-
1Academic Journal
المؤلفون: Martínez-Córdoba, Claudia J, Quijano-Nieto, Bernardo A, Echeverría-González, Claudia L, Sierra-Bernal, Rosa M
المصدر: Indian Journal of Ophthalmology ; volume 69, issue 8, page 2151-2156 ; ISSN 0301-4738 1998-3689
-
2Electronic Resource
المؤلفون: Vega Zabaraín, Alejandra, Arbeláez Gutiérrez, Paula, Finocchio Rivero, Andrea, Quijano Nieto, Bernardo
المصدر: Revista Sociedad Colombiana de Oftalmología, ISSN 2539-424X, Vol. 56, Nº. 3, 2023, pags. 106-115
مصطلحات الفهرس: text (article)
-
3Academic Journal
المؤلفون: Rodríguez Velásquez, Javier Oswaldo, Soracipa Muñoz, Maria Yolanda, Ovalle Londoño, Iván Andres, Castro Hernández, Mónica Genith, Senjoa, Nairo, Quijano Nieto, Bernardo, Ortiz Tovar, Adriana Lizbeth, Guzmán de la Rosa, Esmeralda Esther, Rozo Gonzalez, Arlyn Carolina
المصدر: Archivos de Medicina (Manizales); Vol. 18 No. 1; 13-23 ; Archivos de Medicina (Manizales); Vol. 18 Núm. 1; 13-23 ; Archivos de Medicina (Manizales); v. 18 n. 1; 13-23 ; 2339-3874 ; 1657-320X
مصطلحات موضوعية: math, fractals, hematology, erythrocyte, anemia hemolytic, fractales, hematología, eritrocito, anemia hemolítica
وصف الملف: application/pdf; text/html; application/epub+zip; application/xml
Relation: https://revistasum.umanizales.edu.co/ojs/index.php/archivosmedicina/article/view/1835/3114; https://revistasum.umanizales.edu.co/ojs/index.php/archivosmedicina/article/view/1835/3182; https://revistasum.umanizales.edu.co/ojs/index.php/archivosmedicina/article/view/1835/3535; https://revistasum.umanizales.edu.co/ojs/index.php/archivosmedicina/article/view/1835/3536; https://revistasum.umanizales.edu.co/ojs/index.php/archivosmedicina/article/view/1835
-
4Academic Journal
المصدر: Revista Sociedad Colombiana de Oftalmología; Vol. 50, Núm. 2: Julio-Diciembre; 107-112 ; 2539-424X ; 0120-0453
مصطلحات موضوعية: Vasculitis retiniana, uveítis, angiografía fl uoresceínica, isquemia
وصف الملف: application/pdf
-
5Academic Journal
Alternate Title: Ocular complications derived from the use of new oral anticoagulants: narrative review. (English)
المؤلفون: Vega-Zabaraín, Alejandra, Arbeláez-Gutiérrez, Paula, Finocchio-Rivero, Andrea, Quijano-Nieto, Bernardo
المصدر: Revista Sociedad Colombiana de Oftalmología; sep-dic2023, Vol. 56 Issue 3, p106-115, 10p
مصطلحات موضوعية: ORAL medication, SURGICAL complications, OPHTHALMIC surgery, OPERATIVE surgery, ANTICOAGULANTS
-
6Academic Journal
المصدر: Revista Sociedad Colombiana de Oftalmología; Vol. 49, Núm. 2: Abril-Junio; 142-152 ; 2539-424X ; 0120-0453
مصطلحات موضوعية: Enfermedad de Coats, telangiectasias retinianas, fotocoagulación láser, antiangiogénicos
وصف الملف: application/pdf
-
7Academic Journal
المصدر: Revista Sociedad Colombiana de Oftalmología, ISSN 2539-424X, Vol. 55, Nº. 2, 2022, pags. 72-79
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9288145; (Revista) ISSN 0120-0453; (Revista) ISSN 2539-424X
-
8Academic Journal
المصدر: Revista Sociedad Colombiana de Oftalmología, ISSN 2539-424X, Vol. 54, Nº. 1, 2021, pags. 58-62
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9287083; (Revista) ISSN 0120-0453; (Revista) ISSN 2539-424X
-
9Academic Journal
المؤلفون: Martínez Córdoba, Claudia Johanna, Quijano Nieto, Bernardo, Echeverría, Claudia, Sierra Bernal, Rosa María
المصدر: Revista Sociedad Colombiana de Oftalmología, ISSN 2539-424X, Vol. 54, Nº. 1, 2021, pags. 20-28
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9287078; (Revista) ISSN 0120-0453; (Revista) ISSN 2539-424X
-
10Academic Journal
Alternate Title: Fractal geometry applied to compare the spaces occupied by normal erythrocytes and spherocytes. (English)
المؤلفون: RODRÍGUEZ VELÁSQUEZ, JAVIER OSWALDO, SORACIPA MUÑOZ, MARÍA YOLANDA, OVALLE LONDOÑO, IVÁN ANDRÉS, CASTRO HERNÁNDEZ, MÓNICA GENITH, SENEJOA, NAIRO, QUIJANO NIETO, BERNARDO, ORTIZ TOVAR, ADRIANA LIZBETH, GUZMÁN DE LA ROSA, ESMERALDA ESTHER, ROZO GONZALEZ, ARLYN CAROLINA
المصدر: Archivos de Medicina (1657-320X); jan-jun2018, Vol. 18 Issue 1, p13-23, 11p
-
11
المؤلفون: Gallego Suárez, Laura Juliana
المساهمون: Quijano Nieto, Bernardo Alfonso, Perdomo Charry Oscar Julian
مصطلحات موضوعية: Tomografia, Biochemical markers, Artificial, Coherencia, Optica, Enfermedades de los ojos, Venosa, Eye diseases, medicina, Inteligencia, Marcadores bioquímicos, Oclusión
وصف الملف: xiii, 37 páginas; application/pdf
-
12
المؤلفون: Giraldo Toro, Daniel Eduardo
المساهمون: Quijano Nieto, Bernardo Alfonso, Amaya Nieto, Javier Antonio
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Leukemia, Optical coherence tomography, Lymphoma, Linfoma no Hodgkin, 617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología [610 - Medicina y salud], Lymphoma, Non-Hodgkin, Macula, Mácula, 616 - Enfermedades [610 - Medicina y salud], Precursor Cell Lymphoblastic Leukemia-Lymphoma, Leucemia-Linfoma Linfoblástico de Células Precursoras, Mácula Lútea, Tomografía de coherencia óptica, Linfoma, Macula Lutea, Leucemia
وصف الملف: iv, 36 páginas; application/pdf
-
13Dissertation/ Thesis
المؤلفون: Gallego Suárez, Laura Juliana
المساهمون: Quijano Nieto, Bernardo Alfonso, Perdomo Charry Oscar Julian, orcid:0000-0001-5056-5956
