-
1Book
المؤلفون: Telahigue, Khaoula, Rabeh, Imen, Mdaini, Zied, Ghali, Ridha, Chouba, Lassaad, Hajji, Tarek
مصطلحات موضوعية: Human health, Heavy metals, Fish, Bioaccumulation, Analysis, Contamination, Commercial species, Consumer protection, Carcinogens
جغرافية الموضوع: Bizerte lagoon, Tunisia, Lac de Bizerte
وصف الملف: 61-77
-
2Academic Journal
المؤلفون: Trabelsi, Wafa, Fouzai, Chaima, Chetoui, Imene, Bejaoui, Safa, Telahigue, Khaoula, Rabeh, Imen, El Cafsi, Mhamed, Soudani, Nejla
المصدر: Scientia Marina; Vol. 84 No. 2 (2020); 143-150 ; Scientia Marina; Vol. 84 Núm. 2 (2020); 143-150 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2020.84n2
مصطلحات موضوعية: acrylamide, exposure, Mactra stultorum, gills, antioxidant status, acetylcholinesterase, acrilamida, exposición, branquias, estado antioxidante, acetilcolinesterasa
وصف الملف: text/html; application/pdf; application/xml
Relation: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1858/2689; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1858/2681; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1858/2690; Abdallah M.A.M. 2013. Bioaccumulation of Heavy Metals in Mollusca Species and Assessment of Potential Risks to Human Health. Bull. Environ. Contam. Toxicol. 90: 552-557. https://doi.org/10.1007/s00128-013-0959-x PMid:23377776; Adams S. 2001. Reactive carbonyl formation by oxidative and non-oxidative pathways. Front. Biosci. 6: 17-24. https://doi.org/10.2741/A581; Adamsa A., Hamdania S., Van Lanckera F., et al. 2010. Stability of acrylamide in model systems and its reactivity with selected nucleophiles. Food. Res. Int. 43: 1517-1522. https://doi.org/10.1016/j.foodres.2010.04.033; Alderman C.J.J., Shah S., Foreman J.C., et al. 2002. The role of advanced oxidation protein products in regulation of dendritic cell function. Free. Radic. Biol. Med. 32: 377-385. https://doi.org/10.1016/S0891-5849(01)00735-3; Andersen F.A. 2005. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int. J. Toxicol. 24: 21-50. https://doi.org/10.1080/10915810590953842 PMid:16154914; Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 : 276-277. https://doi.org/10.1016/0003-2697(71)90370-8; Bejaoui S., Telahigue K., Chetoui I., et al. 2018. Integrated Effect of Metal Accumulation, Oxidative Stress Responses and DNA Damage in Venerupisdecussata Gills Collected From Two Coast Tunisian Lagoons. J. Chem. Environ. Biol. Eng. 2: 44-51.; Birben E., Sahiner U.M., Sackesen C., et al. 2012. Oxidative stress and antioxidant defense. World. Allergy. Organ. J. 5: 9-19. https://doi.org/10.1097/WOX.0b013e3182439613 PMid:23268465 PMCid:PMC3488923; Cai L., Satoh M., Tohyama C., et al. 1999. Metallothionein in radiation exposure: its induction and protective role. Toxicology 132: 85-98. https://doi.org/10.1016/S0300-483X(98)00150-4; Chetoui I., Rabeh I., Telahigue K., et al. 2010. Valorisation de l'apportnutritionnel d'un mollusque bivalve Mactra corallina des côtestunisiennes (Kalaât El Andalous). Bull. Inst. Natn. Scien. Tech. Mer de Salmmbô 37: 83-88.; Contardo-Jara V., Galanti L.N., Amé M.V., et al. 2009. Biotransformation and antioxidant enzymes of Limnoperna fortunei detect site impact in water courses of Córdoba, Argentina. Ecotoxicol. Environ. Saf. 72: 1871- 1880. https://doi.org/10.1016/j.ecoenv.2009.07.001 PMid:19631986; Della Torre C., Balbib T., Grassia G., et al. 2015. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J. Hazard. Mater. 297: 92-100. https://doi.org/10.1016/j.jhazmat.2015.04.072 PMid:25956639; Draper H.H., Hadley M. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 86: 421-431. https://doi.org/10.1016/0076-6879(90)86135-I; Duan X., Wang Q.C., Chen K.L., et al. 2015. Acrylamide toxic effects on mouse oocyte quality and fertility in vivo. Sci. Rep. 5: 11562. https://doi.org/10.1038/srep11562 PMid:26108138 PMCid:PMC4479821; Ellman G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6; Ellman G.L., Courtney K.D., Andres V. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9; Erkekoglu P., Baydar T. 2014. Acrylamide neurotoxicity. Nutr. Neurosci. 17: 49-57. https://doi.org/10.1179/1476830513Y.0000000065 PMid:23541332; Fasulo B., Deuring R., Murawska M., et al. 2012. The Drosophila Mi-2 chromatin-remodeling factor regulates higher-order chromatin structure and cohesin dynamics in vivo. PLoS. Genet. 8: e1002878. https://doi.org/10.1371/journal.pgen.1002878 PMid:22912596 PMCid:PMC3415455; Favier A. 2003. Le Stress oxydant. Intérêt conceptuel et expérimentaldans la compréhension des mécanismes des maladies et potentielthérapeutique. L'actual. Chim. 11: 108-115.; Flohe L., Gunzler W.A. 1984. Assays of gluthathione peroxidase. Methods. Enzymol. 105: 114-121. https://doi.org/10.1016/S0076-6879(84)05015-1; Friedman M. 2003. Chemistry, acrylamide: A review. J. Agric. Food. Chem. 51: 4504-4526. https://doi.org/10.1021/jf030204+ PMid:14705871; Greim H., Snyder R. 2018. Toxicology and Risk Assessment: A Comprehensive Introduction. John Wiley & Sons, Hoboken, USA, 840 pp. https://doi.org/10.1002/9781119135944; Haleng J., Pincemail J., Defraigne J.O., et al. 2007. Oxidative stress. Rev. Med. Liege 62: 628-638.; International Agency for Research on Cancer (IARC). 1994. IARC working group on the evaluation of carcinogenic risks to humans: some industrial chemicals. IARC Monogr. Eval. Carcinog. Risks. Hum. 60: 1-560.; Jacques-Silva M.C., Nogueira C.W., Broch L.C. 2001. Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol. Toxicol. 88: 119-125. https://doi.org/10.1034/j.1600-0773.2001.d01-92.x PMid:11245406; Jiang Z.Y., Hunt J.V., Wolff S.P. 1992. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low-density lipoprotein. Anal. Biochem. 202: 384-389. https://doi.org/10.1016/0003-2697(92)90122-N; Jollow D.J., Mitchell J.R., Zampaglione N., et al. 1974. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11: 151-169. https://doi.org/10.1159/000136485 PMid:4831804; Jomova K., Valko M. 2011. Advances in metal-induced oxidative stress and human disease. Toxicology 283 : 65-87. https://doi.org/10.1016/j.tox.2011.03.001 PMid:21414382; Kayali R., Cakatay U., Akcay T., et al. 2006. Effect of alphalipoicacid supplementation on markers of protein oxidation in postmitotictissues of ageing rat. Cell. Biochem. Funct. 24: 79-85. https://doi.org/10.1002/cbf.1190 PMid:15532093; Kim S.M., Beak J.M., Lim S.M., et al. 2015. Modified Lipoproteins by Acrylamide Showed More Atherogenic Properties and Exposure of Acrylamide Induces Acute Hyperlipidemia and Fatty Liver Changes in Zebrafish. Cardiovasc. Toxicol. 15: 300-308. https://doi.org/10.1007/s12012-014-9294-7 PMid:25503949; Krishnan N., Kodrík D., Kłudkiewicz B., et al. 2009. Glutathione-ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Insect. Biochem. Mol. Biol. 39: 180-188. https://doi.org/10.1016/j.ibmb.2008.11.001 PMid:19049872; Kusnin N., Syed M.A., Ahmad S.A. 2015. Toxicity, pollution and biodegradation of acrylamide - a mini review. J. Biochem. Microbiol. Biotechnol. 3: 6-12.; Larguinho M., Cordeiro A., Diniz M.S., et al. 2014. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide. Environ. Res. 135: 55-62. https://doi.org/10.1016/j.envres.2014.09.004 PMid:25262075; LoPachin R.M., Gavin T. 2012. Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. Environ. Health Perspect. 120: 1650-1657. https://doi.org/10.1289/ehp.1205432 PMid:23060388 PMCid:PMC3548275; Lowry O.H., Roseborouch N.I., Farrand A.L., et al. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 263-275. https://doi.org/10.1016/S0021-9258(19)52451-6; Mottram D.S., Wedzicha B.L., Dodson A.T. 2002. Acrylamide is formed in the Maillard reaction. Nature 419: 448-449. https://doi.org/10.1038/419448a PMid:12368844; Petrovic S., Ozretic B., Krajnovic-Ozretic M., et al. 2001. Lysosomal membrane stability and metallothioneins in digestive gland of mussels (Mytilus galloprovincialis Lam.) as biomarkers in afield study. Mar. Pollut. Bull. 42: 1373-1378. https://doi.org/10.1016/S0025-326X(01)00167-9; R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.; Schmatz R., Mazzanti C.M., Spanevello R., et al. 2009. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 610: 42-48. https://doi.org/10.1016/j.ejphar.2009.03.032 PMid:19303406; Schwarz K.B. 1996. Oxidative stress during viral infection: a review. Free Radic. Biol. Med. 21: 641-649. https://doi.org/10.1016/0891-5849(96)00131-1; Sheehan D., McDonagh B. 2008. Oxidative stress and bivalves: a proteomic approach. Invertebr. Surviv. J. 5: 110-123.; Stanicka J., Landry W., Cotter T.G. 2015. Oxidative stress biomarkers and ROS molecular probes. Oxidative Stress: Diagnostics, Prevention. and Therapy. Vol. 2, pp. 353-374. https://doi.org/10.1021/bk-2015-1200.ch015; Tepe Y. 2015. Acrylamide in surface and drinking water. acrylamide in food: analysis, content and potential health effects. Giresun Univ., Turkey, pp. 275-293. https://doi.org/10.1016/B978-0-12-802832-2.00014-0; Tepe Y., Çebi A. 2017. Acrylamide in environmental water: a review on sources, exposure, and public health risks. Exposure and Health 11: 3-12. https://doi.org/10.1007/s12403-017-0261-y; Touzé S., Guerin V., Guezennec A.G., et al. 2015. Dissemination of acrylamide monomer from polyacrylamide-based flocculant use-sand and gravel quarry case study. Environ. Sci. Pollut. Res. 22: 6423-6430. https://doi.org/10.1007/s11356-014-3177-0 PMid:25182426; Trabelsi W., Chetoui I., Fouzai C., et al. 2019. Redox status and fatty acids composition of Mactra corallina digestive gland following exposure to acrylamide. Environ. Sci. Pollut. Res. 26: 22197-22208. https://doi.org/10.1007/s11356-019-05492-5 PMid:31148000; Viarengo A., Ponzano E., Dondero F., et al. 1997. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antartic molluscs. Mar. Environ. Res. 44: 69-84. https://doi.org/10.1016/S0141-1136(96)00103-1; Yilmaz B., Yildizbayrak N., Aydin Y., et al. 2017. Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Hum. Exp. Toxicol. 36: 1225-1235. https://doi.org/10.1177/0960327116686818 PMid:28067054; Zamora R., Delgado R.M., Hidalgo F.J. 2010. Model reactions of acrylamide with selected amino compounds. J. Agric. Food. Chem. 58: 1708-1713. https://doi.org/10.1021/jf903378x PMid:20078067; Zhou Z., Sun X., Kang Y.J. 2002. Metallothionein protection against alcoholic liver injury through inhibition of oxidative stress. Exp. Biol. Med. 227: 214-222. https://doi.org/10.1177/153537020222700310 PMid:11856821; Zorita L., Ortiz-Zarragoitia M., Solo M., et al. 2006. Biomarkers in mussels from a copper site gradient (Visnes, Norway): an integrated biochemical, histochemical and histological study. Aquat. Toxicol. 78: 109-116. https://doi.org/10.1016/j.aquatox.2006.02.032 PMid:16635531; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1858
-
3Academic Journal
المؤلفون: Bejaoui, Safa, Rabeh, Imen, Telahigue, Khaoula, Tir, Mariem, Chetoui, Imene, Fouzai, Chaima, Nechi, Salwa, Chelbi, Emna, El Cafsi, Mhamed, Soudani, Nejla
المصدر: Scientia Marina; Vol. 84 No. 4 (2020); 403-420 ; Scientia Marina; Vol. 84 Núm. 4 (2020); 403-420 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2020.84n4
مصطلحات موضوعية: Ruditapes decussatus, digestive gland, trace element accumulations, redox status, macromolecule injuries, histoarchitecture alteration, glándula digestiva, acumulaciones de metales, estado redox, lesiones de macromoléculas, alteración de la histoarquitectura
وصف الملف: text/html; application/pdf; text/xml
