يعرض 1 - 20 نتائج من 2,773 نتيجة بحث عن '"Química y ciencias afines"', وقت الاستعلام: 0.66s تنقيح النتائج
  1. 1
    Book
  2. 2
  3. 3
    Book

    المؤلفون: Suárez Herrera, Marco Fidel

    وصف الملف: 365 páginas; application/pdf

    Relation: Bunge M. Las pseudociencias ¡vaya timo! Pamplona, España: Ed. Laetoli, 2010.; Shermer M. Las fronteras de la ciencia: entre la ortodoxia y la herejía, Barcelona, España: Editorial Alba, 2010.; Guthke KS. The Last Frontier: Imagining Other Worlds from the Copernican Revolution to Modern Fiction. Helen Atkins (Tr.). Cornell University Press, 1990.; Macleod MR, Michie S, Roberts I, Dirnagl U, Chalmers I, et al. “Biomedical research: increasing value, reducing waste”. Lancet. 2014;383: 101-104.; Ioannidis Jpa. “How to Make More Published Research True”. Plos Medicine. 2014;11:e1001747.; Feyerabend P. Contra el método. Madrid, España: Editorial Tecnos S. A., 1986.; Hon G, Goldstein BR. “J. J. Thomson’s plum-pudding atomic model: The making of a scientific myth”. Ann. Phys. (Berlin). 2013;525: A129-A133.; Achenbach J. “The Age of Disbelief” National Geographic. Marzo de 2015:30-47. [9] Patil PM. “Education: A Way To Development”. International Educational E-Journal. 2012;1: 55-59.; García O, 2019 visión Colombia ii centenario, Dirección de Desarrollo Empresarial, Presidencia de la República, Departamento Nacional de Planeación, Colombia, 2006.; Cadena-Gómez G. “Un caso excepcional de investigación científica en Colombia”. Ciencia y Humanismo: ¡50 años! Revista Aleph (1966-2016)/Manizales: Universidad de Caldas, 2016. Pp. 479-504.; García Márquez G. “Por un país al alcance de los niños”. Colombia: al filo de la oportunidad misión ciencia, educación y desarrollo, tomo 1. Santafé de Bogotá D.C.: Presidencia de la República - Colciencias, 1995. Pp. 24-28.; Toffler A. Future shock. New York, usa: Random House, 1971.; Scheffler RM, Hinshaw SP, Modrek S, Levine P. “The Global Market For adhd Medications” Health Affairs. 2007;26: 450-457.; Feynman RP, Laighton RB, Sands M. Física. vol. 1. México: Addison Wesley Longman, 1998.; Diéguez Lucena A. Realismo Científico: una introducción al debate actual en la filosofía de la ciencia. España: Universidad de Málaga, 1998.; Steiner T. “The Hydrogen Bond in the Solid State”. Angew. Chem. Int. Ed. 2002;41: 48-76.; Gijsbertus de With. Liquid-State Physical Chemistry: Fundamentals, Modeling, and Applications. Wiley Online Library, 2013.; Battersby S. “Dark energy: Staring into darkness”. Nature. 2016; 537: S201-S204.; Hecht J. “Dark matter: What’s the matter?”. Nature. 2016;537: S194-S197.; Stodolna AS, Rouzée A, Lépine F, Cohen S, Robicheaux F, Gijsbertsen A, Jungmann JH, et al. “Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States”. Phys. Rev. Lett. 2013;110: 213001(1-5).; Gross L, et al. “The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy” Science. 2009;325: 1110-1114.; Moll N, Gross L, Mohn F, Curioni A, Meyer G. “The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips”. New Journal of Physics. 2010;12: 125020.; Johnson JA. “Populating the periodic table: Nucleosynthesis of the elements”. Science. 2019;363: 474-478.; Lente G. “Where Mendeleev was wrong: predicted elements that have never been found”. ChemTexts. 2019;5. https://doi.org/10.1007/ s40828-019-0092-5; Matta CF, Gillespie RJ. “Understanding and Interpreting Molecular Electron Density Distributions”. J. Chem. Edu. 2002;79: 1141-1152.; Shusterman GP, Shusterman AJ. “Teaching Chemistry with Electron Density Models”. J. Chem. Edu. 1997;74: 771-776.; Meek TL, Garner LD. “Electronegativity and the Bond Triangle”. J. Chem. Edu. 2005;82: 325-333.; Gross L, et al. “Bond-Order Discrimination by Atomic Force Microscopy”. Science. 