مصطلحات موضوعية: medicina, Biochemical markers, Eye diseases, Marcadores bioquímicos, Enfermedades de los ojos, Inteligencia, Artificial, Oclusión, Venosa, Tomografia, Coherencia, Optica
وصف الملف: xiii, 37 páginas; application/pdf
Relation: Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P, et al. The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010 Feb;117(2):313-319.e1.; Yasuda M, Kiyohara Y, Arakawa S, Hata Y, Yonemoto K, Doi Y, et al. Prevalence and Systemic Risk Factors for Retinal Vein Occlusion in a General Japanese Population: The Hisayama Study. Investigative Opthalmology & Visual Science. 2010 Jun 1;51(6):3205.; Cugati S. Ten-Year Incidence of Retinal Vein Occlusion in an Older Population. Archives of Ophthalmology. 2006 May 1;124(5):726.; Klein R. The 15-Year Cumulative Incidence of Retinal Vein Occlusion. Archives of Ophthalmology. 2008 Apr 1;126(4):513.; Buehl W, Sacu S, Schmidt-Erfurth U. Retinal Vein Occlusions. In 2010. p. 54–72.; Brown G, Yoo J, Brown M, Turpcu A, Rajput Y, Benson W, et al. The Burden of Retinal Venous Occlusion: An Assessment of Fellow Eyes in 1000 Cases. Ophthalmol Retina. 2017 Sep;1(5):404–12.; Chang A. The role of artificial intelligence in digital health. Digital health entrepreneurship. 2020;71–81.; Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019 Jan 7;25(1):44–56.; Rispoli M, Savastano MC, Lumbroso B. Capillary network anomalies in branch retinal vein occlusion on optical coherence tomography angiography. Retina. 2015 Nov;35(11):2332–8.; Simon J, Conliffe T, Kitei P. Non-operative management: An evidence-based approach. In: Seminars in Spine Surgery. Elsevier; 2016. p. 8–13.; Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017 Apr;69:S36–40.; Kapoor R, Walters SP, Al-Aswad LA. The current state of artificial intelligence in ophthalmology. Surv Ophthalmol. 2019 Mar;64(2):233–40; Tsai G, Banaee T, Conti F, Singh R. Optical coherence tomography angiography in eyes with retinal vein occlusion. J Ophthalmic Vis Res. 2018;13(3):315.; Glanville J, Patterson J, McCool R, Ferreira A, Gairy K, Pearce I. Efficacy and safety of widely used treatments for macular oedema secondary to retinal vein occlusion: a systematic review. BMC Ophthalmol. 2014 Dec 21;14(1):7.; Hayreh SS, Podhajsky PA, Zimmerman MB. Natural History of Visual Outcome in Central Retinal Vein Occlusion. Ophthalmology. 2011 Jan;118(1):119-133.e2.; Hayreh SS, Klugman MR, Beri M, Kimura AE, Podhajsky P. Differentiation of ischemic from non-ischemic central retinal vein occlusion during the early acute phase. Graefe’s Archive for Clinical and Experimental Ophthalmology. 1990;228(3):201–17.; Patel A, Nguyen C, Lu S. Central retinal vein occlusion: A review of current Evidence-based treatment options. Middle East Afr J Ophthalmol. 2016;23(1):44.; Bowers dk, finkelstein d, wolff sm, green wr. Branch retinal vein occlusion. Retina. 1987;7(4):252–9.; Newman-Casey PA, Stem M, Talwar N, Musch DC, Besirli CG, Stein JD. Risk Factors Associated with Developing Branch Retinal Vein Occlusion Among Enrollees in a United States Managed Care Plan. Ophthalmology. 2014 Oct;121(10):1939–48.; Jaulim A, Ahmed B, Khanam T, Chatziralli IP. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina. 2013;33(5):901–10.; Ho JD, Tsai CY, Liou SW, Tsai RJF, Lin HC. Seasonal Variations in the Occurrence of Retinal Vein Occlusion: A Five-Year Nationwide Population-Based Study from Taiwan. Am J Ophthalmol. 2008 Apr;145(4):722-728.e3.; Oh J, Ahn J. Comparison of Retinal Layer Thickness and Vascular Density between Acute and Chronic Branch Retinal Vein Occlusion. Korean Journal of Ophthalmology. 2019;33(3):238.; Zawadzki RJ, Capps AG, Dae Yu Kim, Panorgias A, Stevenson SB, Hamann B, et al. Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts. IEEE Journal of Selected Topics in Quantum Electronics. 2014 Mar;20(2):322–33.; Coscas F, Glacet-Bernard A, Miere A, Caillaux V, Uzzan J, Lupidi M, et al. Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa. Am J Ophthalmol. 2016 Jan;161:160- 171.e2.; Adhi M, Filho MAB, Louzada RN, Kuehlewein L, de Carlo TE, Baumal CR, et al. Retinal Capillary Network and Foveal Avascular Zone in Eyes with Vein Occlusion and Fellow Eyes Analyzed With Optical Coherence Tomography Angiography. Investigative Opthalmology & Visual Science. 2016 Jul 21;57(9):OCT486.; Kashani AH, Lee SY, Moshfeghi A, Durbin MK, Puliafito CA. Optical coherence tomography angiography of retinal venous occlusion. Retina. 2015 Nov;35(11):2323–31.; Novais EA, Waheed NK. Optical Coherence Tomography Angiography of Retinal Vein Occlusion. In 2016. p. 132–8.; Mastropasqua R, Toto L, di Antonio L, Borrelli E, Senatore A, di Nicola M, et al. Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions. Sci Rep. 2017 Jan 18;7(1):40763.; Suzuki N, Hirano Y, Yoshida M, Tomiyasu T, Uemura A, Yasukawa T, et al. Microvascular Abnormalities on Optical Coherence Tomography Angiography in Macular Edema Associated With Branch Retinal Vein Occlusion. Am J Ophthalmol. 2016 Jan;161:126-132.e1.; Glacet-Bernard A, Sellam A, Coscas F, Coscas G, Souied EH. Optical Coherence Tomography Angiography in Retinal Vein Occlusion Treated with Dexamethasone Implant: A New Test for Follow-Up Evaluation. Eur J Ophthalmol. 