يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"Reconstitued soil"', وقت الاستعلام: 0.34s تنقيح النتائج
  1. 1
  2. 2
    Dissertation/ Thesis

    المساهمون: Colmenares Montañez, Julio Esteban, Geotechnical Engineering Knowledge and Innovation Genki

    جغرافية الموضوع: Orinoco, Colombia

    وصف الملف: xxiii, 152 páginas; application/pdf

    Relation: Al-Rawas, A.A. (2002). Microgabric and mineralogical studies on the stabilization of an expansive soil using cement bypass dust and some types of slags. Can. Geotech. J., 39 (5), 1150-116; Aleva, G. J. J. (1994). LATERITES concepts, geology, morphology and chemistry. Wageningen: ISRIC.; Alpan, I. (1967). The empirical evaluation of the coefficient K0 and K0R. Soils and Foundations Volume 7, Issue 1, 1967, Pages 31-40.; ARGOS (2015). Estabilización de Suelos con Cemento: Alternativa Sostenible. 360º en Concreto - Blog Argos. https://www.youtube.com/watch?v=Zpx8TH8upr4; Ballinas (2006). Suelos expansivos. Tesis de maestría. Universidad Nacional Autónoma de México.; Basto (2022). Efecto de la cementación en la resistencia al corte de un suelo de la Orinoquía Colombiana. Trabajo final de maestría. Universidad Nacional de Colombia.; Baudet, B. y Stallebrass, S. (2004). A constitutive model for structured clays. Geotéchnique 54, No. 4, 269–278; Becker, D. E., Crooks, J. H. A., Been, K. y Jefferies, M. G. (1987). Work as a criterion for determining in situ and yield stresses in clays. Canadian Geotechnical Journal 24(4):549-564; Bergado, D.T., Anderson, L.R, Miura, N. y Balasubramaniam, A.S. (1996). Soft Ground Improvement in Lowland and Other Environments. American Society of Civil Engineers (ASCE) Press, New York, U.S.A. (1996); Bergado, D. T. & Lorenzo, G. A. (2001). Recent developments of ground improvement in soft Bangkok clay. Proceedings of the international symposium on lowland technology, Saga, Vol. 1, pp. 17–26.; Biru, A. (2022). Novel theoretical considerations of the coefficient of earth pressure at rest. Norwegian Geotechnical Institute.; Bishop, A. W. (1957). Some factors controlling the pore pressures set up during the construction of earth dams, Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 2, pp. 294–300.; Brooker, E. W. e Ireland, H. O. (1965). Earth pressure at rest related to stress history. Canadian Geotechnical Journal, 2(1), 1-15; Brousseau, P. (1983). Génélalisarion des états limites et de la déstructurartion des argiles naturelles. MS thesis, Laval Univ., Quebec City, Quebec, Canada.; Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotéchnique 40, No. 3, 329-378; Cifuentes, M. (2018). Vía Yopal – Orocué intransitable. Marta Cifuentes Noticias y Contenidos. En línea: https://marthacifuentes.com/portada/2018/07/11/via-yopal-orocue-intransitable/; Coop, M. R., Atkinson, J. H. y Taylor, R. N. (1995). Strength and stiffness of structured and unstructured soils. Proc. 11th Eur.Conf. Soil Mech. Found. Engng, Copenhagen 1, 55–62; Corecchia, F. y Chandler, R. J. (2000). A general framework for mechanical behaviour of clays. Geotécnique 50(4): 431-447.; Coronilla, N. (2015). Estudio de la mejora de terreno mediante columnas suelo-cemento tipo mixpile. Tesis doctoral, Universidad de Málaga, España.; Croft, J. B. (1967). The structures of soils stabilized with cementitious agents. Engineering Geology. Volume 2, Issue 2, August 1967, Pages 63-80; Daniel, D. E. y