يعرض 1 - 9 نتائج من 9 نتيجة بحث عن '"Recubrimiento de Barrera Térmica (TBC)"', وقت الاستعلام: 0.68s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: DYNA; Vol. 81 Núm. 185 (2014); 13-18 ; DYNA; Vol. 81 No. 185 (2014); 13-18 ; 2346-2183 ; 0012-7353

    وصف الملف: application/pdf; text/html

    Relation: https://revistas.unal.edu.co/index.php/dyna/article/view/33409/pdf_2; https://revistas.unal.edu.co/index.php/dyna/article/view/33409/53971; Boyce, P. M., Gas Turbine Engineering Handbook, Gulf Professional Publishing, Second Edition, 2002.; Padture ,N. P., et al. Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science 296, 280, 2002.; Trice, R. W., Su, Y. J., Mawdsley, J. R. and Faber, K. T., Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ, Journal Of Materials Science 37, pp. 2359-2365, 2002.; Sivakumar, R. and Mordike, B. L. High temperature coatings for gas turbine blades: a review, Surface and coatings technology 37, pp. 139 -160, 1989.; Davis, J. R., Heat Resistant Materials (ASM Specialty Handbook), ASM International, 1997.; Rai, S. K., Kumar, A., Shankar, V., Jayakumar, T. et al. Characterization of microstructures in Inconel 625 using X-ray diffraction peak broadening and lattice parameter measurements, Scripta Materialia 51, pp. 59–63, 2004.; González, A., López, E., Tamayo, A., Restrepo, E. and Hernández, F., Microstructure and Phases Analyses of Zirconia-Alumina (ZrO2 - Al2O3) Coatings Produced By Thermal Spray, DYNA 77, no. 162, pp. 151-160, 2010.; Reed, R. C., The Superalloys: Fundamentals and Applications, Cambridge University Press, 2006.; Zhao, J. C., Larsen, M. and Ravikumar, V., Phase precipitation and time–temperature transformationdiagram of Hastelloy X, Materials Science and Engineering A293, pp. 112– 119, 2000.; Nicoll, A. R. and Wahl, G., The effect of alloying additions on M-Cr-Al-Y Systems: an experimental study, Thin Solid Films, 95, pp. 21-34, 1982.; Richard, C. S., Béanger, G., Lu J. and Flavenot, J. F., The influences of heat treatments and interdiffusion on the adhesion of plasma-sprayed NiCrAlY coatings, Surface and Coatings Technology 82, pp. 99-109, 1996.; Spitsberg, I.T., Mumm, D.R. and Evans, A. G., On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings, Materials Science and Engineering A 394, pp. 176–191, 2005.; Seo, D. and Ogawa, K., et al. Influence of high-temperature creep stress on growth of thermally grown oxide in thermal barrier coatings, Surface and Coatings Technology 203, pp. 1979–1983, 2009.; Nychka, J. A., Xu, T., Clarke, D. R. and Evans, A. G., The stresses and distortions caused by formation of a thermally grown alumina: comparison between measurements and simulations, Acta Materialia 52, pp. 2561–2568, 2004.; Osorio, J. D., Giraldo, J., Hernández, J. C., Toro, A. and Hernández-Ortiz, J. P., Diffusion–Reaction of Aluminum and Oxygen in Thermally Grown Al2O3 Oxide Layers, Heat and Mass Transfer 50, 483-492, 2014.; Tolpygo, V. K., Clarke, D. R. Surface Rumpling of a (Ni, Pt) Al Bond Coat Induced by Cyclic Oxidation, Acta materialia 48, 3283-3293, 2000.; Clarke, D R., Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surface and Coatings Technology 163 –164, 67–74, 2003.; Clarke, D. R., Levi, C. G., Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res. 33, pp. 383-417, 2003.; Winter, M. R. and Clarke, D. R., Oxide Materials with low Thermal Conductivity, Journal of the American Ceramic Society, 90, pp. 533–540, 2007.; Zhu, D. and Miller, R. A., Sintering and creep behavior of plasma-sprayed zirconia- and hafnia based thermal barrier coatings, Surface and Coatings Technology 108–109, pp. 114-120, 1998.; Niranatlumpong, P., Ponton, C. B. and Evans, H. E., The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings, Oxidation of Metals, Vol. 53, no. 3/4, 2000.; Scott, H. G., Phase