2016 Sep 7;26(5):460–8.; Suzuki N, Hirano Y, Tomiyasu T, Esaki Y, Uemura A, Yasukawa T, et al. Retinal Hemodynamics Seen on Optical Coherence Tomography Angiography Before and After Treatment of Retinal Vein Occlusion. Investigative Opthalmology & Visual Science. 2016 Oct 25;57(13):5681.; Savastano MC, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015 Nov;35(11):2196–203.; Kadomoto S, Muraoka Y, Ooto S, Miwa Y, Iida Y, Suzuma K, et al. EVALUATION OF MACULAR ISCHEMIA IN EYES WITH BRANCH RETINAL VEIN OCCLUSION. Retina. 2018 Feb;38(2):272–82.; Samara WA, Say EAT, Khoo CTL, Higgins TP, Magrath G, Ferenczy S, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015 Nov;35(11):2188– 95.; Casselholmde Salles M, Kvanta A, Amrén U, Epstein D. Optical Coherence Tomography Angiography in Central Retinal Vein Occlusion: Correlation Between the Foveal Avascular Zone and Visual Acuity. Investigative Opthalmology & Visual Science. 2016 Jul 13;57(9):OCT242.; Sanal MG, Paul K, Kumar S, Ganguly NK. Artificial Intelligence and Deep Learning: The Future of Medicine and Medical Practice. J Assoc Physicians India. 2019 Apr;67(4):71–3.; Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunović H. Artificial intelligence in retina. Prog Retin Eye Res. 2018 Nov;67:1–29.; Li M, Chen Y, Ji Z, Xie K, Yuan S, Chen Q, et al. Image Projection Network: 3D to 2D Image Segmentation in OCTA Images. IEEE Trans Med Imaging. 2020 Nov;39(11):3343–54.; Perdomo Charry OJ, González FA. A systematic review of deep learning methods applied to ocular images. Ciencia e Ingenieria Neogranadina. 2020;30(1):9–26.; Schlegl T, Waldstein SM, Bogunovic H, Endstraßer F, Sadeghipour A, Philip AM, et al. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology. 2018 Apr;125(4):549–58.; Roy AG, Conjeti S, Karri SPK, Sheet D, Katouzian A, Wachinger C, et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express. 2017 Aug 1;8(8):3627; Lee CS, Tyring AJ, Wu Y, Xiao S, Rokem AS, DeRuyter NP, et al. Generating retinal flow maps from structural optical coherence tomography with artificial intelligence. Sci Rep. 2019 Apr 5;9(1):5694.; Yin XX, Sun L, Fu Y, Lu R, Zhang Y. U-Net-Based Medical Image Segmentation. J Healthc Eng. 2022 Apr 15;2022:1–16.; Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer; 2015. p. 234–41.; Du G, Cao X, Liang J, Chen X, Zhan Y. Medical image segmentation based on u- net: A review. Journal of Imaging Science and Technology. 2020; Siddique N, Paheding S, Elkin CP, Devabhaktuni V. U-net and its variants for medical image segmentation: A review of theory and applications. Ieee Access. 2021;9:82031–57.; Jaccard P. The distribution of the flora in the alpine zone.1. New phytologist. 1912 Feb;11(2):37–50.; Tan PN. Michael Steinbach und Vipin Kumar. Introduction to data mining. 2006; Liu X, Huang Z, Wang Z, Wen C, Jiang Z, Yu Z, et al. A deep learning based pipeline for optical coherence tomography angiography. J Biophotonics. 2019 Oct;12(10).; Nagasato D, Tabuchi H, Masumoto H, Enno H, Ishitobi N, Kameoka M, et al. Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning. PLoS One. 2019 Nov 7;14(11):e0223965.; Niki T, Muraoka K, Shimizu K. Distribution of Capillary Nonperfusion in Early-stage Diabetic Retinopathy. Ophthalmology. 1984 Dec;91(12):1431–9.; Kraus MF, Liu JJ, Schottenhamml J, Chen CL, Budai A, Branchini L, et al. Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization. Biomed Opt Express. 2014 Aug 1;5(8):2591.; Zhang M, Hwang TS, Dongye C, Wilson DJ, Huang D, Jia Y. Automated Quantification of Nonperfusion in Three Retinal Plexuses Using Projection- Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy. Investigative Opthalmology & Visual Science. 2016 Oct 3;57(13):5101.; Guo Y, Camino A, Wang J, Huang D, Hwang TS, Jia Y. MEDnet, a neural network for automated detection of avascular area in OCT angiography. Biomed Opt Express. 2018 Nov 1;9(11):5147.; Alam M, Le D, Son T, Lim JI, Yao X. AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography. Biomed Opt Express. 2020 Sep 1;11(9):5249.; Heisler M, Karst S, Lo J, Mammo Z, Yu T, Warner S, et al. Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography. Transl Vis Sci Technol. 2020 Apr 13;9(2):20.; Ren X, Feng W, Ran R, Gao Y, Lin Y, Fu X, et al. Artificial intelligence to distinguish retinal vein occlusion patients using color fundus photographs. Eye. 2022;1–7.; https://repositorio.unal.edu.co/handle/unal/83367; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
14Dissertation/ Thesis
المؤلفون: Giraldo Toro, Daniel Eduardo
المساهمون: Quijano Nieto, Bernardo Alfonso, Amaya Nieto, Javier Antonio
مصطلحات موضوعية: 610 - Medicina y salud::616 - Enfermedades, 610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología, Mácula Lútea, Leucemia-Linfoma Linfoblástico de Células Precursoras, Linfoma no Hodgkin, Macula Lutea, Precursor Cell Lymphoblastic Leukemia-Lymphoma, Lymphoma, Non-Hodgkin, Leucemia, Linfoma, Tomografía de coherencia óptica, Mácula, Optical coherence tomography, Macula, Leukemia
وصف الملف: iv, 36 páginas; application/pdf
