. (2010). Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. Journal of Environmental Science and Health, Part A, 45(12), 1595–1600. https://doi.org/10.1080/10934529.2010.506116; Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017; Eboibi, B. E., Lewis, D. M., Ashman, P. J., & Chinnasamy, S. (2014). Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Bioresource Technology, 170, 20–29. https://doi.org/10.1016/j.biortech.2014.07.083; Edmundson, S., Huesemann, M., Kruk, R., Lemmon, T., Billing, J., Schmidt, A., & Anderson, D. (2017). Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction. Algal Research, July, 0–1. https://doi.org/10.1016/j.algal.2017.07.016; Ekpo, U., Ross, A. B., Camargo-valero, M. A., & Williams, P. T. (2016). A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae , manure and digestate. Bioresource Technology, 200, 951–960. https://doi.org/10.1016/j.biortech.2015.11.018; El-Shimi, H. I., Attia, N. K., El-Sheltawy, S. T., & El-Diwani, G. I. (2013). Biodiesel Production from Spirulina-Platensis Microalgae by In-Situ Transesterification Process. Journal of Sustainable Bioenergy Systems, 3(9), 224–233. https://doi.org/http://dx.doi.org/10.4236/jsbs.2013.33031; Elliott, D. C., Hart, T. R., Schmidt, A. J., Neuenschwander, G. G., Rotness, L. J., Olarte, M. V, Zacher, A. H., Albrecht, K. O., Hallen, R. T., & Holladay, J. E. (2013). Process development for hydrothermal liquefaction of algae feedstocks in a continuous- fl ow reactor. Algal Research, 2(4), 445–454. https://doi.org/10.1016/j.algal.2013.08.005; Environment Agency. (2007). Proposed EQS for Water Framework Directive Annex VIII substances: 2,4-dichlorophenol.; EPA. (1978). Method 420.1 : Phenolics ( Spectrophotometric, Manual 4 AAP With Distillation ).; Erkelens, M., Ball, A. S., & Lewis, D. M. (2015a). Bioresource Technology The application of activated carbon for the treatment and reuse of the aqueous phase derived from the hydrothermal liquefaction of a halophytic Tetraselmis sp . Bioresource Technology, 182, 378–382. https://doi.org/10.1016/j.biortech.2015.01.129; Erkelens, M., Ball, A. S., & Lewis, D. M. (2015b). The application of activated carbon for the treatment and reuse of the aqueous phase derived from the hydrothermal liquefaction of a halophytic Tetraselmis sp . BIORESOURCE TECHNOLOGY, 1–5. https://doi.org/10.1016/j.biortech.2015.01.129; Erkonak, H., Sogut, O. O., & Akgun, M. (2008). Treatment of olive mill wastewater by supercritical water oxidation. Journal of Supercritical Fluids, 46, 142–148. https://doi.org/10.1016/j.supflu.2008.04.006; Faeth, J. L., Savage, P. E., Jarvis, J. M., Mckenna, A. M., & Savage, P. E. (2016). Characterization of Products from Fast and Isothermal Hydrothermal Liquefaction of Microalgae. AIChE Journal, 62(3). https://doi.org/10.1002/aic; Faeth, J. L., Valdez, P. J., & Savage, P. E. (2013). Fast hydrothermal liquefaction of nannochloropsis sp. to produce biocrude. Energy and Fuels, 27(3), 1391–1398. https://doi.org/10.1021/ef301925d; Fiorentino, A., Gentili, A., Isidori, M., Monaco, P., Nardelli, A., Parrella, A., & Temussi, F. (2003). Environmental Effects Caused by Olive Mill Wastewaters : Toxicity Comparison of Low-Molecular-Weight Phenol Components. Journal of Agricultural and Food Chemistry, 51, 1005–1009.; Frank, E. D., Elgowainy, A., & Han, J. (2013). Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitig Adapt Strateg Glob Change, 18, 137–158. https://doi.org/10.1007/s11027-012-9395-1; Fricke, K., Santen, H., Wallmann, R., Hüttner, A., & Dichtl, N. (2007). Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Management, 27(1), 30–43. https://doi.org/10.1016/j.wasman.2006.03.003; Frings, C., & Dunn, R. (1970). A Colorimetric Method for Determination of Total Serum Lipids Based on the Sulfo-phospho-vanillin Reaction. American Journal of Clinical Pathology, 53(1), 89–91. https://doi.org/10.1093/ajcp/53.1.89; Fu, W., Gudmundsson, O., Feist, A. M., Herjolfsson, G., Brynjolfsson, S., & Palsson, B. Ø. (2012). Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology, 161(3), 242–249. https://doi.org/10.1016/j.jbiotec.2012.07.004; Fuhs, G. W., & Chen, M. (1975). Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbial Ecology, 2(2), 119–138. https://doi.org/10.1007/BF02010434; Fushimi, C., Kakimura, M., Tomita, R., Umeda, A., & Tanaka, T. (2016). Enhancement of nutrient recovery from microalgae in hydrothermal liquefaction using activated carbon. Fuel Processing Technology, 148, 282–288. https://doi.org/10.1016/j.fuproc.2016.03.006; Gai, C., Zhang, Y., Chen, W.-T., Zhou, Y., Schideman, L., Zhang, P., Tommaso, G., Kuo, C.-T., & Dong, Y. (2014). Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresource Technology, 43(6), 403–408. https://doi.org/10.1016/j.biortech.2014.10.118; Gamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F., & Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 101(1), 109–116. https://doi.org/10.1016/S0378-7753(01)00707-8; García-jarana, M. B., Kings, I., Sánchez-oneto, J., Portela, J. R., & Al-duri, B. (2013). The Journal of Supercritical Fluids Supercritical water oxidation of nitrogen compounds with multi-injection of oxygen. The Journal of Supercritical Fluids, 80(2), 23–29. https://doi.org/10.1016/j.supflu.2013.04.004; Garcia Alba, L., Torri, C., Samor??, C., Van Der Spek, J., Fabbri, D., Kersten, S. R. A., & Brilman, D. W. F. (2012). Hydrothermal treatment (HTT) of microalgae: Evaluation of the process as conversion method in an algae biorefinery concept. Energy and Fuels, 26(1), 642–657. https://doi.org/10.1021/ef201415s; Garcia, L., Torri, C., Fabbri, D., Kersten, S. R. A., & Wim, D. W. F. (2013). Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae. Chemical Engineering Journal, 228, 214–223. https://doi.org/10.1016/j.cej.2013.04.097; Georgiou, C. D., Grintzalis, K., Zervoudakis, G., & Papapostolou, I. (2008). Mechanism of Coomassie brilliant blue G-250 binding to proteins: A hydrophobic assay for nanogram quantities of proteins. Analytical and Bioanalytical Chemistry, 391(1), 391–403. https://doi.org/10.1007/s00216-008-1996-x; Gernaey, K. V., Van Loosdrecht, M. C. M., Henze, M., Lind, M., & Jørgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: State of the art. Environmental Modelling and Software, 19(9), 763–783. https://doi.org/10.1016/j.envsoft.2003.03.005; Glaze, W. H., Kang, J. W., & Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, 9(4), 335–352. https://doi.org/10.1080/01919518708552148; Gonçalves, R., Frazao, A., Pedrosa, R., Spindola, D., Cristina, V., Brasileiro-Vidal, A. C., De Araújo, D., & Marques, A. (2018). Chemosphere Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products. Chemosphere, 204, 344–350. https://doi.org/10.1016/j.chemosphere.2018.04.039; Gopalan, S., & Savage, P. E. (1995). A Reaction Network Model for Phenol Oxidation in Supercritical Water. AIChE Journal, 41(8).; Griffiths, M. J., Hille, R. P. Van, & Harrison, S. T. L. (2014). The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Applied Microbiology and Biotechnology, 98, 2345–2356. https://doi.org/10.1007/s00253-013-5442-4; Guo, Y., Yeh, T., Song, W., Xu, D., & Wang, S. (2015). A review of bio-oil production from hydrothermal liquefaction of algae. Renewable and Sustainable Energy Reviews, 48, 776–790. https://doi.org/10.1016/j.rser.2015.04.049; Haber, F., & Weiss, J. (1932). The Catalytic Decom position o f Hydrogen Peroxide by Iron Salts *. 332–351.; He, Z., Xu, D., Liu, L., Wang, Y., Wang, S., Guo, Y., & Jing, Z. (2018). Product characterization of multi-temperature steps of hydrothermal liquefaction of Chlorella microalgae. Algal Research, 33(January), 8–15. https://doi.org/10.1016/j.algal.2018.04.013; Heredia-arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35, 2245–2253. https://doi.org/10.1016/j.biombioe.2011.02.036; Hii, K., Baroutian, S., Parthasarathy, R., Gapes, D. J., & Eshtiaghi, N. (2014). A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment. BIORESOURCE TECHNOLOGY, 155, 289–299. https://doi.org/10.1016/j.biortech.2013.12.066; HiP. (n.d.). High Pressure Equipment. Technical Information. https://www.highpressure.com/; Hognon, C., Delrue, F., & Texier, J. (2014). Comparison of pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii . Growth studies on the recovered hydrothermal aqueous phase. Biomass and Bioenergy, 73, 23–31. https://doi.org/10.1016/j.biombioe.2014.11.025; Hon, T. H. E., & Costa, M. (2016). Shell Sustainability Report 2016. Royal Dutch Shell Plc.; Hosseini, S. E., Wahid, M. A., Salehirad, S., & Seis, M. M. (2013). Evaluation of Palm Oil Combustion Characteristics by Using the Chemical Equilibrium with Application (CEA) Software. Applied Mechanics and Materials, 388, 268–272. https://doi.org/10.4028/www.scientific.net/AMM.388.268; Hu, Y., Feng, S., Yuan, Z., Xu, C. C., & Bassi, A. (2017). Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.05.033; IEA, & OECD. (2016). World Energy Outlook: Energy and Air Pollution.; Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635.; Jena, U., & Das, K. C. (2011). Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy and Fuels, 25(11), 5472–5482. https://doi.org/10.1021/ef201373m; Jena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102(10), 6221–6229. https://doi.org/10.1016/j.biortech.2011.02.057; Jena, U., Vaidyanathan, N., Chinnasamy, S., & Das, K. C. (2011a). Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresource Technology, 102(3), 3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111; Jena, U., Vaidyanathan, N., Chinnasamy, S., & Das, K. C. (2011b). Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresource Technology, 102(3), 3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111; Jiang, J., & Savage, P. E. (2018). Metals and Other Elements in Biocrude from Fast and Isothermal Hydrothermal Liquefaction of Microalgae. Energy and Fuels, 32(4), 4118–4126. https://doi.org/10.1021/acs.energyfuels.7b03144; Jones, C., Hare, D., & Compton, S. (1989). Measuring Plant Protein with the Bradford Assay. 1 . Evaluation and Standard Method. Journal of Chemical Ecology, 15(3).; K. Mandalam, R., & O Palsson, B. (1998). Elemental Balancing of Biomass and Medium Composition Enhances Growth Capacity in High-density Chlorella vulgaris Cultures. Biotechnology and Bioengineering, 59, 605–611.; Kabadayi, A., Cem, I., & Yanik, J. (2017). Bioresource Technology Effects of spent liquor recirculation in hydrothermal carbonization. Bioresource Technology, 226, 89–93. https://doi.org/10.1016/j.biortech.2016.12.015; Kasina, M., Wendorff-Belon, M., Kowalski, P. R., & Michalik, M. (2019). Characterization of incineration residues from wastewater treatment plant in Polish city: a future waste based source of valuable elements? Journal of Material Cycles and Waste Management, 21(4), 885–896. https://doi.org/10.1007/s10163-019-00845-1; Killilea, R., Swallow, K. C., & Hong, G. T. (1992). The Fate of Nitrogen in Supercritical-Water Oxidation. The Journal of Supercritical Fluids, 5, 72–78.; Kim, J., Chung, Y., Shin, D., Kim, M., Lee, Y., Lim, Y., & Lee, D. (2003). Chlorination by-products in surface water treatment process. Desalination, 151(1), 1–9. https://doi.org/10.1016/S0011-9164(02)00967-0; Kim, W., Min, J., Geun, P., Gim, H., Si, D. K., & Kim, W. (2012). Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess and Biosystems Engineering, 35, 19–27. https://doi.org/10.1007/s00449-011-0612-1; Knight, J. A., Anderson, S., & Rawle, J. M. (1972). Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clinical Chemistry, 18(3), 199–202.; Knight, Joseph A, Anderson, S., & Rawle, J. M. (1972). ChemicalBasisof the Sulfo-phospho-vanillin Reactionfor Estimating Total Serum Lipids. Clinical Chemistry, 18(3), 199–202. https://doi.org/10.1093/clinchem/18.3.199; Kolaczkowski, S. T., Plucinski, P., Beltran, F. J., Rivas, F. J., & Mclurgh, D. B. (1999). Wet air oxidation : a review of process technologies and aspects in reactor design. 73, 143–160.; Kondru, A. K., Kumar, P., & Chand, S. (2009). Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst. Journal of Hazardous Materials, 166(1), 342–347. https://doi.org/10.1016/j.jhazmat.2008.11.042; Kritzer, P. (2004). Corrosion in high-temperature and supercritical water and aqueous solutions : A review. The Journal of Supercritical Fluids, 29(4), 1–29. https://doi.org/10.1016/S0896-8446(03)00031-7; Kumar, K., Dasgupta, C. N., & Das, D. (2014). Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology, 167, 358–366. https://doi.org/10.1016/j.biortech.2014.05.118; Kumar, S. (2012). Sub- and Supercritical Water-Based Processes for Microalgae to Biofuels (pp. 467–493). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_25; Kumar, V., Nanda, M., Joshi, H. C., Singh, A., & Sharma, S. (2018). Production of biodiesel and bioethanol using algal biomass harvested from fresh water river. Renewable Energy, 116, 606–612. https://doi.org/10.1016/j.renene.2017.10.016; L.S. Clesceri, A.R. Greenberg, R. R. T. (2010). Determinación colorimétrica de fenoles en agua por el método de la 4- aminoantipirina. 5(Revisión 1), 4–9.; Lachmann, S. C., & Spijkerman, E. (2019). Nitrate or ammonium : Influences of nitrogen source on the physiology of a green alga. Ecology and Evolution, 10, 1070–1082. https://doi.org/10.1002/ece3.4790; Laliberté, G., & De La Noüe, J. (1993). Auto-, hetero- and mixotrophic-growt of chlamydomonas humicola on acetate. Journal of Phycologie, 29(6), 612–620.; Lasso, A. M. (2007). Fósforo soluble en agua por el método del ácido ascórbico. Instituto De Hidrología, Meteorología y Estudios Ambientales, 3, 1–11. http://www.ideam.gov.co/; Lee, G., Nunoura, T., Matsumura, Y., & Yamamoto, K. (2002). Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions. Journal of Supercritical Fluids, 24, 239–250.; Lee, R. A., & Lavoie, J. (2012). From first- to third-generation biofuels : Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, August, 6–11. https://doi.org/10.2527/af.2013-0010; Leng, L., & Huang, H. (2018). An overview of the e ff ect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270(September), 627–642. https://doi.org/10.1016/j.biortech.2018.09.030; Li, C., Yang, X., Zhang, Z., Zhou, D., Zhang, L., Zhang, S., & Chen, J. (2013). Hydrothermal Liquefaction of Desert Shrub Salix psammophila to High Value - added Chemicals and Hydrochar with Recycled Processing Water. Bioresource Technology, 8(2009), 2981–2997.; Li, H., Liu, Z., Zhang, Y., Li, B., Lu, H., Duan, N., Liu, M., Zhu, Z., & Si, B. (2014). Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresource Technology, 154, 322–329. https://doi.org/10.1016/j.biortech.2013.12.074; Li, J., Wang, S., Li, Y., Jiang, Z., Xu, T., & Zhang, Y. (2020). Supercritical water oxidation and process enhancement of nitrogen-containing organics and ammonia. Water Research, 185(x), 116222. https://doi.org/10.1016/j.watres.2020.116222; Li, J., Wang, S., Li, Y., Ren, M., Jiang, Z., Zhang, J., & Yang, C. (2020). Experimental research and commercial plant development for harmless disposal and energy utilization of petrochemical sludge by supercritical water oxidation. Chemical Engineering Research and Design, 162, 258–272. https://doi.org/10.1016/j.cherd.2020.08.006; Li, Yalin, Leow, S., Fedders, A. C., Sharma, B. K., Guest, J. S., & Strathmann, T. J. (2017). Quantitative multiphase model for hydrothermal liquefaction of algal biomass. Green Chemistry, 19(4), 1163–1174. https://doi.org/10.1039/c6gc03294j; Li, Yanhui, & Wang, S. (2020). Supercritical Water Oxidation for Environmentally Friendly Treatment of Organic Wastes. In I. Pioro (Ed.), Advanced Supercritical Fluids Technologies. IntechOpen.; Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic , heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049. https://doi.org/10.1007/s10529-009-9975-7; Lin, S. H., & Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050–2056. https://doi.org/10.1016/S0043-1354(97)00024-9; Liu, L., Zhao, Y., Jiang, X., Wang, X., & Liang, W. (2018). Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium. Bioresource Technology, 262(April), 342–346. https://doi.org/10.1016/j.biortech.2018.04.092; Liu, X., Saydah, B., Eranki, P., Colosi, L. M., Mitchell, B. G., Rhodes, J., & Clarens, A. F. (2013). Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource Technology, 148, 163–171. https://doi.org/10.1016/j.biortech.2013.08.112; López Barreiro, D., Bauer, M., Hornung, U., Posten, C., Kruse, A., & Prins, W. (2015). Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Research, 9, 99–106. https://doi.org/10.1016/j.algal.2015.03.007; López Barreiro, D., Prins, W., Ronsse, F., & Brilman, W. (2013a). Hydrothermal liquefaction ( HTL ) of microalgae for biofuel production : State of the art review and future prospects. Biomass and Bioenergy, 53(2), 113–127. https://doi.org/10.1016/j.biombioe.2012.12.029; López Barreiro, D., Riede, S., Hornung, U., Kruse, A., & Prins, W. (2015). Hydrothermal liquefaction of microalgae: Effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil. Algal Research, 12, 206–212. https://doi.org/10.1016/j.algal.2015.08.025; Luis, A. De, Lombraña, J. I., Varona, F., & Menéndez, A. (2009). Kinetic study and hydrogen peroxide consumption of phenolic compounds oxidation by Fenton’s reagent. Korean Journal of Chemical Engineering, 26(1), 48–56.; Luz, E., Moreno, M., Hernandez, J., & Bashan, Y. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research, 36, 2941–2948.; Maddi, B., Panisko, E., Wietsma, T., Lemmon, T., Swita, M., Albrecht, K., & Howe, D. (2016). Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae. Biomass and Bioenergy, 93, 122–130. https://doi.org/10.1016/j.biombioe.2016.07.010; Madsen, R. B., Biller, P., Jensen, M. M., Becker, J., Iversen, B. B., & Glasius, M. (2016). Predicting the Chemical Composition of Aqueous Phase from Hydrothermal Liquefaction of Model Compounds and Biomasses. Energy and Fuels, 30(12), 10470–10483. https://doi.org/10.1021/acs.energyfuels.6b02007; Márquez, J. J. R., Levchuk, I., & Sillanpää, M. (2018). Application of catalytic wet peroxide oxidation for industrial and urban wastewater treatment: A review. Catalysts, 8(12). https://doi.org/10.3390/catal8120673; Martino, C. J., & Savage, P. E. (1997). Supercritical Water Oxidation Kinetics , Products , and Pathways for CH 3 - and CHO-Substituted Phenols. Industrial & Engineering Chemistry Research, 36, 1391–1400. https://doi.org/10.1021/ie960697q; Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020; Matsumura, Y., Minowa, T., Potic, B., Kersten, S. R. A., Prins, W., Van Swaaij, W. P. M., Van De Beld, B., Elliott, D. C., Neuenschwander, G. G., Kruse, A., & Antal, M. J. (2005). Biomass gasification in near- and super-critical water: Status and prospects. Biomass and Bioenergy, 29(4), 269–292. https://doi.org/10.1016/j.biombioe.2005.04.006; McMahon, A., Lu, H., & Butovich, I. A. (2013). The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions. Lipids, 48(5), 513–525. https://doi.org/10.1007/s11745-013-3755-9; Megharaj, M., Pearson, H. W., & Venkateswarlu, K. (1992). Effects of phenolic compounds on growth and metabolic activities of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Plant and Soil, 140, 25–34.; Melgarejo, L. M. (2010). Experimentos en fisiología vegetal. Universidad Nacional de Colombia.; Miao, X., Wu, Q., & Yang, C. (2004). Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis, 71(2), 855–863. https://doi.org/10.1016/j.jaap.2003.11.004; Michalak, I., Marycz, K., Basińska, K., & Chojnacka, K. (2014). Using SEM-EDX and ICP-OES to investigate the elemental composition of green macroalga vaucheria sessilis. Scientific World Journal, 2014. https://doi.org/10.1155/2014/891928; Resolucion 631-2015, Pub. L. No. 631, 62 (2015).; Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J. W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077; Munoz, M., Pedro, Z. M. De, Casas, J. A., & Rodriguez, J. J. (2013). Improved wet peroxide oxidation strategies for the treatment of chlorophenols. Chemical Engineering Journal, 228, 646–654. https://doi.org/10.1016/j.cej.2013.05.057; Myers, R. H., & Montgomery, D. C. (1997). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. In Journal of Statistixal Planning and Interference (Vol. 59). Wiley.; Neveux, N., Yuen, A. K. L., Jazrawi, C., Magnusson, M., Haynes, B. S., Masters, A. F., Montoya, A., Paul, N. A., Maschmeyer, T., & Nys, R. De. (2014). Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresource Technology, 155, 334–341. https://doi.org/10.1016/j.biortech.2013.12.083; Nielsen, S. S. (2017). Phenol-Sulfuric Acid Method for Total Carbohydrates. In Food Analysis Laboratory Manual (pp. 47–53). Springer. https://doi.org/10.1007/978-3-319-44127-6; NIVA. (2008). The toxicity of selected amines and secondary products to aquatic organisms: A review (Issue 5698).; Papadopoulos, A. E., Fatta, D., & Loizidou, M. (2007). Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load. Journal of Hazardous Materials, 146, 558–563. https://doi.org/10.1016/j.jhazmat.2007.04.083; Patel, B., Guo, M., Chong, C., Sarudin, S. H. M., & Hellgardt, K. (2016). Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase. Science of the Total Environment, 568, 489–497. https://doi.org/10.1016/j.scitotenv.2016.06.041; Patel, B., & Hellgardt, K. (2015). Hydrothermal upgrading of algae paste in a continuous flow reactor. Bioresource Technology, 191, 460–468. https://doi.org/10.1016/j.biortech.2015.04.012; Pekakis, P. A., Xekoukoulotakis, N. P., & Ã, D. M. (2006). Treatment of textile dyehouse wastewater by TiO 2 photocatalysis. Water Research, 40, 1276–1286. https://doi.org/10.1016/j.watres.2006.01.019; Peng, W., Wu, Q., Tu, P., & Zhao, N. (2001). Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresource Technology, 80(1), 1–7. https://doi.org/10.1016/S0960-8524(01)00072-4; Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. https://doi.org/10.1039/b810100k; Phani, K., Dandamudi, R., Muppaneni, T., Markovski, J. S., Lammers, P., & Deng, S. (2019). Hydrothermal liquefaction of green microalga Kirchneriella sp . under sub- and super-critical water conditions. Biomass and Bioenergy, 120(May 2018), 224–228. https://doi.org/10.1016/j.biombioe.2018.11.021; Portela, J. R., Nebot, E., & Mart, E. (2001). Kinetic comparison between subcritical and supercritical water oxidation of phenol. Chemical Engineering Journal, 81, 287–299.; Posten, C., & Schaub, G. (2009). Microalgae and terrestrial biomass as source for fuels-A process view. Journal of Biotechnology, 142(1), 64–69. https://doi.org/10.1016/j.jbiotec.2009.03.015; Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53(2), 150–154. https://doi.org/10.1111/j.1472-765X.2011.03082.x; Qian, L., Wang, S., Xu, D., Guo, Y., Tang, X., & Wang, L. (2015). Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation. Bioresource Technology, 176, 218–224. https://doi.org/10.1016/j.biortech.2014.10.125; Raheem, A., Sivasangar, S., Wan Azlina, W. A. K. G., Taufiq Yap, Y. H., Danquah, M. K., & Harun, R. (2015). Thermogravimetric study of Chlorella vulgaris for syngas production. Algal Research, 12, 52–59. https://doi.org/10.1016/j.algal.2015.08.003; Rai, M. P., Nigam, S., & Sharma, R. (2013). Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass and Bioenergy, 58, 251–257. https://doi.org/10.1016/j.biombioe.2013.08.038; Richmond, A. (2004). Handbook of microalgal culture: biotechnology and applied phycology (1st ed.). Blakwell Science Ltd. https://doi.org/10.1002/9780470995280; Rizzo, A. M., Prussi, M., Bettucci, L., Libelli, I. M., & Chiaramonti, D. (2013). Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Applied Energy, 102, 24–31. https://doi.org/10.1016/j.apenergy.2012.08.039; Rodriguez, C. H. (2015). El Instituto De Hidrología, Meteorología y Estudios Ambientales. 9. http://www.ideam.gov.co/; Rueda-Marquez, J. J., Levchuk, I., Salcedo, I., Acevedo-merino, A., & Manzano, M. A. (2016). Post-treatment of re fi nery wastewater ef fl uent using a combination of AOPs ( H2O2 photolysis and catalytic wet peroxide oxidation ) for possible water reuse . Comparison of low and medium pressure lamp performance. Water Research, 91, 86–96. https://doi.org/10.1016/j.watres.2015.12.051; Rueda-Márquez, J. J., Pintado-Herrera, M. G., Martín-Díaz, M. L., Acevedo-Merino, A., & Manzano, M. A. (2015). Combined AOPs for potential wastewater reuse or safe discharge based on multi-barrier treatment (microfiltration-H2O2/UV-catalytic wet peroxide oxidation). Chemical Engineering Journal, 270, 80–90. https://doi.org/10.1016/j.cej.2015.02.011; Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3(1), 61–65. https://doi.org/10.1016/j.algal.2013.12.004; Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014a). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35(July), 265–278. https://doi.org/10.1016/j.rser.2014.04.007; Sanabria, D. (2004). Fósforo total en agua por digestión ácida, método del ácido ascórbico. In IDEAM (Vol. 008). http://www.fing.edu.uy/imfia/cursos/hidrometria/material/Guia_de_Monitoreo.pdf; Sanz-luque, E., Chamizo-ampudia, A., Llamas, A., Galvan, A., & Fernandez, E. (2015). Understanding nitrate assimilation and its regulation in microalgae Overview of Nitrate Assimilation. Frontiers in Plant Science, 6(October). https://doi.org/10.3389/fpls.2015.00899; Savage, P. E. (1999). Organic Chemical Reactions in Supercritical Water. Chemical Reviews, 99(2), 603–622. https://doi.org/10.1021/cr9700989; Savage, P. E., Duan, P., & Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, January 2011, 52–61. https://doi.org/10.1021/ie100758s; Scragg, A. H. (2006). The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1. Enzyme and Microbial Technology, 39(4), 796–799. https://doi.org/10.1016/j.enzmictec.2005.12.018; Selvaratman, T., Reddy, H., Muppaneni, T., Holguin, F. O., Nirmalakhandan, N., Lammers, P. J., & Deng, S. (2015). Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria. Algal Research, 12, 74–79. https://doi.org/10.1016/j.algal.2015.07.007; Shakya, R. (2014). Hydrothermal Liquefaction of Algae for Bio-oil Production. Auburn University.; Shakya, R., Adhikari, S., Mahadevan, R., Shanmugam, S. R., Nam, H., Barbary, E., & Dempster, T. A. (2017). Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. Bioresource Technology, 243, 1112–1120. https://doi.org/10.1016/j.biortech.2017.07.046; Shanmugam, S. R., Adhikari, S., & Shakya, R. (2017). Hydrothermal Liquefaction of Algae Abstract : Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.01.031; Shanmugam, S. R., Adhikari, S., Wang, Z., & Shakya, R. (2017). Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production. Bioresource Technology, 223, 115–120. https://doi.org/10.1016/j.biortech.2016.10.008; Shen, Q. H., Gong, Y. P., Fang, W. Z., Bi, Z. C., Cheng, L. H., Xu, X. H., & Chen, H. L. (2015). Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresource Technology, 193, 68–75. https://doi.org/10.1016/j.biortech.2015.06.050; Shen, Y., Yuan, W., Pei, Z. J., Wu, Q., & Mao, E. (2009). Microalgae mass production methods. Transactions of the ASABE, 52(4), 1275–1287. https://doi.org/10.1023/A:1012663213153; Shigeoka, T., Sato, Y., Takeda, Y., Yoshida, K., & Yamauchi, F. (1988). ACUTE TOXICITY OF CHLOROPHENOLS TO GREEN ALGAE , SELENASTRUM CAPRICORNUTUM AND STRUCTURE-ACTIVITY RELATIONSHIPS. Environmental Toxicology and Chemistry, 7, 847–854.; Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of ash in biomass: Laboratory Analytical Procedure (LAP). Nrel/Tp-510-42622, April 2005, 18. https://doi.org/NREL/TP-510-42619; Stark, K., Plaza, E., & Hultman, B. (2006). Phosphorus release from ash , dried sludge and sludge residue from supercritical water oxidation by acid or base. Chemosphere, 62, 827–832. https://doi.org/10.1016/j.chemosphere.2005.04.069; Stendahl, K. (2018). Phosphate recovery from sewage sludge in combination with supercritical water oxidation. Water Science and Technology, 48(1), 185–190.; Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342. https://doi.org/10.1016/j.rser.2012.03.047; Talbot, C., Garcia-moscoso, J., Drake, H., Stuart, B. J., & Kumar, S. (2016). Cultivation of microalgae using fl ash hydrolysis nutrient recycle. Algal Research, 18, 191–197. https://doi.org/10.1016/j.algal.2016.06.021; Tan, X., Meng, J., Tang, Z., Yang, L., & Zhang, W. (2020). Chemosphere Optimization of algae mixotrophic culture for nutrients recycling and biomass / lipids production in anaerobically digested waste sludge by various organic acids addition. Chemosphere, 244, 125509. https://doi.org/10.1016/j.chemosphere.2019.125509; Tantiphiphatthana, M., Peng, L., Jitrwung, R., & Yoshikawa, K. (2015). Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae. International Scholarly and Scientific Research & Innovation, 9(5), 503–511.; Taylor, P., Wang, Q., Lv, Y., Zhang, R., & Bi, J. (2013). Desalination and Water Treatment Treatment of cotton printing and dyeing wastewater by supercritical water oxidation. Desalination and Water Treatment, 51(12), 37–41. https://doi.org/10.1080/19443994.2013.792164; Terry, K. L., & Raymond, L. P. (1985). System design for the autotrophic production of microalgae. Enzyme and Microbial Technology, 7(10), 474–487. https://doi.org/10.1016/0141-0229(85)90148-6; Teymouri, A., Barbera, E., Sforza, E., Morosinotto, T., Bertucco, A., & Kumar, S. (2016). Integration of Biofuels Intermediates Production and Nutrients Recycling in the Processing of a Marine Algae. AIChE Journal, 59(6), 663–667. https://doi.org/10.1002/aic.; Tian, C., Li, B., Liu, Z., Zhang, Y., & Lu, H. (2014). Hydrothermal liquefaction for algal biorefinery: A critical review. Renewable and Sustainable Energy Reviews, 38, 933–950. https://doi.org/10.1016/j.rser.2014.07.030; Timmons, M. B., & Losordo, T. (1994). Aquaculture water reuse systems : Engineering design and management. Elsevier Science.; Tommaso, G., Chen, W., Li, P., Schideman, L., & Zhang, Y. (2015). Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresource Technology, 178, 139–146. https://doi.org/10.1016/j.biortech.2014.10.011; Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342. https://doi.org/10.1016/j.energy.2011.03.013; United Nations. (2000). United Nations Millennium Declaration: Resolution adapted by the General Assembly. General Assembly, September, 9. http://www.un.org/en/events/pastevents/millennium_summit.shtml; UPME, & BID. (2015). Integración de las energías renovables no convencionales en Colombia. http://www.upme.gov.co/Estudios/2015/Integracion_Energias_Renovables/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdf; Valdez, P. J., Dickinson, J. G., & Savage, P. E. (2011). Characterization of Product Fractions from Hydrothermal Liquefaction of Nannochloropsis sp . and the Influence of Solvents. Energy and Fuels, 25, 3235–3243.; Valdez, P. J., Nelson, M. C., Wang, H. Y., Lin, X. N., & Savage, P. E. (2012). Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 46, 317–331. https://doi.org/10.1016/j.biombioe.2012.08.009; Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168. https://doi.org/10.1016/j.jenvman.2011.09.012; Wang, J., Zhou, W., Chen, H., Zhan, J., He, C., & Wang, Q. (2019). Ammonium Nitrogen Tolerant Chlorella Strain Screening and Its Damaging Effects on Photosynthesis. Frontiers in Microbiology, 9(January), 1–13. https://doi.org/10.3389/fmicb.2018.03250; Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., & Ruan, R. (2010). Cultivation of Green Algae Chlorella sp . in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162, 1174–1186. https://doi.org/10.1007/s12010-009-8866-7; Widjaja, A., Chien, C. C., & Ju, Y. H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13–20. https://doi.org/10.1016/j.jtice.2008.07.007; Wiel, J. B. Vander, Mikulicz, J. D., Boysen, M. R., Hashemi, N., Kalgren, P., Nauman, L. M., Baetzold, S. J., Powell, G. G., & Nastaran, N. (2017). Characterization of Chlorella vulgaris and Chlorella protothecoides using multi-pixel photon counters in a 3D focusing opto fl uidic system. Royal Society of Chemistry Advances, 4402–4408. https://doi.org/10.1039/c6ra25837a; Wymer, P. E. O., & Thake, B. (1980). The Importance of Phosphorus in Microalgal Growth and Species Composition in Mixed Populations : Experiments and Simulations. Proceedings of the Royal Society of London, 209, 333–353. https://doi.org/10.1098/rspb.1980.0099; Xu, C., & Lad, N. (2008). Production of Heavy Oils with High Caloric Values by Direct Liquefaction of Woody Biomass in Sub / Near-critical Water. Energy and Fuels, 22(10), 635–642.; Xu, P., Janex, M. L., Savoye, P., Cockx, A., & Lazarova, V. (2002). Wastewater disinfection by ozone: Main parameters for process design. Water Research, 36(4), 1043–1055. https://doi.org/10.1016/S0043-1354(01)00298-6; Xu, Y., Zheng, X., Yu, H., & Hu, X. (2014). Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Bioresource Technology, 156, 1–5. https://doi.org/10.1016/j.biortech.2014.01.010; Yang, B., Cheng, Z., Tang, Q., & Shen, Z. (2018). Nitrogen transformation of 41 organic compounds during SCWO: A study on TN degradation rate, N-containing species distribution and molecular characteristics. Water Research. https://doi.org/10.1016/j.watres.2017.12.080; Yang, B., Cheng, Z., Yuan, T., & Shen, Z. (2018). Denitrification of ammonia and nitrate through supercritical water oxidation ( SCWO ): A study on the e ff ect of NO3− / NH4+ ratios , catalysts and auxiliary fuels. The Journal of Supercritical Fluids, 138(January), 56–62. https://doi.org/10.1016/j.supflu.2018.03.021; Yang, J. H., Shin, H. Y., Ryu, Y. J., & Lee, C. G. (2018). Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery. Journal of Industrial and Engineering Chemistry, 68, 267–273. https://doi.org/10.1016/j.jiec.2018.07.053; Yang, Y. F., Feng, C. P., Inamori, Y., & Maekawa, T. (2004). Analysis of energy conversion characteristics in liquefaction of algae. Resources Conservation & Recycling, 43, 21–33. https://doi.org/10.1016/j.resconrec.2004.03.003; Yeh, K., & Chang, J. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105, 120–127. https://doi.org/10.1016/j.biortech.2011.11.103; Yong, G., Ying, S., Loke, P., Tao, Y., & Lim, C. (2019). Reports Recent advances in algae biodiesel production : From upstream cultivation to downstream processing. Bioresource Technology Reports, 7(April), 100227. https://doi.org/10.1016/j.biteb.2019.100227; Yu, G, Zhang, Y., Schideman, L., Funk, T. L., & Wang, Z. (2011). Hydrothermal Liquefaction of Low Lipid Content Microalgae inot Biocrude Oil. American Society of Agricultural Engineers, 54(1), 239–246.; Yu, Guo, Zhang, Y., Guo, B., Funk, T., & Schideman, L. (2014). Nutrient Flows and Quality of Bio-crude Oil Produced via Catalytic Hydrothermal Liquefaction of Low-Lipid Microalgae. Bioenergy Research, 7(4), 1317–1328. https://doi.org/10.1007/s12155-014-9471-3; Yu, Guo, Zhang, Y., Schideman, L., Funk, T., & Wang, Z. (2011). Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy and Environmental Science, 4(11), 4587–4595. https://doi.org/10.1039/c1ee01541a; Zhang, H., Zhang, X., & Ding, L. (2020). Partial oxidation of phenol in supercritical water with NaOH and H 2 O 2 : Hydrogen production and polymer formation. Science of the Total Environment, 722, 137985. https://doi.org/10.1016/j.scitotenv.2020.137985; Zhang, L., Lu, H., Zhang, Y., Li, B., Liu, Z., Duan, N., & Liu, M. (2016). Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. Journal of Applied Phycology, 28(2), 1031–1039. https://doi.org/10.1007/s10811-015-0640-3; Zhu, Y., Albrecht, K. O., Elliott, D. C., Hallen, R. T., & Jones, S. B. (2013). Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels. Algal Research, 2(4), 455–464. https://doi.org/10.1016/j.algal.2013.07.003; Zhu, Y., Biddy, M. J., Jones, S. B., Elliott, D. C., & Schmidt, A. J. (2014). Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction ( HTL ) and upgrading. Applied Energy, 129, 384–394. https://doi.org/10.1016/j.apenergy.2014.03.053; Zhu, Z., Rosendahl, L., Sohail, S., Yu, D., & Chen, G. (2015). Hydrothermal liquefaction of barley straw to bio-crude oil : Effects of reaction temperature and aqueous phase recirculation. APPLIED ENERGY, 137, 183–192. https://doi.org/10.1016/j.apenergy.2014.10.005; Zhuang, X., Zhan, H., Song, Y., He, C., Huang, Y., & Yin, X. (2019). Insights into the evolution of chemical structures in lignocellulose and non- lignocellulose biowastes during hydrothermal carbonization ( HTC ). Fuel, 236(June 2018), 960–974. https://doi.org/10.1016/j.fuel.2018.09.019; Zimmermann, F. (1954). Waste disposal (Patent No. 2,665,249). United States Patent Office.; Zou, S., Wu, Y., Yang, M., Li, C., & Tong, J. (2009). Thermochemical catalytic liquefaction of the marine microalgae dunaliella tertiolecta and characterization of bio-oils. Energy and Fuels, 23(7), 3753–3758. https://doi.org/10.1021/ef9000105; https://repositorio.unal.edu.co/handle/unal/79961; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
18
المؤلفون: Larrahondo Chávez, Diego Alejandro
المساهمون: Vásquez Sarria, Nancy
المصدر: Universidad Autónoma de Occidente
Repositorio Institucional UAO
Asociación Española para la Calidad (AEC). (2014). Los Sistemas de Gestión Energética (SGE) [Ebook]. España: Centro Nacional de Información de la Calidad. Recuperado de https://www.aec.es/c/document_library/get_file?uuid=88f8ee2e-2656-4e02-aeaa-d081b96f59bd&groupId=10128 Andersson, E., Arfwidsson, O., Bergstrand, V., & Thollander, P. (2017). A study of the comparability of energy audit program evaluations. Journal of cleaner production, 142, 2133-2139. Basurko, O.C., Gabiña, G., Uriondo, Z., 2013. Energy performance of fishing vessels and potential savings. J. Clean. Prod. 54, 30–40. Bertoldi, P., 2001. Effective Policies and Measures in Energy Efficiency in End-Use Equipment and Industrial processes. In: Proceedings of the 2001 Workshop on Good Practices in Policies and Measurers. López Cardona, J. C. Criterios para la realización de una Auditoría Energética en usuarios Oficiales, Comerciales y Residenciales de Colombia (Doctoral