Relation: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1880/2757; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1880/2737; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1880/2758; Aebi H. 1984. Catalase in Vitro. Methods. Enzymol. 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3; Amiard J.C., Amiard-Triquet C., Barka S., et al. 2006. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat. Toxicol. 76: 160-202. https://doi.org/10.1016/j.aquatox.2005.08.015 PMid:16289342; Aminot A., Chaussepied C. 1983. Manuel des analyses chimiques en milieu marin. CNEXO, Brest, 395 pp.; Augustyniak M., Babczynska A., Augustyniak M. 2009. Does the grasshopper Chorthippus brunneus adapt to metal polluted habitats? A study of glutathione-dependent enzymes in grasshopper nymphs. Insect Sci. 16: 33-42. https://doi.org/10.1111/j.1744-7917.2009.00251.x; Ayache F., Thompson J.R., Flower R.J., et al. 2009. Environmental characteristics, landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: MerjaZerga (Morocco), GharElMelh (Tunisia) and Lake Manzala (Egypt). Hydrobiology 622: 15-43. https://doi.org/10.1007/s10750-008-9676-6; Ayala A., Mynoz M.F., Arguelles S. 2014. Lipid Peroxidation: Production, Metabolism and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014: 360438. https://doi.org/10.1155/2014/360438 PMid:24999379 PMCid:PMC4066722; Bainy A.C.D., Saito E., Carvello P.S.M., et al. 1996. Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquat. Toxicol. 34: 151. https://doi.org/10.1016/0166-445X(95)00036-4; Baltaci A.K., Yuce K., Mogulkoc R. 2017. Zinc metabolism and metallothioneins. Biol. Trace. Elem. Res. 183: 22-31. https://doi.org/10.1007/s12011-017-1119-7 PMid:28812260; Barhoumi B., Le Menach K., Clerandeau C., et al. 2014. Assessment of pollution in the Bizerte lagoon (Tunisia) by the combined use of chemical and biochemical markers in mussels, Mytillus galloprovincialis. Mar. Pollut. Bull. 84: 379-390. https://doi.org/10.1016/j.marpolbul.2014.05.002 PMid:24913071; Barthel P.A. 2006. Aménager la lagune de Tunis : un modèle d'urbanisme et de développement durable? Autrepart 39: 129-146. https://doi.org/10.3917/autr.039.0129; Bejaoui S., Boussoufa D., Tir M., et al. 2017. DNA damage and oxidative stress in digestive gland of Ruditapes decussatus collected from two contrasting habitats in the southern Tunisian coast: biochemical and histopathological studies. Cah. Biol. Mar. 58: 123-135.; Bejaoui S., Telahigue K., Chetoui I., et al. 2018. Integrated effect of metal accumulation, oxidative stress responses and DNA damage in Venerupis decussata gills collected from two coast Tunisian lagoons. J. Chem. Environ. Biol. Eng. 2: 44-51.; Bejaoui S., Boussefa D., Telahigue K., et al. 2019. Geographic variation in fatty acid composition and food source of the commercial clam (Ruditapes decussatus, Linnaeus, 1758), from Tunisian coasts: Trophic links. Grasas y Aceites 70: e289. https://doi.org/10.3989/gya.0580181; Bejaoui S., Michan C., Telahigue K., et al. 2020. Metal body burden and tissue oxidative status in the bivalve Venerupis decussata from Tunisian coastal lagoons. Mar. Environ. Res. 159: 105000. https://doi.org/10.1016/j.marenvres.2020.105000 PMid:32662434; Ben Ayed L., Yang W., Widmer G., et al. 2012. Survey and genetic characterization of wastewater in Tunisia for Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, Cyclospora cayetanensis and Eimeria spp. J. Water Health 10: 431-444. https://doi.org/10.2166/wh.2012.204 PMid:22960487; Ben Haj S. 2012. Etude du plan de gestion et d'amenagement integres du site ramsar de la zone humide de ghar el melh site ramsar n°1706. Thetis Ecologue Conseil, WWF.; Ben Maiz N. 1997. Le lac Nord de Tunis: un milieu en mutation. In: Karem A., Maamouri F., et al. (eds), Gestion et conservation des zonzs humides tunisiennes. Acts de séminaire, DGF, WWF, 77-84.; Ben Mosbah Z.C.H. Ben Isail L.K., Gueddari M., et al. 2010. Evolution bio sédimentaire du dépôt quaternaire de la lagune de l'Ariana, Tunisie (une zone humide du Maghreb Nord). Quaternarie 21: 281-292.; Bocchetti R., Lamberti C.V., Pisanelli B., et al. 2008. Seasonal variation of exposure biomarkers, oxidative stress responses and cell damage in the clams, Tapes philippinarum, and mussels, Mytilus galloprovincialis, from Adriatic sea. Mar. Environ. Res. 66: 24-26. https://doi.org/10.1016/j.marenvres.2008.02.013 PMid:18384874; Bordin G., McCourt J., Rodriguez A. 1992. Trace metals in the marine bivalve Macoma balthica in the Westerschelde estuary, the Netherland. Part 1: analysis of total copper, cadmium, zinc and iron- locational and seasonal variations. Sci. Total. Environ. 127: 225-280. https://doi.org/10.1016/0048-9697(92)90507-O; Bouallegui Y., Ben Younes R., Bellamine H., et al. 2018. Histopathological indices and inflammatory response in the digestive gland of the mussel Mytilus galloprovincialis as biomarker of immunotoxicity to silver nanoparticles. Biomarkers 23: 277-287. https://doi.org/10.1080/1354750X.2017.1409803 PMid:29166788; Brahim M., Atoui A., Sammari C., et al. 2015. Surface sediment dynamics along with hydrodynamics along the shores of Tunis Gulf (north-eastern Mediterranean). J. Afr. Earth Sci. 103: 30-41. https://doi.org/10.1016/j.jafrearsci.2014.11.014; Campillo J.A., Albentosa M.N., Valdes J., et al. 2013.Impact assessment of agricultural inputs into a Mediterranean coastal lagoon (Mar Menor, SE Spain) on transplanted clams (Ruditapes decussatus) by biochemical and physiological responses. Aquat. Toxicol. 