Relation: Kasper, D.L., & Harrison, T. R. (2016). Harrison’s principles of internal medicine. New York: McGraw-Hill, Medical Pub. Division. (L. Kasper, Fauci, Hauser, Longo, Jameson (Ed.); 19th ed.; C. Rozman, F. C. (2020). Medicina Interna de Farreras y Rozman (19th ed.). Elsevier.; Li, J., Smith, A., Crouch, S., Oliver, S., Roman, E., & Smith, A. (2016). Estimating the prevalence of hematological malignancies and precursor conditions using data from Haematological Malignancy Research Network ( HMRN ). Cancer Causes & Control, 27(8), 1029–1036. https://doi.org/10.1007/s10552-016-0780-z.; Koshy, J., John, M., Thomas, S., Kaur, G., Batra, N., & Xavier, W. (2015). Ophthalmic manifestations of acute and chronic leukemias presenting to a tertiary care center in India. Indian Journal of Ophthalmology, 63(8), 659–664.; Damato B, Singh Arun. Clinical Ophthalmic Oncology. Uveal Tumors. Springer 3th edition. 2019.; Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009 Jul-Aug. 59(4):225-49.; Alvarnas JC, Brown PA, Aoun P, et al. Acute lymphoblastic leukemia. J Natl Compr Cancer Netw. 2012;10:858–914.; Eliassi-Rad B, Albert DM, Green WR. Frequency of ocular metastases in patients dying of cancer in eye bank populations. Br J Ophthalmol. 1996;80:125–8.; Batista J.L, Epstein M.M, Birmann B.M. Epidemiology of Hematologic Malignancies. Springer 2017.; Schachat AP, Markowitz JA, Guyer DR, et al. Ophthalmic manifestations of leukemia. Arch Ophthalmol. 1989;107:697–700.; Reddy SC, Jackson N, Menon BS. Ocular involvement in leukemia–a study of 288 cases. Ophthalmologica. 2003;217:441–445.; Holt, J. M., & Gordon-Smith, E. C. (1969). Retinal abnormalities in diseases of the blood. The British journal of ophthalmology, 53(3), 145–160.; Freeman LN, Schachat AP, Knox DL, et al. Clinical features, laboratory investigations, and survival in ocular reticulum cell sarcoma. Ophthalmology. 1987;94:1631–1639.; Lin P, Mruthyunjaya P. Retinal Manifestations of Oncologic and Hematologic Conditions. International Ophthalmology Clinics. 2012;52:67-91.; Shields C, Materin M. Review of Optical Coherence Tomography for Intraocular Tumors. Current Opinion in Ophthalmol. 2005;16:141—154.; Damato B, Singh Arun. Clinical Ophthalmic Oncology. Retinal Tumors. Springer 3th edition. 2019.; Arevalo JF, Fernandez CF, Garcia RA. Optical coherence tomography characteristics of choroidal metastasis. Ophthalmology. 2005;112(9):1612–9.; Al-Dahmash SA, Shields CL, Kaliki S, et al. Enhanced depth imaging optical coherence tomography of choroidal metastasis in 14 eyes. Retina. 2014;34(8):1588–93.; Demirci H, Cullen A, Sundstrom JM. Enhanced depth imaging optical coherence tomography of choroidal metastasis. Retina. 2014;34(7):1354–9.; Mapelli C, Invernizzi A, Barteselli G, et al. Multimodal imaging of vitreoretinal lymphoma. Ophthalmologica. 2016;236(3):166–74.; Barry RJ, Tasiopoulou A, Murray PI, et al. Characteristic optical coherence tomography findings in patients with primary vitreoretinal lymphoma: a novel aid to early diagnosis. Br J Ophthalmol. 2018;102:1362.; Damato B, Singh Arun. Clinical Ophthalmic Oncology Basic Principles. Springer 3th edition. 2019.; Jackson N, Reddy SC, Harun MH, et al. Macular haemorrhage in adult acute leukaemia patients at presentation and the risk of subsequent intracranial haemorrhage. Br J Haematol. 1997;98:204–209.; Ryan S, Schachat A. Ryan's Retina. Edinburgh, 6ta Ed. Elsevier; 2018.; Li J, Smith A, Crouch S, Oliver S, Roman E, Smith A. Estimating the prevalence of hematological malignancies and precursor conditions using data from Haematological Malignancy Research Network ( HMRN ). Cancer Causes Control. 2016;27(8):1029–36.; Eliassi-rad B, Albert DM, Green WR. Frequency of ocular metastases in patients dying of cancer in eye bank populations. 1996;125–8.; Ahmed YAAR, Eltayeb A. Clinical challenges: mieloma and concomitant type 2 diabetes. Int J Hematol Oncol Stem Cell Res 2013; 7: 34–41.; Gurunadh VS, Baijal V, PalitMG, Sarma YS. Bilateral simultaneous retinal vein occlusion. Indian J Ophthalmol 1999; 47: 248–250.; ZiaeiM, ElgoharyMA, Bremner FD. Bilateral central retinal vein occlusion in multiple myeloma. Can J Ophthalmol 2013; 48: 24–25.; Kurup SP, Khan S, Gill MK. SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IN THE EVALUATION AND MANAGEMENT OF INFECTIOUS RETINITIS. 2014;2233–41.; Kincaid MC, Green WR. Ocular and orbital involvement in leukemia. Surv Ophthalmol. 1983;27:211–232; Karesh JW, Goldman EJ, Reck K, et al. A prospective ophthalmic evaluation of patients with acute myeloid leukemia: correlation of ocular and hematologic findings. J Clin Oncol. 1989;7:1528.; Ministerio de Salud. Observatorio Nacional de Cáncer. Guía Metodológica 2018. Dirección de Epidemiología y Demografía, dirección de promoción y prevención.; Instituto Nacional de Cancerología ESE. Análisis de la Situación del Cáncer en Colombia 2015. Primera edición. Bogotá DC: Instituto Nacional de Cancerología ESE; 2017.; Torres Guzmán, M. D., Izquierdo Gracia, D. F., Torres Mejía, A., & Vallejo, J. M. (2016). Mieloma múltiple, lo que un radiólogo debe saber; Multiple Myeloma, What a Radiologist Should Know. Rev. Colomb. Radiol, 27(2), 4441–4450.; Kim K, Khang D. Past, Present, and Future of Anticancer Nanomedicine. 