relationships In Zirconia-Yttria System Journal of Material Science 10, pp. 1527-1535, 1975.; Fabrichnaya, O., Wang, C., Zinkevich, M., Levi, C. G. and Aldinger, F., Phase Equilibria and Thermodynamic Properties of the ZrO2-GdO1.5-YO1.5 System, Journal of Phase Equilibria 26 [6] pp. 591–604, 2005.; VanValzah, J. R., Eaton, H. E. Cooling rate effects on the tetragonal to monoclinic phase transformation in aged plasma-sprayed yttria partially stabilized zirconia, Surface and Coatings Technology, 46, pp. 289-300, 1991.; Xie, L., Jordan, E. H., Padture, N. P. and Gell, M., Phase and microstructural stability of solution precursor plasma sprayed thermal barrier coatings, Materials Science and Engineering A 381, pp. 189–195, 2004.; Osorio, J. D., Maya, D., Barrios, A. C., Lopera, A., Jiménez, F., Meza, J. M., Hernández-Ortiz, J. P. and Toro, A., Correlations Between Microstructure and Mechanical Properties of Air Plasma-Sprayed Thermal Barrier Coatings Exposed to a High Temperature, Journal of the American Ceramic Society 96 [12], pp. 3901-3907, 2013.; Busso, E. P., Qian, Z. Q., Taylor, M. P. and Evans, H. E., The influence of bond coat and topcoat mechanical properties on stress development in thermal barrier coating systems, Acta Materialia 57, pp. 2349–2361, 2009.; Tsipas, S. A., Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings, Journal of the European Ceramic Society 30, pp. 61–72, 2010.; Ilavsky, J., Stalick, J. K. and Wallace, J., Thermal Spray Yttria-Stabilized Zirconia Phase Changes during Annealing, Journal of Thermal Spray Technology Volume 10(3), 497, 2001.; Trice, R. W., Jennifer, Y., Mawdsley, J. R., Faber, K. T., Arellano-lopez R., Wang H. and Porter, W. D., Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ, Journal of Materials Science 37, pp. 2359 – 2365. 2002.; Schulz, U., Phase Transformation in EB-PVD Yttria Partially Stabilized Zirconia Thermal Barrier Coatings during Annealing, Journal of the American Ceramic Society 83 [4], 904–10, 2000.; Osorio, J. D., Hernández-Ortiz, J. P. and Toro, A., Microstructure Characterization of Thermal Barrier Coating Systems After Controlled Exposure to a High Temperature, Ceramics International 40, pp. 4663-4671, 2014.; Osorio, J. D., Toro, A. and Hernández-Ortiz, J. P., Thermal Barrier Coatings for Gas Turbine Applications: Failure Mechanisms and Key Microstructural Features, DYNA 79, no. 176, pp 149-158, 2012.; Ilavsky, J. and Stalick, J. K., Phase composition and its changes during annealing of plasma-sprayed YSZ, Surface and Coatings Technology 127, pp. 120 - 129, 2000.; Witz, G., Shklover, V. and Steurer, W., Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns, Journal of the American Ceramic Society 90 [9], pp. 2935–2940, 2007.; Di-Girolamo, G., Blasi, C., Pagnotta, L. and Schioppa, M., Phase evolution and thermophysical properties of plasma sprayed thick zirconia coatings after annealing, Ceramics International 36, pp. 2273–2280, 2010.; Lughi, V. and Clarke, D. R., High temperature aging of YSZ coatings and subsequent transformation at low temperatura, Surface and Coatings Technology 200, pp. 1287 – 1291, 2005.; Sheu, T. S., Tien, T. Y. and Chen, I. W., Cubic-to-tetragonal (T) transformation in zirconia-containing systems, Journal of the American Ceramic Society 75, pp. 1108–1116, 1992.; Suresh, A., Mayo, M. J., Porter, W. D. and Rawn, C. J., Crystallite and Grain-Size-Dependent Phase Transformations in Yttria-Doped Zirconia, Journal of the American Ceramic Society 86 [2], pp. 360–62, 2003.; Huang, X., Zakurdaev, A. and Wang, D., Microstructure and phase transformation of zirconia-based ternary oxides for thermal barrier coating applications, Journal of Material Science 43, pp. 2631–2641. 2008.; https://revistas.unal.edu.co/index.php/dyna/article/view/33409