Benson, C. H. (1990) Water Content-Density Criteria for Compacted Soil Liners, Journal of Geotechnical Engineering, Vol. 116, No. 12, pp. 1811-1830.; De Medina, J. (1964). Laterite and their Application to Highway Construction. Rev. Gén. Routes, 362: 81 – 94.; Diccionario Geotecnia (2020). Curva de compresibilidad. En línea: https://www.diccionario.geotecnia.online/palabra/curva-de-compresibilidad/; Eberemu, A. O. (2015). Compressibility characteristics of compacted lateritic soil treated with bagasse ash. Jordan Journal of Civil Engineering, Volume 9, No. 2, 2015.; Espinel, F. (2019). Efecto de la estructura sobre la contracción volumétrica de suelos sometidos a procesos de desecación. Trabajo Final de Maestría. Universidad Nacional de Colombia.; Fraser, A. M. (1957). The Influence of Stress Ratio on Compressibility and Pore pressure Coefficients in Compacted Soils. Ph. D. Thesis. London University.; Fredlund, D., Rahardjo, G. H., Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. John Wiley & Sons, Inc., Hoboken, New Jersey.; Horpibulsuk, S. (2001). Analysis and assessment of engineering behavior of cement stabilized clays. PhD dissertation, Saga University, Japan.; Horpibulsuk, S., Bergado, D. T., & Lorenzo, G. A. (2004). Compressibility of cement-admixed clays at high water content. Géotechnique, 54(2), 151-154.; Horpibulsuk, S., Shibuya, S., Fuenkajorn, K. y Katkan, W. (2007): Assessment of engineering properties of Bangkok clay, Canadian Geotechnical Journal, 44(2), 173–187.; Horpibulsuk, S., Suebsuk, J., Chinkulkijniwat y A. Liu, M. D. (2009). A study of the compression behaviour of structured clays. In F. Oka, A. Murakami S. Kimoto (Eds.), Prediction and Simulation Methods for Geohazard Mitigation (pp. 269-272). London, UK: CRC Press.; Holm, G. (2003). “State of practice in dry deep mixing methods”, Geotechnical Special Publication, n 1201, p 145-163.; Hwang, J. (2006). Effects of cement treatment on the 1-D consolidation behavior of a highly organic soil.; Ingeominas, Universidad Industrial de Santander (2010), Geología del piedemonte llanero en la Cordillera Oriental, Departamentos de Arauca y Casanare: Memoria explicativa del Mapa geológico Plancha 233 – Orocué. Instituto de Investigación e Información Geocientífica, Minero-Ambiental y Nuclear.; Jaky, J. (1944). The coefficient of earth pressure at-rest, Journal of the Society of Hungarian Architects and Engineers, Vol. 78, No. 22, pp. 355–358.; Lambe, T. W. (1958). The permeability of fine-grained soils. Special Technical Pub. 163, ASTM, Philadelphia, Pa., 55-67.; Lavalle, E. d. (2013). Suelo-Cemento. Sus usos, propiedades y aplicaciones. México, D.F.: Instituto Mexicano del Cemento y del Concreto, A. C.; Lea, F.M. (1956). The Chemistry of Cement and Concrete, St. Martin’s press Inc.; Leroueil, S., Tavenas, F., Brucy, F., La Rochelle, P. y Roy, M. (1979). Behaviour of destructured natural clays. Proc. Am. Sot. Ciu. Engrs 105, GT6, 759-778.; Leroueil, S. y Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 40(3), 467–488.; Liu, M.D. y Carter, J.P. (1999). Virgin compression of structured soils. Geotéchnique, 49 (4), 43-57.; Liu, M.D. y Carter, J.P. (2000). Modeling the destructuring of soils during virgin compression. Geotéchnique, 50 (4), 479-483.; Liu, M.D. y Carter, J.P. (2002). A structured Cam Clay model. Can Geotech. J., 39 (6), 1313-1332.; Locat, J. Tremblay, H. y