2020. International Journal of Nanomedicine.; Beaver J, Howie L. A 25-year Experience of US Food and Drug Administration Accelerated Approval of Malignant Hematology and Oncology Drugs and Biologics. 2018. JAMA Oncology.; Ksiaa I, Kechida M, Zina S. Acute Lymphoblastic Leukemia Relapse presenting as retinal vasculitis. Clin Case Rep 2020;8:1467–1471.; Wong BJ, Berry JL. Acute lymphoblastic leukemia relapse presenting as optic nerve infiltration. JAMA Ophthalmol. 2017;135(1):e164656.; Ministerio de Salud y Protección Social. Resolución 8430 de 1993. Artículo 10, pp. 3. Bogotá DC; 1993. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF; Asociación Médica Mundial. Declaración de Helsinki de la AMM – Principios éticos para las investigaciones médicas en seres humanos. Fortaleza; 2013. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsinkide-la-amm-principios-eticos-para-las-investigaciones-medicas-en-sereshumanos; Congreso de la República de Colombia. Ley Estatutaria 1581 de 2012. Artículos 5 y 6, pp. 4. [Internet] Bogotá DC; 2012. Disponible en: https://www.defensoria.gov.co/public/Normograma%202013_html/Normas/Ley_1581_2012.pdf.; Organización Panamericana de la Salud (OPS/OMS), Consejo de Organizaciones Internacionales de las Ciencias Médicas (CIOMS). Pautas éticas internacionales para la investigación relacionada con la salud con seres humanos, 4° Edición. [Internet] Ginebra: CIOMS; 2016. Disponible en: cioms.ch/wp-content/uploads/2017/12/CIOMSEthicalGuideline_SP_INTERIOR-FINAL.pdf; Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2016.; Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia (review). J Clin Oncol. 2011;29(5):532–543.; Parikh, S. A. (2018). Chronic lymphocytic leukemia treatment algorithm 2018. Blood Cancer Journal, 8(10).; RIVOALEN, A., & LE XUAN CHAT. (1962). Chronic myeloid leukemia in children. La Médecine Infantile, 69, 427–436.; Hermans J, Krol AD, van Groningen K, Kluin PM, Kluin-Nelemans JC, Kramer MH, Noordijk EM, Ong F, Wijermans PW. International Prognostic Index for aggressive non-Hodgkin's lymphoma is valid for all malignancy grades. Blood. 1995 Aug 15;86(4):1460-3.; https://repositorio.unal.edu.co/handle/unal/82978; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
15Dissertation/ Thesis
المؤلفون: Padilla Pantoja, Fabio Daniel
المساهمون: Quijano Nieto, Bernardo alfonso, Perdomo Charry, Oscar Julián, González Osorio, Fabio Augusto, Grupo de Investigacion en Oftalmología Básica y Clínica
مصطلحات موضوعية: 610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología, Macular Edema, Artificial Intelligence, Tomography, Optical, Edema Macular, Inteligencia Artificial, Tomografía Óptica, Machine Learning, Optical coherence tomography, Tomografía de coherencia óptica
وصف الملف: xiii, 50 páginas; application/pdf
Relation: Bireme; Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res. 2018;63:20-68.; Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Heal. 2017;5(12):e1221-e1234.; Johnson MW. Etiology and Treatment of Macular Edema. Am J Ophthalmol. 2009;147(1).; Catier A, Tadayoni R, Paques M, et al. Characterization of macular edema from various etiologies by optical coherence tomography. Am J Ophthalmol. 2005;140(2):200.e1-200.e9.; World Population Prospects - Population Division - United Nations. Recuperado el 28 de Noviembre de 2021 de https://population.un.org/wpp/.; Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Heal. 2017;5(9):e888-e897.; Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta- analysis. Lancet Glob Heal. 2014;2(2).; Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 th edition. Diabetes Res Clin Pract. 2019;157.; Song P, Xu Y, Zha M, et al. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors. J Glob Health. 2019;9(1).; Swanson EA, Fujimoto JG. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited]. Biomed Opt Express. 2017;8(3):1638.; Resnikoff S, Lansingh VC, Washburn L, et al. Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): will we meet the needs? Br J Ophthalmol. 2020;104(4):588-592.; Househ MS, Aldosari B, Alanazi A, et al. Big data, big problems: A healthcare perspective. In: Studies in Health Technology and Informatics. Vol 238. IOS Press 2017:36-39.; Stein JD, Lum F, Lee PP, et al. Use of health care claims data to study patients with ophthalmologic conditions. Ophthalmology. 2014;121(5):1134-1141.; Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167-175.; Yang LWY, Ng WY, Foo LL, et al. Deep learning-based natural language processing in ophthalmology: applications, challenges and future directions. Curr Opin Ophthalmol. 2021;32(5):397-405.; Wang SY, Pershing S, Lee AY. Big data requirements for artificial intelligence. Curr Opin Ophthalmol. 2020;31(5):318-323.; O’Byrne C, Abbas A, Korot E, Keane PA. Automated deep learning in ophthalmology: AI that can build AI. Curr Opin Ophthalmol. 2021;32(5):406-412.; Kapoor R, Walters SP, Al-Aswad LA. The current state of artificial intelligence in ophthalmology. Surv Ophthalmol. 2019;64(2):233-240.; Rajinikanth V, Sivakumar R, Hemanth DJ, et al. Automated classification of retinal images into AMD/non-AMD Class—a study using multi-threshold and Gassian-filter enhanced images. Evol Intell 2021 142. 