dissertation, Universidad Nacional de Colombia-Sede Manizales). Recuperado de http://bdigital.unal.edu.co/58388/1/1053799930.2017.pdf ClimateWorks Foundation. (2017). Energy Efficiency-ClimateWorks Foundation. Recuperado de https://www.climateworks.org/portfolios/energy-efficiency/ CONSORCIO URECANCOL. (2000). Evaluación expost de las auditorías energéticas en el sector industrial de Colombia [Ebook]. Bogotá: UPME. Retrieved from http://bdigital.upme.gov.co/handle/001/880 Daly, H. E., (1973). Toward a steady-state economy (Vol. 2). San Francisco: WH Freeman. Recuperado de https://is.muni.cz/el/1423/jaro2015/ENS242/um/55677449/3_Daly_2008_Towards_a_Steady_State_Economy.pdf European Commission (EC), 2011. Communication from the Commission. Action Plan for Energy Efficiency: Realising the Potential. COM (2011)545. Recuperado dehttps://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0109:FIN:EN:PDF Hall, E. (2016). El Manejo de la Energía, más que una Alternativa, una Prioridad para la Gerencia de las Industrias de Hoy. Prisma Tecnológico, 2(1), 28-30. Herrera Ortiz, J. J., y Rengifo Castro, A. (2016). Auditoria energética en el Hotel Intercontinental Cali conforme a los lineamientos de la Norma ISO 50002. Universidad Autónoma de Occidente. Universidad Autónoma de Occidente. Recuperado de http://red.uao.edu.co/handle/10614/8843 International Energy Agency (IEA), 2017. World Energy Outlook 2017. Recuperado de https://www.iea.org/weo2017/ International Energy Agency (IEA), 2018. Energy Efficiency. The global exchange for energy efficiency policies, data and analysis. Recuperado de https://www.iea.org/efficiency2018/ International Organization for Standardization (ISO), 2018. ISO 50001:2018 Energy management systems--Requirements with guidance for use. Recuperado de https://www.iso.org/standard/51297.html International Organization for Standardization (ISO), 2014. ISO 50002:2014, Energy audits — Requirements with guidance for use. Recuperado de https://www.iso.org/standard/60088.html KfW, 2013. Energy Costs and Energy Efficiency in the German SME Sector. https://www.kfw.de/PDF/Download-Center/Konzernthemen/Research/PDFDokumente-Fokus-Volkswirtschaft/Fokus-englische-Dateien/Fokus-Nr.-40-Dezember-2013-_EN.pdf. Krämer, S., & Engell, S. (2018). Resource Efficiency of Processing Plants (1st ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Meadows, D.H., Meadows, D.L., Randers, J., and Behrens, W.W. III (1972) The Limits of Growth, A Report for the Club of Rome’s Project on the Predicament of Mankind, Universe Books, New York.NRDC, TERI, IGSD, 2018. Improving Air Conditioners in India: Cooling India with Less Warming Series – Affordable and Efficient Room Air Conditioners, assets.nrdc.org/sites/default/files/cooling-india-issue-brief-2018_0.pdf. Ramirez, C.A., Patel, M., Blok, K., 2005. The non-energy intensive manufacturing sector. An energy analysis relating to the Netherlands. Energy 30 (5), 749–767. Rosaura P. Castrillón, José P. Monteagudo, Aníbal Borroto, Enrique Ciro Quispe “Línea de Base Energética en la implementación de la norma ISO 50001. Estudios de casos”. El Hombre y la Máquina No. 46, enero-junio de 2015, pp.137-143. Rosaura P. Castrillón, Enrique Ciro Quispe, Adriana J. Hinestroza, Magdalena Urhan, Diego Fandiño, “Metodología para la implementación del sistema de Gestión Integral de la Energía. Fundamentos y casos prácticos.” Programa editorial Universidad Autónoma de Occidente, Santiago de Cali, pp.278. Schumacher, E. (1973) Small is Beautiful: Economics as if People Mattered, Harper & Row, New York. Shipley, A.M., Elliot, R.E., 2001. Energy efficiency programs for small and medium sized industry. In: Proceedings of the 2001 ACEEE summer study on energy efficiency in industry, vol. 1. American Council for an Energy-Efficient Economy, pp. 183–196. Thollander, P., Danestig, M., & Rohdin, P. (2007). Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs. Energy policy, 35(11), 5774-5783. Van der Hoeven, M., & Houssin, D. (2015). Energy technology perspectives 2015: mobilising innovation to accelerate climate action. International Energy Agency: Paris, France. Wagner, J. R., Mount, E. M., Giles, H. F., Wagner, J. R., Mount, E. M., & Giles, H. F. (2014). Extrusion Process. Extrusion, 3–11. https://doi.org/10.1016/B978-1-4377-3481-2.00001-6مصطلحات موضوعية: Recuperación de nitrógeno, Struvite, Ingeniería Ambiental, Aguas residuales-Análisis, Wastewater, Recuperación de nutrientes, Sewage-Analysis, Estruvita
وصف الملف: application/pdf; 121 páginas
-
19
المؤلفون: Castro Mora, Jose Alberto
المصدر: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instnameمصطلحات موضوعية: Renewable energy, Nutrient recovery, Anaerobic digestion, Membrane reactor, Máster Universitario en Ingeniería Hidráulica y Medio Ambiente-Màster Universitari en Enginyeria Hidràulica i Medi Ambient, Energía Renovable, Tratamiento de purines, Reactor de membranas, Recuperación de nutrientes, Slurry treatment, TECNOLOGIA DEL MEDIO AMBIENTE, Digestión anaerobia
وصف الملف: application/pdf
-
20
المؤلفون: Barquín Díez, Carmen
المساهمون: Domínguez Ramos, Antonio, Cobo Gutiérrez, Selene, Universidad de Cantabria
المصدر: UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)مصطلحات موضوعية: Nutrient recovery, Economía circular, Circular economy, Flujos residuales de nitrógeno, Simulación y optimización, Waste nitrogen flows, Simulation and optimization, Recuperación de nutrientes