142-143: 365-379. https://doi.org/10.1016/j.aquatox.2013.09.012 PMid:24095956; Cantillo A.Y. 1998. Comparison of results of Mussel Watch Programs of the United States and France with worldwide mussel watch studies. Mar. Pollut. Bull. 36: 712-717. https://doi.org/10.1016/S0025-326X(98)00049-6; Cappello T., Mauceri A., Corsaro C., et al. 2013. Impact of environmental pollution on caged mussels Mytilus galloprovincialis using NMR-based metabolomics. Mar. Pollut. Bull. 77: 132-139. https://doi.org/10.1016/j.marpolbul.2013.10.019 PMid:24211101; Carmeli E., Bachar A., Barchad S., et al. 2008. Antioxidant status in the serum of persons with intellectual disability and hypothyroidism: A pilot study. Res. Dev. Disabil. 29: 431-438. https://doi.org/10.1016/j.ridd.2007.08.001 PMid:17869479; Carvalho G.P., De Cavalcante P.R.S., Castro A.C.I., et al. 2000. Preliminary assessment of heavy metal levels in Mytella falcata (Bivalvia, Mytilidae) from Bcanga river estuary, SAO LUIS, state of Maranjao, Northeastern Brazil. Rev. Bras Biol. 60: 11-16. https://doi.org/10.1590/S0034-71082000000100003 PMid:10838919; Chalghmi H., Bourdineaud J.P., Haouas Z., et al. 2016. Transcriptomic, Biochemical, and Histopathological Responses of the Clam Ruditapes decussatus from a Metal-Contaminated Tunis Lagoon. Arch. Environ. Contam. Toxicol. 70: 241-256. https://doi.org/10.1007/s00244-015-0185-0 PMid:26077924; Chen C.W., Kao C.M., Chen C.F., et al. 2007. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 66: 1431-1440. https://doi.org/10.1016/j.chemosphere.2006.09.030 PMid:17113128; Chetoui I., Bejaoui S., Trabelsi W., et al. 2019. Exposure of Mactra corallina to acute doses of lead: effects on redox status, fatty acid composition and histomorphological aspect. Drugs Chem. https://doi.org/10.1080/01480545.2019.1693590 PMid:31752645; Chouari W. 2015. The contribution of cartography in reconstructing past human impacts on coastal wetlands: the case the Tunis Lagoon in the 20th century. J. Mediterr. 125: 75-84. https://doi.org/10.4000/mediterranee.8015; Chouba L., AjjabiChebil L., Herry S. 2010. Etudesaisonniere de la contamination metallique des macroalgues de la lagune nord de Tunis. Bull. Inst. Natl. Sci. Tech. Mer de Salammbô 37: 123-131.; Cipro C.V.Z., Cherel Y., Bocher P., et al. 2017. Trace elements in invertebrates and fish from Kerguelen waters, Southern Indian Ocean. Pol. Biol. 41: 175. https://doi.org/10.1007/s00300-017-2180-6; Clarke J.D. 2002. Cetyltrimethyl Ammonium Bromide (CTAB) DNA Miniprep for Plant DNA isolation. Cold Spring Harb Protoc.; Costa P.M., Carreira S., Costa M. H., et al. 2013. Development of histopathological indices in a commercial marine bivalve (Ruditapes decussatus) to determine environmental quality. Aquat. Toxicol. 126: 442-454. https://doi.org/10.1016/j.aquatox.2012.08.013 PMid:23010389; Cravo C., Pereira T., Gomes C., et al. 2012. Multibiomarker approach in the clam Ruditapes decussatus to assess the impact of pollution in the Ria Formosa lagoon, South Coast of Portugal. Mar. Environ. Res. 75: 23-34. https://doi.org/10.1016/j.marenvres.2011.09.012 PMid:22001190; Daldoul G., Souissi F., Jemmaili N. et al. 2015. Assessment and mobility of heavy metals in carbonated soils contaminated by old mine tailings in North Tunisia. Afr. Earth Sci. 110: 150-159. https://doi.org/10.1016/j.jafrearsci.2015.06.004; Di Salvatore P., Calcagno J.A., Ortiz N., et al. 2013. Effect of seasonality on oxidative stress responses and metal accumulation in soft tissues of Aula comyaatra, a mussel from the South Atlantic Patagonian coast. Mar. Environ. Res. 92: 244-252. https://doi.org/10.1016/j.marenvres.2013.10.004 PMid:24157268; Draper H.H., Hadley M. 1990. Malondialdehyde determination as index of lipid peroxidation. Meth. Enzymol. 86: 421-431. https://doi.org/10.1016/0076-6879(90)86135-I; Durieux E.D.H., Farver T.B., Fitzgerald P., et al. 2011. Natural factors to consider when using acetylcholinesterase activity as neurotoxicity biomarker in young-of-year striped bass (Morone saxatilis). Fish Physiol. Biochem. 37: 21-29. https://doi.org/10.1007/s10695-010-9412-9 PMid:20582624 PMCid:PMC3056140; El-Shenawy N.S., Moawad T.I.S., Mohallal M., et al. 2009. Histopathologic Biomarker Response of Clam, Ruditapes decussatus, to Organophosphorous Pesticides Reldan and Roundup: A Laboratory Study. Ocean Sci. 44: 27-34. https://doi.org/10.1007/s12601-009-0004-5; Ellman G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Bioph. 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6; Ellman G.L., Courtney K.D., Anders V., et al. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9; Ennouri R., Chouba L., Magni P. et al. 2010. Spatial distribution of trace metals (Cd, Pb, Hg, Cu, Zn, Fe and Mn) and oligo-elements (Mg, Ca, Na and K) in surface sediments of the Gulf of Tunis (Northern Tunisia). Environ. Monit. Assess. 163: 229. https://doi.org/10.1007/s10661-009-0829-5 PMid:19277885; Ennouri R., Zaaboub N., Fertouna-Bellakhal M., et al. 2016. Assessing trace metal pollution through high spatial resolution of surface sediments along the Tunis Gulf coast (Southwestern Mediterranean). Environ. Sci. Pollut. Res. 23: 5322-5334. https://doi.org/10.1007/s11356-015-5775-x PMid:26564186; Faggio C., Tsarpali V., Dailianis S. 2018. Mussel digestive gland as a model for assessing xenobiotics: an overview. Sci. Total Environ. 613: 220-229. https://doi.org/10.1016/j.scitotenv.2018.04.264 PMid:29704717; Fanta E., Rios F.S.A., Romão S., et al. 2003. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicol. Environ. Saf. 54: 119-130. https://doi.org/10.1016/S0147-6513(02)00044-1; Figueira E., Freitas R. 2013. Consumption of Ruditapes philippinarum and Ruditapes decussatus: comparison of element accumulation and health risk. Environ. Sci. Pollut. Res. 20: 5682-5691. https://doi.org/10.1007/s11356-013-1587-z PMid:23456949; Flohe L., Gunzler W.A. 1984. Assays of gluthathione peroxidase. Methods Enzymol. 