2021;14(2):1163-1171.; Zhong P, Wang J, Guo Y, et al. Multiclass retinal disease classification and lesion segmentation in OCT B-scan images using cascaded convolutional networks. Appl Opt. 2020;59(33):10312-10320.; Fang L, Wang C, Li S, et al. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. IEEE Trans Med Imaging. 2019 Aug;38(8):1959-1970.; Kuwayama S, Ayatsuka Y, Yanagisono D, et al. Automated Detection of Macular Diseases by Optical Coherence Tomography and Artificial Intelligence Machine Learning of Optical Coherence Tomography Images. J Ophthalmol. 2019;2019.; Bhatia KK, Graham MS, Terry L, et al. DISEASE CLASSIFICATION OF MACULAR OPTICAL COHERENCE TOMOGRAPHY SCANS USING DEEP LEARNING SOFTWARE: Validation on Independent, Multicenter Data. Retina. 2020 Aug;40(8):1549-1557.; Liu X, Bai Y, Cao J, et al. Joint disease classification and lesion segmentation via one-stage attention-based convolutional neural network in OCT images. Biomed Signal Process Control. 2022;71:103087.; Das UN. Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions. Arch Med Sci. 2016;12(5):1142-1157.; Bhagat N, Grigorian RA, Tutela A, et al. Diabetic Macular Edema: Pathogenesis and Treatment. Surv Ophthalmol. 2009;54(1):1-32.; Bolz M, Kriechbaum K, Simader C, et al. In Vivo Retinal Morphology after Grid Laser Treatment in Diabetic Macular Edema. Ophthalmology. 2010;117(3):538-544.; Battaglia Parodi M, Bandello F. Branch retinal vein occlusion: Classification and treatment. Ophthalmologica. 2009;223(5):298-305.; Funk M, Kriechbaum K, Prager F, et al. Intraocular concentrations of growth factors and cytokines in retinal vein occlusion and the effect of therapy with bevacizumab. Investig Ophthalmol Vis Sci. 2009;50(3):1025-1032.; Tranos PG, Wickremasinghe SS, Stangos NT, et al. Macular edema. Surv Ophthalmol. 2004;49(5):470-490.; Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89-95.; Califf RM. Biomarker definitions and their applications. Exp Biol Med. 2018;243(3):213-221.; Lai TT, Hsieh YT, Yang CM, et al. Biomarkers of optical coherence tomography in evaluating the treatment outcomes of neovascular age-related macular degeneration: a real-world study. Sci Rep. 2019;9(1).; Wintergerst MWM, Schultz T, Birtel J, et al. Algorithms for the automated analysis of age-related macular degeneration biomarkers on optical coherence tomography: A systematic review. Transl Vis Sci Technol. 2017;6(4).; Keane PA, Patel PJ, Liakopoulos S, et al. Evaluation of age-related macular degeneration with optical coherence tomography. Surv Ophthalmol. 2012;57(5):389-414.; Kwan CC, Fawzi AA. Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy. Curr Diab Rep. 2019;19(10).; Lee H, Jang H, Choi YA, et al. Association between soluble cd14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema. Investig Ophthalmol Vis Sci. 2018;59(2):715-721.; Panozzo G, Cicinelli MV, Augustin AJ, et al. An optical coherence tomography- based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification. Eur J Ophthalmol. 2020;30(1):8-18.; Yiu G, Welch RJ, Wang Y, et al. Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmol Retin. 2020;4(1):67-76.; Yu C, Xie S, Niu S, et al. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Med Phys. 2019;46(10):4502-4519.; Ozer MD, Batur M, Mesen S, et al. Evaluation of the Initial Optical Coherence Tomography Parameters in Anticipating the Final Visual Outcome of Central Retinal Vein Occlusion. J Curr Ophthalmol. 2020;32(1):46-52.; Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina. Prog Retin Eye Res. 2018;67:1-29.; Currie G, Hawk KE, Rohren E, et al. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J Med Imaging Radiat Sci. 2019;50(4):477- 487.; Carin L, Pencina MJ. On deep learning for medical image analysis. JAMA - J Am Med Assoc. 2018;320(11):1192-1193.; Lakhani P, Gray DL, Pett CR, et al. Hello World Deep Learning in Medical Imaging. J Digit Imaging. 2018;31(3):283-289.; Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.; Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262-e273.; Perdomo Charry OJ, González Osorio FA. A Systematic Review of Deep Learning Methods Applied to Ocular Images. Cienc e Ing Neogranadina. 2019;30(1):9-26.; Maninis KK, Pont-Tuset J, Arbeláez P, et al. Deep retinal image understanding. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 9901 LNCS. Springer Verlag; 2016:140-148.; Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digit Med. 2018;1(1).; Schlegl T, Waldstein SM, Bogunovic H, et al. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology. 2018;125(4):549-558.; Roy AG, Conjeti S, Karri SPK, et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express. 2017;8(8):3627.; Alsaih K, Yusoff MZ, Tang TB, et al. Retinal Fluids Segmentation Using Volumetric Deep Neural Networks on Optical Coherence Tomography Scans. In: Institute of Electrical and Electronics Engineers (IEEE); 2020:68-72.; Gao K, Niu S, Ji Z, et al. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Comput Methods Programs Biomed. 