2012;337: 1326-1329.; Keese R. “Carbon Flatland: Planar Tetracoordinate Carbon and Fenestranes”. Chem. Rev. 2006;106: 4787-4808.; Buchwald SL, Lucas EA, Davis WM. “A bimetallic zirconium complex containing an in-plane bridging aromatic ring”. J. Am. Chem. Soc. 1989;111: 397-398.; Malischewski M, Seppelt K. “Crystal Structure Determination of the Pentagonal-Pyramidal Hexamethylbenzene Dication C6(CH3)62+”. Angew. Chem. Int. Ed. 2016;55: 1-4.; Fernflores F. “The Equivalence of Mass and Energy”. The Stanford Encyclopedia of Philosophy. Edward N. Zalta (ed.). Metaphysics Research Lab, Stanford University, 2012. http://plato.stanford.edu/archives/spr2012/entries/ equivME/; Spergel DN. “The dark side of cosmology: Dark matter and dark energy”. Science. 2015;347: 1100-1102.; Ford I. Statistical physics, an entropic approach. West Sussex, UK: Wiley, 2013.; Müller I. A History of Thermodynamics, The Doctrine of Energy and Entropy. Berlín, Alemania: Springer, 2007.; Bernhoft RA. “Mercury Toxicity and Treatment: A Review of the Literature”. Journal of Environmental and Public Health. 2011;2012. Article ID 460508. https://doi.org/10.1155/2012/460508; Braun S, Ronzheimer JP, Schreiber M, Hodgman SS, Rom T, Bloch I, Schneider U. “Negative Absolute Temperature for Motional Degrees of Freedom”. Science. 2013;339: 52-55.; Jeffery CA, Austin PH. “A new analytic equation of state for liquid water”. J. Chem. Phys. 1999;110: 484-496.; Schmid G, Corain B. “Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities”. European J. Inorg. Chem. 2003;17: 3081-3098.; Couchman PR, Jesser WA. “Thermodynamic theory of size dependence of melting temperature in metals”. Nature. 1977;269: 481-483.; Xu Q et al. “Large Melting-Point Hysteresis of Ge Nanocrystals Embedded in SiO2”. Phys. Rev. Lett. 2006;97: 155701(1-4).; Wagner W, Saul A, Pruss A. “International Equations for the Pressure Along the Melting and Along the Sublimation Curve of Ordinary Water Substance” J. Phys. Chem. Ref. Data. 1994;23: 515-527.; Nakaya U, Matsumoto A. “Simple experiment showing the existence of “liquid water” film on the ice surface”. J. Colloid Sci. 1954;9: 41-49.; Doppenschmidt A, Kappl M, Butt HJ. “Surface Properties of Ice Studied by Atomic Force Microscopy”. J. Phys. Chem. B. 1998;102: 7813-7819.; Sharp KA. “Water: Structure and Properties”. Encyclopedia of Life Sciences. usa: John Wiley & Sons, 2001.; Janotti A, Van de Walle C. “Hydrogen multicentre bonds”. Nature Materials. 2007;6: 44-47.; Malenkov G. “Liquid water and ices: understanding the structure and physical properties”. J. Phys.: Condens. Matter. 2009;21: 283101(35p).; Smith DW. “Ionic hydration enthalpies”. J. Chem. Educ. 1977;54: 540-542. [52] Kucherak OA, Richert L, Mély Y, Klymchenko AS.” Dipolar 3-methoxychromones as bright and highly solvatochromic fluorescent dyes”. Phys. Chem. Chem. Phys. 2012;14: 2292-2300.; Bandura AV, Lvov SN. “The Ionization Constant of Water over Wide Ranges of Temperature and Density”. J. Phys. Chem. Ref. Data. 2006;35: 15-30. [54] Levie R. “A pH centenary”. Electrochimica Acta. 2014;135: 604-639.; Lange’s Handbook of Chemistry. 10.a ed. Compiled and edited by Norbert A. Lange. New York: McGraw-Hill Book Co, 1967. Pp 1661-1665.; Cipcigan FS, Sokhan VP, Jones AP, Crain J, Martyna GJ. “Hydrogen bonding and molecular orientation at the liquid–vapour interface of water”. Phys. Chem. Chem. Phys. 2015;17: 86-60-8669.; Rocher-Casterline BE, Ch'ng LC, Mollner AK, Reisler H. “Communication: Determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging”. J. Chem. Phys. 2011;134: 211101(pp 4).; Kruh RF, Clayton GT, Head C, Sandlin G. “Structure of Liquid Mercury”. Phys. Rev. 1963;129: 1479-1480.; Cohen-Adad R, Lorimer JW. Alkali Metal and Ammonium Chlorides in Water and Heavy Water (Binary Systems). Vol. 47. Oxford: Pergamon Press, 1991.; Washburn EW. International Critical Tables of Numerical Data, Physics, Chemistry and Technology. Vol. 3. New York: McGraw-Hill, 1928.; Handy ST (ed.). Applications of Ionic Liquids in Science and Technology. Rijeka, Croacia: InTech, 2011.; Wasserscheid P, Welton T (eds.). Ionic Liquids in Synthesis. Weinheim, Alemania: Wiley-vch, 2008.; Muhammad N et al. “Dissolution and Separation of Wood Biopolymers Using Ionic Liquids”. Chem. Bio. Eng. Rev. 2015;2: 257-278.; Welton T. “Ionic liquids in catalysis”. Coord. Chem. Rev. 2004;248: 21-24.; Fahlman BD. Materials Chemistry. 