105: 114-121. https://doi.org/10.1016/S0076-6879(84)05015-1; Fradi J. 2012. Etude comparée de la reproduction et de la croissance de la palourde Ruditapes decussatus dans deux lagunes tunisiennes: Lagune nord de Tunis et Lagune de Boughrara. 145 pp. http://www.inat.tn/sites/default/files/files/Memoires%20 de%20mastere%20soutenus/mastere_soutenus_2011-2012.pdf; Frías-Espericueta M.G., Osuna-López J.I., Sandoval-Salazar G., et al. 1999. Distribution of trace metals in different tissues in the rock oyster Crassostrea iridescens: seasonal variation. Bull. Environ. Contam. Toxicol. 63: 73-79. https://doi.org/10.1007/s001289900950 PMid:10423486; Gabr G.A.F., Masood M.F., Radwan E.H., et al. 2020. Potential Effects of Heavy Metals Bioaccumulation on Oxidative stress Enzymes of Mediterranean clam Ruditapes decussatus. Catrina 21: 75-82.; Gagné F., André C., Blaise C. 2008. The Dual Nature of Metallothioneins in the Metabolism of Heavy Metals and Reactive Oxygen Species in Aquatic Organisms: Implications of Use as a Biomarker of Heavy-Metal Effects in Field Investigations. Biochem Insights. https://doi.org/10.4137/BCI.S1007; Ghannem S., Khazri A., Sellami B. et al. 2016. Assessment of heavy metal contamination in soil and Chlaenius (Chlaeniellus) olivieri (Coleoptera, Carabidae) in the vicinity of a textile factory near Ras Jbel (Bizerte, Tunisia). Environ. Earth Sci. 75: 442. https://doi.org/10.1007/s12665-016-5373-3; Ghribi F., Richir J., Bejaoui S., et al. 2020. Trace elements and oxidative stress in the Ark shell Arca noae from a Mediterranean coastal lagoon (Bizerte lagoon, Tunisia): are there health risks associated with their consumption? Environ. Sci. Pollut. Res. 27: 15607-15623. https://doi.org/10.1007/s11356-020-07967-2 PMid:32128728; Giarratano E., Gil M.N., Malanga G. 2014. Biomarkers of environmental stress in gills of ribbed mussel Aulacomya atra atra (Nuevo Gulf, Northern Patagonia). Ecotoxicol. Environ. Saf. 107: 111-119. https://doi.org/10.1016/j.ecoenv.2014.05.003 PMid:24927387; Gutteridge J.M.C. 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 4: 1819-1828. https://doi.org/10.1093/clinchem/41.12.1819 PMid:7497639; Halliwell B., Gutteridge J.M.C. 2001. Free Radicals in Biology and Medicine. Oxford University Press, New York.; Hansen R.E., Roth D., Winther J.R. 2009. Quantifying the global cellular thioldisulfide status. Procs. Natl. Acad. Sci. U.S.A. 106: 422-427. https://doi.org/10.1073/pnas.0812149106 PMid:19122143 PMCid:PMC2626718; Hmida L. 2004. Reproduction de la palourde Ruditapes decussatus, en milieu naturel (sud Tunisie) et en milieu contrôlé (écloserie expérimentale): relation avec le système immunitaire. Ph. D. thesis. Univ. Bretagne Occidentale, 97 pp. https://www.researchgate.net/publication/237422947_Reproduction_de_la_palourd_Ruditapes_decussatus_en_milieu_naturel_sud_Tunisie_et_en_milieu_controle_ecloerie_experimentale_relation_avec_le_systeme_immunitaire; Howcroft C.F., Amorim M., Gravato C., et al. 2009. Effects of natural and chemical stressors on Enchytraeus albidus: can oxidative stress parameters be used as fast screening tools for the assessment of different stress impacts in soils? Environ. Internship. 35: 318-324. https://doi.org/10.1016/j.envint.2008.08.004 PMid:18819713; Jacques-Silva M.C., Nogueira C.W., Broch L.C. 2001. Diphenyldiselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol. Toxicol. 88: 119-125. https://doi.org/10.1034/j.1600-0773.2001.d01-92.x PMid:11245406; Jamil K. 2001. Bioindicators and biomarkers of environmental pollution and risk assessment. Sci. Publish., USA.; Javed M. Ahmad I. Usmani N. et al. 2016. Studies on biomarkers of oxidative stress and associated genotoxicity and histopathology in Channa punctatus from heavy metal polluted canal. Chemosphere 151: 210-219. https://doi.org/10.1016/j.chemosphere.2016.02.080 PMid:26943742; Jena K.B., Verlecar X.N., Chainy G.B.N. 2009. Application of oxidative stress indices in natural populations of Perna viridis as biomarker of environmental pollution. Mar. Pollut. Bull. 58: 107-113. https://doi.org/10.1016/j.marpolbul.2008.08.018 PMid:18849055; Jouini Z. 2003. Le Fonctionnement Hydrodynamique et Écologique du lac sud de Tunis après les Aménagements, DEA, ENIT, Springfield, VA, USA.; Jouini Z., Ben Charrada R., Moussa M. 2005. Caractéristiques du Lac Sud de Tunis après sa restauration. Mar. Life 15: 3-11.; Jović M., Stanković S. 2014. Human exposure to trace metals and possible public health risks via consumption of mussels Mytilus galloprovincialis from the Adriatic coastal area. Food Chem Toxicol. 70: 241-251. https://doi.org/10.1016/j.fct.2014.05.012 PMid:24880012; Kayali H., Young V.E., Barket K. 2006. Empire to Nation: Historical Perspective on the Making of the Modern Word, Series: World Social Change, Rowmanet Littlefield Publ., 440 pp.; Kefi FJ., Mleiki A., Maâtoug-Béjaoui J., et al. 2015. Seasonal variations of trace metal concentrations in the soft tissue of Lithophaga lithophaga collected from the Bizerte Bay (northern Tunisia, Mediterranean Sea). J. Aqua Res. Dev. 7: 432. https://doi.org/10.4172/2155-9546.1000432; Kochlef M. 2003.Contribution à L'étude du Fonctionnement Hydrodynamique du lac Sud Tunis après les Travaux D'aménagement, DEA, National Agronomy Institute of Tunisia, Carthage University, Tunis, Tunisia.; Kolyuchkina G.A., Budko D.F., Chasovnikov V.K., et al. 2017. Influence of the Bottom sediment characteristics on the bivalve Mollusk Anadara kagoshimensis Histopathology's variability in the northeastern coast of the black sea. Oceanology 57: 828-840. https://doi.org/10.1134/S0001437017060066; Kumari M.V.R., Hiramatsu M., Ebadi M. 1998. Free radical scavenging actions of metallothionein isoforms I and II. Free Radic. Res. 29: 93-101. https://doi.org/10.1080/10715769800300111 PMid:9790511; Lahbib Y., Mleiki A., Trigui-El-Menif N. 2016. Bioaccumulation of trace metals in Hexaplex trunculus: spatial and temporal trends from 2004 to 2011 along the Tunisian coast. Environ. Sci. Pollut. Res. 23: 16259-16271. https://doi.org/10.1007/s11356-016-6723-0 PMid:27154843; Leung H.M., Leung A.O.W., Wang H.S., et al. 2016. Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China. Mar. Pollut. Bull. 78: 235-245. https://doi.org/10.1016/j.marpolbul.2013.10.028 PMid:24239097; Livingstone D.R., Lips F., Garcia M.P., et al. 1992. Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Mar Biol. 112: 265-276. https://doi.org/10.1007/BF00702471; Lodish H., Berk A., Zipursky S.L., et al. 2000. Molecular Cell Biology. W.H. Freeman, New York.; Mahmoud N., Dellali M., El Bour M., et al. 2010. The use of Fulvia fragilis (Mollusca: Cardiidae) in the biomonitoring of Bizerta lagoon: A multimarkers approach. Ecol. Ind. 10: 696-702. https://doi.org/10.1016/j.ecolind.2009.11.010; Mansour C., Guibbolini M., Hacene O.R, et al. 2020. Oxidative Stress and Damage Biomarkers in Clam Ruditapes decussatus Exposed to a Polluted Site: The Reliable Biomonitoring Tools in Hot and Cold Seasons. Arch. Environ. Contam. Toxicol. 78: 478-494. https://doi.org/10.1007/s00244-020-00713-2 PMid:32016484; Marchand M.J., van Dyk J.C., Pieterse G.M., et al. 2009. Histopathological alterations in the liver of the sharptooth catfish Clarias gariepinus from polluted aquatic systems in South Africa. Environm. Toxicol. 24: 133-147. https://doi.org/10.1002/tox.20397 PMid:18528907; Marnett L.J. 2002. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 27: 219-222. https://doi.org/10.1016/S0300-483X(02)00448-1; Marques A., Piló D., Araújo O., et al. 2016. Propensity to metal accumulation and oxidative stress responses of two benthic species (Cerastoderma edule and Nephtys hombergii): are tolerance processes limiting their responsiveness? Ecotoxicology 25: 664-676. https://doi.org/10.1007/s10646-016-1625-y PMid:26911481; Martoja R., Martoja-Pierson M. 1967. Initiation aux techniques de l'histologie animale. Masson et Cie Editeurs, France, 345 pp.; Moussa M., Baccar L., Ben Khemis R. 2005. La lagune de Ghar El Melh: Diagnostic écologique et perspectives d'aménagement hydraulique. Rev. Sci. Eau 18: 13-26. https://doi.org/10.7202/705573ar; Mzoughi N., Chouba L. 2012. Heavy metals and PAH assessment based on mussel caging in the North coast of Tunisia (Mediterranean Sea). Int. J. Environ. Res. 11: 109-118.; Nicholson S., Lam P.K.S. 2005. Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel Perna viridis (Mytilidae: Bivalvia). Environ. Int. 31: 121-132. https://doi.org/10.1016/j.envint.2004.05.007 PMid:15607786; Nourisson D.H., Scapini F., Massi L., et al. 2013. Optical characterization of coastal lagoons in Tunisia: Ecological assessment to underpin conservation. Ecol. Inf. 14: 79-83. https://doi.org/10.1016/j.ecoinf.2012.11.011; Osman G., Galal M, Abul-Ezz A., et al. 2017. Polycyclic aromatic hydrocarbons (PAHS) accumulation and histopathological biomarkers in gills and mantle of Lanistes carinatus (Molluscs, Ampullariidae) to assess crude oil toxicity. Punjab Univ. J. Zool. 32: 39-50.; Oueslati W., Added A., Abdeljaoued S. 2010. Geochemical and statistical approaches to evaluation of metal contamination in a changed sedimentary environment: Ghar El Melh lagoon, Tunisia. Chem. Spec. Bioavailab. 22: 227-240. https://doi.org/10.3184/095422910X12893267432461; Oueslati W., Helali M.A., Zaaboub N., et al. 2014. Trace metal pore water geochemistry of Ghar El Melh lagoon sediments (North Tunisia). Méditerr. Environ. 5: 728-737.; Oueslati W., Zaaboub N., Helali M.A., et al. 2017. Trace element accumulation and elutriate toxicity in surface sediment in northern Tunisia (Tunis Gulf, southern Mediterranean). Mar. Pollut. Bull. 116: 216-225. https://doi.org/10.1016/j.marpolbul.2016.12.076 PMid:28081959; Pirrone C., Rossi F., Cappello S., et al. 2018. Evaluation of biomarkers in Mytilus galloprovincialis as an integrated measure of biofilm-membrane bioreactor (BF-MBR) system efficiency in mitigating the impact of oily wastewater discharge to marine environment: a microcosm approach. Aquat. Toxicol. 189: 49-62. https://doi.org/10.1016/j.aquatox.2018.02.018 PMid:29501937; Prevodnik A., Gardestrom J., Lilja K., et al. 2007. Oxidative stress in response to xenobiotics in the blue mussel Mytillus edulis: Evidence for variation along a natural salinity gradient of the Baltic Sea. Aquat. Toxicol. 82: 63-71. https://doi.org/10.1016/j.aquatox.2007.01.006 PMid:17320983; R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https: //www.R-project.org/; Rabei A., Hichami A., Beldi H., et al. 2018. Fatty acid composition, enzyme activities and metallothioneins in Donax trunculus (Mollusca, Bivalvia) from polluted and reference sites in the Gulf of Annaba (Algeria): Pattern of recovery during transplantation. Environ. Pollut. 237: 900-907. https://doi.org/10.1016/j.envpol.2018.01.041 PMid:29455915; Rasmussen E.K., Petersen O.S., Thompson J.R. 2009. Model analyses of the future water quality of the eutrophicated Ghar El Melh lagoon (Northern Tunisia). Hydrobiologia 622: 173-193. https://doi.org/10.1007/s10750-008-9681-9; Regoli F., Giuliani M.E. 2014. Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar. Environ. Res. 93: 106-117. https://doi.org/10.1016/j.marenvres.2013.07.006 PMid:23942183; Regoli F., Orlando E. 1994. Seasonal variation of trace metal concentrations in the digestive gland of the Mediterranean mussel Mytilus galloprovincialis: Comparison between a polluted and a non-polluted site. Arch. Environ. Contam. Toxicol. 