2019;176:69-80.; Guan L, Yu K, Chen X. Fully automated detection and quantification of multiple retinal lesions in OCT volumes based on deep learning and improved DRLSE. In: Angelini ED, Landman BA, eds. Medical Imaging 2019: Image Processing. Vol 10949. SPIE; 2019:110.; Chakravarthy U, Goldenberg D, Young G, et al. Automated Identification of Lesion Activity in Neovascular Age-Related Macular Degeneration. In: Ophthalmology. Vol 123. Elsevier Inc.; 2016:1731-1736.; Ogino K, Murakami T, Tsujikawa A, et al. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina. 2012;32(1):77-85.; Iannetti L, Spinucci G, Abbouda A, et al. Spectral-Domain Optical Coherence Tomography in Uveitic Macular Edema: Morphological Features and Prognostic Factors. Ophthalmologica. 2012;228(1):13-8; Munk M, Sacu S, Huf W, et al. Differential diagnosis of macular edema of different pathophysiologic origins by spectral domain optical coherence tomography. Retina. 2014;34(11):2218-2232.; Hassan B, Qin S, Ahmed R, et al. Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on OCT scans for clinical use in anti-VEGF therapy. Comput Biol Med. 2021;136:104727.; Tsuji T, Hirose Y, Fujimori K, et al. Classification of optical coherence tomography images using a capsule network. BMC Ophthalmol. 2020;20(1):114.; Karri SP, Chakraborty D, Chatterjee J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age- related macular degeneration. Biomed Opt Express. 2017;8(2):579-592.; Sanchez YD, Nieto B, Padilla FD, et al. Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans. In: Brieva J, Lepore N, Romero Castro E, Linguraru MG, eds. 16th International Symposium on Medical Information Processing and Analysis. Vol 11583. SPIE; 2020:38.; Kermany DS, Goldbaum M, Cai W et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018;172(5):1122- 1131.e9. Dataset disponible en http://dx.doi.org/10.17632/rscbjbr9sj.3; Farsiu S, Chiu SJ, O’Connell RV, et al. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology. 2014;121(1):162-172. Dataset disponible en línea en: https://people.duke.edu/~sf59/RPEDC_Ophth_2013_dataset.htm; Zou KH, Warfield SK, Bharatha A, et al. Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index. Acad Radiol. 2004;11(2):178-189.; Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2018:7132-7141.; Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. 31st AAAI Conf Artif Intell AAAI 2017. 2016:4278-4284.; Softmax Function Definition %7C DeepAI. Recuperado el 28 de noviembre de 2021 de https://deepai.org/machine-learning-glossary-and-terms/softmax-layer.; Ministerio de Salud y Protección Social. Resolución 8430 de 1993. Artículo 10, pp. 3. Bogotá DC; 1993. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RE SOLUCION-8430-DE-1993.PDF; Asociación Médica Mundial. Declaración de Helsinki de la AMM - Principios éticos para las investigaciones médicas en seres humanos. Fortaleza; 2013. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsinki- de-la-amm- principios-eticos-para-las-investigaciones-medicas-en-seres- humanos/; Congreso de la República de Colombia. Ley Estatutaria 1581 de 2012. Artículos 5 y 6, pp. 4. Bogotá DC; 2012. Disponible en: https://www.defensoria.gov.co/public/Normograma%202013_html/Normas/L ey_1581_2012.pdf; Organización Panamericana de la Salud (OPS/OMS), Consejo de Organizaciones Internacionales de las Ciencias Médicas (CIOMS). Pautas éticas internacionales para la investigación relacionada con la salud con seres humanos, 4° Edición. [Internet] Ginebra: CIOMS; 2016. Disponible en: cioms.ch/wp-content/uploads/2017/12/CIOMS- EthicalGuideline_SP_INTERIOR- FINAL.pdf; Jha D, Smedsrud PH, Riegler MA, et al. ResUNet++: An Advanced Architecture for Medical Image Segmentation. 2019 IEEE Int Symp Multimed. December 2019:225- 2255.; Chen Z, Li D, Shen H, et al. Automated segmentation of fluid regions in optical coherence tomography B-scan images of age-related macular degeneration. Opt Laser Technol. 2020;122:105830.; Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. Int J Comput Vis. 2016;128(2):336-359.; Li F, Chen H, Liu Z, et al. Deep learning-based automated detection of retinal diseases using optical coherence tomography images. Biomed Opt Express. 2019;10(12):6204.; Sundararajan M, Schallhorn JM, Doan T, et al. Changes to ophthalmic clinical care during the coronavirus disease 2019 pandemic. Curr Opin Ophthalmol. 2021;32(6):561-566.; Gallardo M, Munk MR, Kurmann T, et al. Machine Learning Can Predict Anti-VEGF Treatment Demand in a Treat-and-Extend Regimen for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema. Ophthalmol Retin. 2021;5(7):604-624.; https://repositorio.unal.edu.co/handle/unal/80817; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
16
المؤلفون: Martínez Córdoba, Claudia Johanna
المساهمون: Quijano Nieto, Bernardo Alfonso, Echeverría González, Claudia Liliana, Sierra Bernal, Rosa María, Contreras Candelo, Silvia Alejandra, Camargo Rodríguez, Camila Andrea
مصطلحات موضوعية: Defectos refractivos, Parto pretérmino, Astigmatismo, Espesor macular, ESTRABISMO, Retinopatía del prematuro, Retinopathy of prematurity, Optic coherence tomography, Strabismus, Tomografía de coherencia óptica, Refractive errors, Macular thickness, Pre-term birth, MIOPIA, OFTALMOLOGIA
وصف الملف: applicaction/pdf; application/pdf
-
17Dissertation/ Thesis
المؤلفون: Martínez Córdoba, Claudia Johanna