Leroueil, S. (1996). Mechanical and hydraulic behavior of a soft inorganic clay treated with lime, Can Geotech. J., 33 (4), 654-669.; Lorenzo, G. A., and Bergado, D.T. (2004). Fundamental parameters of cement-admixed clay: New approach, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, v. 130, n 10, p 1042-1050.; Maccarini, M. (1987). Laboratory studies of weakly bonded artificial soil. PhD thesis, University of London.; Mayne, P. W. y Kulhawy, F. H. (1982). K0-OCR Relationships in Soil. Journal of the Soil Mechanics and Foundations Division, 108(6), 851–872.; Mesri, G., Rokhsar, A. y Bohor, B. F. (1975). Composition and compressibility of typical samples of Mexico City clay. Geotéchnique 25. No. 3, 527-554.; Mesri, G. and Hayat T.M. (1993). The coefficient of earth pressure at rest. Can. Geotech. J. 30, 647-666 (1993); Ministerio de Minas y Energía. (2013). Explotación de materiales de construcción: Canteras y material de arrastre.; Mitchell, J. K. y Soga, K. (1976). Fundamentals of soil behavior (3rd ed.), John Wiley & Sons, Hoboken, New Jersey; Mitchell, J. K. y Solymar, Z. V. (1984). Time-dependent strength gain in freshly deposited or densified sand. J. Geotech. Div., Am. Soc. Civ. Engrs 110. GT11, 1559-1576.; Nagaraj, T. S. y Srinivasa Murthy, B. R. (1987). A critical reappraisal of compression index equations. Géotechnique, Volume 37, Issue 1, 135–136.; Nagaraj, T.S., Pandian, N.S., Narasimha Raju, P.S.R., (1993). Stress state–permeability relationships for fine-grained soils. Geotechnique 43 (2), 333–336.; Nagaraj, T. S., Pandain, N. S. y Narasimha Raju, P. S. R. (1998). Compressibility behaviour of soft cemented soils. Geótechnique, 48, No. 2, 281–287.; Noble, D.F., Plaster, R.W. (1970). Reactions in Portland Cement–Clay Mixtures. Final report, Virginia Highway Research Council, Charlottesville; Nogami, J. y Villibor, D., (1995) Pavimentação de baixo custo com solos lateríticos. Brasil. Ed. Vilibor, São Paulo, SP.; Noirum, R. N. y Orozco, L. F. (1993). Sistema de cimentación y comportamiento de los suelos de los nuevos edificios de la Embajada de los Estados Unidos. Segundo Encuentro Nacional de Ingenieros de Suelos y Estructuras. Escuela Colombiana de Ingeniería.; Olsen, R. E. y Daniel, D. E. (1981). Measurement of the hydraulic conductivity of fine-grained soils. Permeability and Groundwater Contaminant Transport, ASTM, STP 746, T. F. Zimmie and C.I. Riggs, Eds., ASTM, Philadelphia, pp. 18-64.; Orjuela, A. M. (2021). Influencia de la succión en la compresibilidad de suelos no saturados en trayectorias k0. Trabajo final de maestría. Universidad Nacional de Colombia.; Porbaha, A., Shibuya, S. y Kishida, T. (2000). State of the art in deep mixing technology. Part II: Geomaterial characterization. Ground Improvement 3, 91–100.; Prensa Libre Casanare (2016). En pésimas condiciones vía a Orocué. En línea: https://prensalibrecasanare.com/casanare/21524-en-pysimas-condiciones-vna-a-orocuy.html; Prusinski J. y Bhattacharja, S. (1999) Effectiveness of Portland cement and lime in stabilizing clay soils. Transp Res Rec J Transp Res Board 1652:215–227; Rao, S.N. y Rajasekaran, G. (1996). Reaction products formed in lime-stabilized marine clays, J. Geotech. Engrg., 122 (5), 329-336; Rotta, G. V., Prietto, P. D. M., Coop, M. R., Graham, J., y Consoli, N. C. (2003). Isotropic yielding in an artificially cemented soil cured under stress. Géotechnique, 