27: 36-43. https://doi.org/10.1007/BF00203885 PMid:8024320; Richir J., Gobert S. 2014. A reassessment of the use of Posidonia oceanica and Mytilus galloprovincialis to biomonitor the coastal pollution of trace elements: New tools and tips. Mar. Pollut. Bull. 89: 390-406. https://doi.org/10.1016/j.marpolbul.2014.08.030 PMid:25440897; Romao P.R.T., Tovar J., Fonseca S.G., et al. 2006. Glutathione and the redox control system trypanothione/trypanothione reductase are involved in the protection of Leishmania spp. against nitrosothiol-induced cytotoxicity. Braz. J. Med. Biol. Res. 39: 355-363. https://doi.org/10.1590/S0100-879X2006000300006 PMid:16501815; Rouane Hacene O., Boutiba Z., Belhaouaria B., et al. 2015. Seasonal assessment of biological indices, bioaccumulation and bioavailability of heavy metals in mussels Mytilus galloprovincialis from Algerian west coast, applied to environmental monitoring. Oceanologia 57: 362-374. https://doi.org/10.1016/j.oceano.2015.07.004; Sabatini S.E., Rocchetta I., Nahabedian D.E., et al. 2011. Oxidative stress and histological alterations produced by dietary copper in the fresh water bivalve Diplodon chilensis. Comp. Biochem. Physiol. Part C 154: 391-398. https://doi.org/10.1016/j.cbpc.2011.07.009 PMid:21816234; Sambrook J., Russell D.W. 2001. Molecular cloning: a laboratory manual. 3rd edn. CSHL Press, New York, NY, pp. 577-581.; Schlacher T.A., Mondon J.A., Connolly R.M. 2007. Estuarine fish health assessment: Evidence of wastewater impacts based on nitrogen isotopes and histopathology. Mar. Pollut. Bull. 54: 1762-1776. https://doi.org/10.1016/j.marpolbul.2007.07.014 PMid:17888457; Sonawane S.M. 2015. Effect of Heavy metals on gills of fresh water bivalve Lamellidens marginalis. J. Environ. Sci. Toxicol. Food Technol. 9: 5-11.; Tandon S.K., Prasad S., Singh S., et al. 2002. Influence of age on lead-induced stress in rat. Biol. Trace Elem. Res. 88: 59-69. https://doi.org/10.1385/BTER:88:1:59; Tankoua O.F., Triquet C.A., Denis F., et al. 2012. Physiological status and intersex in the endobenthic bivalve Scorbicularia plana from thirteen estuaries in northwest France. Environ. Pollut. 167: 70-77. https://doi.org/10.1016/j.envpol.2012.03.031 PMid:22537660; Telahigue K., Rabeh I., Bejaoui S., et al. 2018. Mercury disrupts redox status, up-regulates metallothionein and induces genotoxicity in respiratory tree of sea cucumber (Holothuria forskali). Drug Chem. Toxicol. 43: 287-297. https://doi.org/10.1080/01480545.2018.1524475 PMid:30554537; Thomas C., Melissa M., Amy A. 2013. Hydroxyl radical is produced via the Fenton reaction in sub-mitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep. 14: 102-108. https://doi.org/10.1179/135100009X392566 PMid:19490751; Tlig-Zouari S., Maamouri M.F. 2008. Macrozoobenthic species composition and distribution in the Northern lagoon of Tunis. Trans. Waters Bull. 2: 1-15.; Tsangaris C., Moschino V., Steogyloudi E., et al. 2016. Biochemical biomarker responses to pollution in selected sentinel organisms across the Eastern Mediterranean and the Black Sea. Environ Sci. Pollut. Res. 23: 1789-1804. https://doi.org/10.1007/s11356-015-5410-x PMid:26396017; Uluturhan E., Darilmaz E., Kontas A., et al. 2019. Seasonal variations of multi-biomarker responses to metals and pesticides pollution in M. galloprovincialis and T. decussatus from Homa Lagoon, Eastern Aegean Sea. Mar. Pollut. Res. 141: 176-186. https://doi.org/10.1016/j.marpolbul.2019.02.035 PMid:30955723; United States Environmental Protection Agency (USEPA). 2000. Risk-based concentration table. United States Environmental Protection Agency, Washington, DC.; Usheva L.N., Vaschenko M.A., Durkina V.B. 2006. Histopathology of the digestive gland of the bivalve mollusk Crenomytilus grayanus (Dunker, 1853) from southwestern Peter the Great Bay, Sea of Japan. Rus. J. Mar. Biol. 32:166-172. https://doi.org/10.1134/S1063074006030047; Vajargah M.F., Yalsuyi A.M., Hedayati A., et al. 2018. Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles. Micros. Res. Tech. 81: 724-729. https://doi.org/10.1002/jemt.23028 PMid:29637649; Viarengo A., Palmero S., Zanicchi G., et al. 1985. Role of metallothioneins in Cu and Cd accumulation and elimination in the gill and digestive gland cells of Mytilus galloprovincialis lam. Mar. Environ. Res. 16: 23-26. https://doi.org/10.1016/0141-1136(85)90018-2; Vieira C., Morais S., Ramos S., et al. 2011. Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: intra-and inter-specific variability and human health risks for consumption. Food Chem. Toxicol. 49: 923-932. https://doi.org/10.1016/j.fct.2010.12.016 PMid:21193008; Walne P.R. 1979. Experiments on the culture in the sea of the butterfish Venerupis decussata L. Aquaculture 8: 371-381. https://doi.org/10.1016/0044-8486(76)90119-8; WHO/FAO. 1984. List of Maximum Levels Recommended for Contaminants by the Joint FAO/WHO Codex Alimentarius Commission. Second Series. 3. CAC/FAL, Rome, pp. 1-8.; Winston G.W., Digiulio R.T. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19: 137-161. https://doi.org/10.1016/0166-445X(91)90033-6; Wu Q. 2015. Advanced oxidation protein products as a novel marker of oxidative stress in postmenopausal osteoporosis. Med. Sci. Monit. 21: 2428-2432. https://doi.org/10.12659/MSM.894347 PMid:26286507 PMCid:PMC4547543; Yang D., Guo X., Xie T., et al. 2018. Reactive oxygen species may play an essential role in driving biological evolution: The Cambrian Explosion as an example. J. Environ. Sci. 63: 218-226. https://doi.org/10.1016/j.jes.2017.05.035 PMid:29406104; Yee-Duarte J.A., Ceballos-Vazquez B. P., Arellano-Martinez M., et al. 2018. Histopathological alterations in the gonad of Megapitaria squalida (Mollusca: Bivalvia) inhabiting a heavy metals polluted environment. J. Aquat. Anim. Health 30: 144-154. https://doi.org/10.1002/aah.10015 PMid:29710385; Zaaboub N., Oueslati W., Helali M.A., et al. 2014. Trace elements in different marine sediment fractions of the Gulf of Tunis (Central Mediterranean Sea). Chem. Speciat. Bioavailab. 26: 1-12. https://doi.org/10.3184/095422914X13884279095945; Zamouri-Langar N. 2010. Analyse et modélisation des paramètres d'exploitation des stocks du bivalve Ruditapes decussatus des cotes Tunisiennes. Univ. Inst. Nat. Agronom. Tunis (Tunisie), 240 pp. http://hdl.handle.net/1834/14918; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1880