المساهمون: Quijano Nieto, Bernardo Alfonso, Echeverría González, Claudia Liliana, Sierra Bernal, Rosa María, Contreras Candelo, Silvia Alejandra, Camargo Rodríguez, Camila Andrea
مصطلحات موضوعية: Retinopathy of prematurity, Pre-term birth, Refractive errors, Strabismus, Optic coherence tomography, Macular thickness, OFTALMOLOGIA, ESTRABISMO, MIOPIA, Astigmatismo, Parto pretérmino, Retinopatía del prematuro, Defectos refractivos, Tomografía de coherencia óptica, Espesor macular
جغرافية الموضوع: Agosto 2018 hasta Diciembre 2019, Medicina
Time: Hospital Militar Central (Bogotá, Colombia), Agosto 2018 hasta Diciembre 2019
وصف الملف: applicaction/pdf; application/pdf
Relation: Giraldo MM, Hurtado A, Donado JH, Molina MC. Epidemiología de la retinopatía del prematuro en Medellín, 2003-2008. Iatreia 2001; 24(3):250-258; Leung MPS, Thompson B, Black J, Dai S, Alsweiler JM. The effects of preterm birth on visual development. Clin Exp Optom 2017; 101(1):4-12; Zhu X, Zhao R, Wang Y, Ouyang L, Yang J, Li Y, et al. Refractive state and optical compositions of preterm children with and without retinopathy of prematurity in the first 6 years of life. Medicine 2017; 96(45); Fieb A, Kölb-Keerl R, Schuster AK, Knuf M, Kirchhof B, Muether PS, et al. Prevalence and associated factors of strabismus in former preterm and full-term infants between 4 and 10 Years of age. BMC Ophthalmology 2017; 17(228); Miki A, Honda S, Inoue Y, Yamada Y, Nakamura M. Foveal Depression and Related Factors in Patients with a History of Retinopathy of Prematurity. Ophthalmologica 2018; 240(2):106-110; Charpak N, Ruiz JG, Motta S. Curso Clínico y pronóstico a un año de una cohorte de prematuros dados de alta con oxígeno domiciliario en Bogotá, Colombia. Rev salud pública 2012; 14(1):102-115; Palencia A. Parto Prematuro. Sociedad Colombiana de Pediatría CCAP 2009; 9(4); Owen LA, Morrison MA, Hoffman RO, Yoder BA, DeAngelis MM. Retinopathy of prematurity: A comprehensive risk analysis for prevention and prediction of disease. PLoS ONE 2017; 12(2); Sathar A, Shanavas A, Girijadevi PS, Jasmin LB, Kumar S, Pillai RK. Risk Factors of Retinopathy of Prematurity in a Tertiary Care Hospital in South India. Clin Epidemiol Glob Heath 2018; 6(1):44-49; Azami M, Jaafari Z, Rahmati S, Farahani AD, Badfar Gholamreza. Prevalence and risk factors of retinopathy of prematurity in Iran: a systematic review and meta-analysis. BMC Ophthalmology 2018; 18(83); Kim SJ, Port AD, Swan R, Campbell P, Chan P, Chiang M. Retinopathy of Prematurity: A Review of Risk Factors and their Clinical Significance. Survey of Ophthalmology 2018; 63(5):618-637; Lynch AM, Wagner BD, Hodges JK, Thevarajah TS, Mccourt EA, Cerda AM, et al. The Relationship of the Subtypes of Preterm Birth with Retinopathy of Prematurity. American Journal of Obstetrics and Gynecology 2017; 217(3); Hellstrom A, Kallen K, Carlsson B, Holmstrom G, Jakobsson P, Lundgren P, et al. Extreme Prematurity, treated retinopathy, bronchopulmonary dysplasia and cerebral palsy are significant risk factors for ophthalmological abnormalities at 6.5 years of age. Acta Paediatr 20148; 107(5):811-821; Gole GA, Ells AL, Katz X, Holmstrom G, Fielder AR, Capone A, et al. The International Classification of Retinopathy of Prematurity Revisited. Arch Ophthalmol 2005; 123(7):991-999; Good WV. Final Results of The Early Treatment for Retinopathy of Prematurity (ETROP) Randomized Trial. Trans Am Ophthalmol Soc 2004; 102:233-250; Guerra M, Perez O, Barbosa V, Ruis V. Prevalencia de retinopatía del prematuro y características de los recién nacidos afectados por esta enfermedad en una UCIN Barranquilla 2015. Unimetro 2016; 34(61):50-54; Abdala-Caballero C, Acosta-Reyes J, Izquierdo-León MA. Caracterización de la Retinopatía de la Prematuridad entre el Período de 2008 y 2014 en Barranquilla - Colombia. Rev. Sociedad Colombiana de Oftalmología 2015; 48(3):213–222; Montealegre-Pomar A, Sierra-Andrade AP, Charpak N. El Programa Madre Canguro de Yopal, Colombia: una oportunidad de seguimiento del niño prematuro. Rev. Salud Pública 2018; 20(1):10-16; Katz X. Prematuridad y Visión. Rev. Med. Clin. Condes 2010; 21(6):978-983; Akerblom H, Holmstrom G, Eriksson U, Larsson E. Retinal nerve fibre layer thickness in school-aged prematurely-born children compared to children born at term. Br J Ophthalmol 2012; 96(7):956-960; American Academy of Ophthalmology, Basic and Clinical Science Course 2016-2017; http://hdl.handle.net/10654/37383; instname:Universidad Militar Nueva Granada; reponame:Repositorio Institucional Universidad Militar Nueva Granada; repourl:https://repository.unimilitar.edu.co
الاتاحة: http://hdl.handle.net/10654/37383
-
18
المؤلفون: Fabio Daniel Padilla-Pantoja
المساهمون: Quijano Nieto, Bernardo alfonso, Perdomo Charry, Oscar Julián, González Osorio, Fabio Augusto, Grupo de Investigacion en Oftalmología Básica y Clínica
المصدر: Padilla-Pantoja, Fabio D
Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Machine Learning, Tomografía de coherencia óptica, Artificial intelligence, Macular edema, Optical coherence tomography, 617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología [610 - Medicina y salud], Tomografía Óptica, Edema macular, Tomography, Optical, Inteligencia artificial
وصف الملف: xiii, 50 páginas; application/pdf