53(5), 493–501; Ruffing, D. G. y Moran, A. R. (2016). In-situ soil-cement mixtures: Definitions, properties and design considerations. Geo-Solutions.; Sandroni, S. S. (1981). Solos residuals pesquisas realizades na PCC-RJ. Brazilian Symp. Engng Tropical Soils, Rio de Janerio 2, 30-65.; Sariosseiri, F. y Muhunthan, B. (2009). Effect of cement treatment on geotechnical properties of some Washington State soils. Engineering Geology 104, 119–125; Sasanian, S. y Newson, T.A. (2014). Basic parameters governing the behaviour of cement-treated clays. Soils and Foundations; 54(2), 209–224; Schmidt, B. (1966). Earth pressures at rest related to stress history. Discussion. Can. Geo. Journal, 3(4), 239-242.; Seed, H.B. y Chan, C.K. (1959), Structure and strength characteristics of compacted clays, Journal of the Soil Mechanics and Foundations Division, ASCE, pag. 87-128.; Schmertmann, J. H. (1969). Swell sensitivity. Geotéchnique 19, No. 4, 530-533.; Schmertmann, J. H. (1985). Measure and use of the in situ lateral stress.; Servicio Geológico Colombiano (2014), Estudios de Cartografía Geológica a Escala 1:100.000 Bloque 8 en el Vichada: Memoria explicativa de la Plancha 233 – Orocué. Dirección de Geociencias Básicas.; Sharma, H. D. y Lewis, S. P. (1994). Waste containment systems, waste stabilization and landfills: Design and evaluation. John Wiley & Sons, Inc.; Simons, N. (1958). Discussion: Measurements of the pressures of filling materials against walls, Proceedings of Brussels Conference on Earth Pressure Problems, Brussels, Vol. 3, pp. 50–53.; Skempton, A. W. (1953). The colloidal activity of clays. Londres: Universidad de Londres.; Skempton, A. W. (1970). The consolidation of clays by gravitational compaction. Q. J. Geol. Sot. 125, 373-411.; Tan, K. H., y Troth, P. S. (1982). Silica-sesquioxide ratios as aids in characterization of some temperate region and tropical soil clays. Soil Sci. Soc. Am. J. 46:1109-1114.; Taylor, H. F. W. (1997). Cement Chemistry (3rd Rev. ed.). London: Thomas Telford.; Terzaghi, K. (1925). Erdbaumechanik auf bodenphysika lischer Grundlage. Vienna: Deuticke.; Teerachaikulpanich, N., Okumura, S., Matsunaga, K. y Ohtha, H. (2007). Estimation of coefficient of earth pressure at rest using modified oedometer test. Japanese Geotechnical Society. Soils and Foundations Vol. 47, No. 2, 349-360; Terashi, M., Tanaka, H., Mitsumoto, T., Niidome, Y. y Honma, S. (1979). Fundamental properties of lime and cement treated soils (2nd report). Report of Port and Harbour Research Institute 19, No. 1, 33–62 (in Japanese).; Tremblay, H, Leroueil, S. y Locat, J. (2001). Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement. Can Geotech. J., 38, 567-579.; Wesley, L. D. (1974). Discussion of Wallace (1973). Geotéchnique 24, No. 1, 101-105.; Villareal, H., Mendoza, H., Quintero, I., Osorio, D., Castillo, R., Higeria, M., Umaña, A., Alvares, M., Parra, J., Maldonado, J. & Bogotá, J. J. (2007). Caracterización biológica del Parque Nacional Natural El Tuparro (sector noreste), Vichada, Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt.; Zhao, H., Zhoua, K., Zhaob, C., Gongc, B. y Jun Liu, J. (2015). A long-term investigation on microstructure of cement-stabilized handan clay. European Journal of Environmental and Civil Engineering.; https://repositorio.unal.edu.co/handle/unal/82828; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/