-
4Academic Journal
المؤلفون: Fouzai, Chaima, Trabelsi, Wafa, Rabeh, Imen, Bejaoui, Safa, Telahigue, Khaoula, El Cafsi, M’hamed, Soudani, Nejla
المصدر: Toxicology and Industrial Health ; volume 36, issue 11, page 898-907 ; ISSN 0748-2337 1477-0393
-
5Academic Journal
المؤلفون: Bejaoui, Safa, Telahigue, Khaoula, Chetoui, Imene, Trabelsi, Wafa, Rabeh, Imen, Nechi, Salwa, Chalbi, Emna, Chalghaf, Mohame, Cafsi, M’hamed E. L., Soudani, Najla
المصدر: Chemistry and Ecology ; volume 36, issue 5, page 434-457 ; ISSN 0275-7540 1029-0370
-
6Academic Journal
المؤلفون: Mdaini, Zied, Telahigue, Khaoula, Hajji, Tarek, Rabeh, Imen, Pharand, Pamela, El Cafsi, M'hamed, Tremblay, Rejean, Gagné, Jean Pierre
المساهمون: Universite de Tunis El Manar, Universite du Quebec a Rimouski, Université de Tunis
المصدر: Marine Pollution Bulletin ; volume 189, page 114769 ; ISSN 0025-326X
-
7Academic Journal
المؤلفون: Ghribi Feriel, Boussoufa Dhouha, Aouini Fatma, Bejaoui Safa, Chetoui Imene, Rabeh Imen, El Cafsi M'hamed
المصدر: Aquatic Living Resources, Vol 31, p 14 (2018)
مصطلحات موضوعية: arca noae, bizerte lagoon, biochemical composition, fatty acids, macro-minerals, trophic markers, Aquaculture. Fisheries. Angling, SH1-691
Relation: https://www.alr-journal.org/articles/alr/full_html/2018/01/alr170094/alr170094.html; https://doaj.org/toc/1765-2952; https://doaj.org/article/fa195402a60b4196a27e51438c8a6922
-
8Academic Journal
المؤلفون: Telahigue, Khaoula, Rabeh, Imen, Chouba, Lassaad, Mdaini, Zied, El Cafsi, M’hamed, Mhadhbi, Lazhar, Hajji, Tarek
المصدر: Environmental Monitoring and Assessment ; volume 194, issue 6 ; ISSN 0167-6369 1573-2959
-
9Academic Journal
المؤلفون: Telahigue, Khaoula, Antit, Mouna, Rabeh, Imen, Chouba, Lassaad, Kheriji, Souhaila, Cafsi, M’hamed El, Hajji, Tarek, Mhadhbi, Lazhar
المصدر: Bulletin of Environmental Contamination and Toxicology ; volume 109, issue 5, page 831-838 ; ISSN 0007-4861 1432-0800
-
10Academic Journal
المؤلفون: Rabeh, Imen, Telahigue, Khaoula, Hajji, Tarek, Mdaini, Zied, Nechi, Salwa, Chelbi, Emna, El Cafsi, M’hamed, Mhadhbi, Lazhar
المصدر: Environmental Science and Pollution Research ; volume 29, issue 52, page 78396-78413 ; ISSN 0944-1344 1614-7499
-
11Academic Journal
المؤلفون: Telahigue, Khaoula, Rabeh, Imen, Mhadhbi, Lazhar, Nechi, Salwa, Chelbi, Emna, Ben Ali, Manel, Hedfi, Amor, AL-Harbi, Mohammad S., Hajji, Tarek
المساهمون: Taif University, Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
المصدر: Pesticide Biochemistry and Physiology ; volume 184, page 105099 ; ISSN 0048-3575
-
12Academic Journal
المؤلفون: Mdaini, Zied, Telahigue, Khaoula, Hajji, Tarek, Rabeh, Imen, Pharand, Pamela, El Cafsi, M'hamed, Tremblay, Rejean, Gagné, Jean Pierre
المصدر: Marine Pollution Bulletin ; volume 184, page 114104 ; ISSN 0025-326X
-
13Academic Journal
المؤلفون: Mdaini, Zied, Telahigue, Khaoula, Hajji, Tarek, Rabeh, Imen, Pharand, Pamela, El Cafsi, M’hamed, Tremblay, Rejean, Gagné, Jean Pierre
المصدر: SSRN Electronic Journal ; ISSN 1556-5068
-
14Academic Journal
المؤلفون: Mdaini, Zied, Telahigue, Khaoula, Hajji, Tarek, Rabeh, Imen, El Cafsi, M’hamed, Tremblay, Rejean, Gagné, Jean Pierre
المصدر: Environmental Monitoring and Assessment ; volume 193, issue 3 ; ISSN 0167-6369 1573-2959
-
15Academic Journal
المؤلفون: Hajji, Tarek, Telahigue, Khaoula, Rabeh, Imen, Ben Ammar, Rym, Mdaini, Zied, El Cafsi, M’hamed, Ghali, Ridha
المصدر: Parasitology Research ; volume 120, issue 6, page 1979-1991 ; ISSN 0932-0113 1432-1955
-
16Academic Journal
المؤلفون: Telahigue, Khaoula, Rabeh, Imen, Hajji, Tarek, Trabelsi, Wafa, Fouzai, Chaima, Nechi, Salwa, Chelbi, Emna, El Cafsi, M’hamed, Soudani, Nejla
المصدر: Chemosphere ; volume 269, page 129376 ; ISSN 0045-6535
-
17Academic Journal
المؤلفون: Telahigue, Khaoula, Hajji, Tarek, Rabeh, Imen, Cafsi, M’hamed El
المصدر: Food and Nutrition Sciences ; volume 04, issue 04, page 405-413 ; ISSN 2157-944X 2157-9458
-
18
المؤلفون: Bejaoui, Safa, Rabeh, Imen, Telahigue, Khaoula, Tir, Mariem, Chetoui, Imene, Fouzai, Chaima, Nechi, Salwa, Chelbi, Emna, El Cafsi, Mhamed, Soudani, Nejla
المصدر: Scientia Marina; Vol. 84 No. 4 (2020); 403-420
Scientia Marina; Vol. 84 Núm. 4 (2020); 403-420مصطلحات موضوعية: lesiones de macromoléculas, alteración de la histoarquitectura, animal structures, Ruditapes decussatus, digestive gland, redox status, trace element accumulations, macromolecule injuries, glándula digestiva, acumulaciones de metales, estado redox, histoarchitecture alteration
وصف الملف: text/html; application/pdf; text/xml
-
19Academic Journal
المؤلفون: Fouzai, Chaima, Trabelsi, Wafa, Bejaoui, Safa, Telahigue, Khaoula, Rabeh, Imen, Nechi, Salwa, Chelbi, Emna, El Cafsi, M'hamed, Soudani, Nejla
المصدر: Ecological Indicators ; volume 108, page 105690 ; ISSN 1470-160X
-
20Academic Journal
المؤلفون: Chetoui, Imene, Bejaoui, Safa, Trabelsi, Wafa, Rabeh, Imen, Nechi, Salwa, Chelbi, Emna, Ghalghaf, Mohamed, El Cafsi, Mhamed, Soudani, Nejla
المصدر: Drug & Chemical Toxicology; Jan 2022, Vol. 45 Issue 1, p311-323, 13p
مصطلحات موضوعية: ARACHIDONIC acid, OMEGA-6 fatty acids, FATTY acids, ESSENTIAL fatty acids, UNSATURATED fatty acids, LINOLEIC acid, DOCOSAHEXAENOIC acid, EICOSAPENTAENOIC acid