  3. 3
  4. 4
    Academic Journal
  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المصدر: DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín, ISSN 0012-7353, Vol. 79, Nº. 176, 2012, pags. 149-158

    وصف الملف: application/pdf

    Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=7712340; (Revista) ISSN 0012-7353

  8. 8
  9. 9
    Electronic Resource

    Additional Titles: Determinación de esfuerzos residuales en un recubrimiento de barrera térmica debido a la cantidad infiltrada de CMAS

    المصدر: DYNA; Vol. 87 Núm. 215 (2020): October-December, 2020; 76-83; DYNA; Vol. 87 No. 215 (2020): October- December,2020; 76-83; 2346-2183; 0012-7353

    URL: https://revistas.unal.edu.co/index.php/dyna/article/view/86941/77049
    https://revistas.unal.edu.co/index.php/dyna/article/view/86941/77049
    *ref*/Habibi, M.H., Wang, L. and Guo, S.M., Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 °C. Journal of the European Ceramic Society, 32, pp. 1635-1642, 2012. DOI: 10.1016/j.jeurceramsoc.2012.01.006 [2] Rajendran, R., Gas turbine coatings - An overview, Engineering Failure Analysis, 26, pp. 355-369, 2012. DOI: 10.1016/J.ENGFAILANAL.2012.07.007 [3] Weyant, C.M., Almer, J. and Faber, K.T., Through-thickness determination of phase composition and residual stresses in thermal barrier coatings using high-energy X-rays. Acta Materialia, 58, pp. 943-951, 2010. DOI: 10.1016/j.actamat.2009.10.01 [4] Jang, H.J., Park, D.H., Jung, Y.G., Jang, J.C. et al., Mechanical characterization and thermal behavior of HVOF-sprayed bond coat in thermal barrier coatings (TBCs). Surface & Coatings Technology, 200, pp. 4355-4436, 2006. DOI: 10.1016/j.surfcoat.2005.02.170 [5] Zhao, L. and Lugscheider, E., High velocity oxy-fuel spraying of a NiCoCrAlY and an intermetallic NiAl-TaCr alloy. Surface and Coatings Technology, 149, pp. 231-235, 2002. DOI: 10.1016/S0257-8972(01)01444-X [6] Gómez-García, J., Poza, P. y Utrilla, V., Crecimiento y caracterización de recubrimientos cerámicos con aplicaciones como barreras térmicas. Boletín de la Sociedad Española de Cerámica y Vidrio, 45(2), pp. 70-74, 2006. DOI: 10.3989/cyv.2006.v45.i2.315. [7] Teixeira, V., Andritschky, M., Fischer, W., Buchkremer, H.P. and Stöver, D., Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings. Surface and Coatings Technology, 120-121, pp. 103-111, 1999. DOI: 10.1016/S0257-8972(99)00341-2. [8] Hashmi, M.S.J., Pappalettere, C. and Ventola, F., Residual stresses in structures coated by a high velocity oxy-fuel technique. Journal of Materials Processing Technology. 75, pp. 81-86, 1998. DOI: 10.1016/S0924-0136(97)00295-1 [9] Widjaja, S., Limarga, A.M. and Yip, T.H. Modeli