2.a ed. New York, usa: Springer, 2011.; Colinge JP, Colinge CA. Physics of Semiconductor Devices. New York, usa: Kluwer Academic Publishers, 2002.; Poole CP, Farach HA, Creswick RJ, Prozorov R. Superconductivity. 2.a ed. Amsterdam, Holanda: Elsevier, 2007.; Chikazumi S. Physics of Ferromagnetism. Oxford: Oxford University Press, 1997. [70] Chen CW. Magnetism and metallurgy of soft magnetic materials. Amsterdam, Holanda: North-Holland Publishing Company, 1977.; Vollmer M. “Physics of the microwave oven”. Phys. Edu. 2004;39: 74-81. [72] Cronin TW, Caldwell RL, Marshall J. “Tunable colour vision in a mantis shrimp”. Nature. 2001;411: 547-548.; Milius S. “Mantis shrimp flub color vision test”. Science News. 2012 sept. 22:11. [74] Abramov I, Gordon J, Feldman O, Chavarga A. “Sex and vision II: color appearance of monochromatic lights”. Biology of Sex Differences, 2012;3(21):1- 15. https://doi.org/10.1186/2042-6410-3-21; Brogan aps, Hallett JP. “Solubilizing and Stabilizing Proteins in Anhydrous Ionic Liquids through Formation of Protein–Polymer Surfactant Nanoconstructs”. J. Am. Chem. Soc. 2016;138: 4494-4501.; Levere TH. Transforming Matter: A History of Chemistry from Alchemy to the Buckyball. Baltimore, usa: The Johns Hopkins University Press, 2001.; Baskin JS, Zewail AH. “Freezing Atoms in Motion: Principles of Femtochemistry and Demonstration by Laser Stroboscopy”. J. Chem. Edu., 2001;78:737-751.; Oteyza DG et al. “Direct Imaging of Covalent Bond Structure in Single- Molecule Chemical Reactions”. Science, 2013;340(6139):1434-1437.; Daizadeh I, Medvedev ES, Stuchebrukhov AA. “Effect of protein dynamics on biological electron transfer” Proc. Natl. Acad. Sci. usa. 1997;94(8):3703-3708.; Nilsson A, Pettersson LGm. “Perspective on the structure of liquid water”. Chem. Phys. 2011;389:1-34.; Shakhashiri BZ. Chemical Demonstrations: A Handbook for Teachers of Chemistry. Vol. 2. Wisconsin, usa: The University of Wisconsin Press, 1985.; Briggs TS, Rauscher WC. “An oscillating iodine clock”. J. Chem. Educ. 1973;50:496.; ptb-Mitteilungen: experimentos para el nuevo si, el Sistema Internacional de Unidades. Ed. Especial. 2016;126(2).; bbc. 10 grandes errores de cálculo de la ciencia y la ingeniería. Disponible en: https:// www.bbc.com/mundo/noticias/2014/05/140523_ciencia_diez_errores_de_ calculo_np [Consultado 12 de agosto de 2020].; Stock M, Barat P, Davis RS, Picard A, Milton mJt. “Calibration campaign against the international prototype of the kilogram in anticipation of the redefinition of the kilogram part I: comparison of the international prototype with its official copies”. Metrología. 2015;52: 310-316.; Lux H. Das moderne Beleuchtungswesen. Lipsia, Alemania: Verlag von B.G. Teubner, 1914.; Bureau International des Poids et Mesures, Comptes Rendus des Séances de la 13e Conférence Générale des Poids et Mesures, Sèvres, Francia, 1968: 1-14.; Bureau International des Poids et Mesures, Comptes Rendus des Séances de la 16e Conférence Générale des Poids et Mesures, Sèvres, Francia, 1979: 1-19.; https://repositorio.unal.edu.co/handle/unal/84583; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  4. 4
    Conference

    المؤلفون: Duque Escobar, Gonzalo

    المساهمون: Apertura del Contexto en Astronomía, Torres Arango, Claudia

    وصف الملف: application/pdf

    Relation: http://oam.manizales.unal.edu.co; http://galeon.com/guiaastronomica; http://godues.webs.com; http://godues.wordpress.com; Universidad Nacional de Colombia Sede Manizales Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas y Estadística; Departamento de Matemáticas y Estadística; Duque Escobar, Gonzalo (2016) Albert Einstein. In: Apertura del Contexto en Astronomía, Febrero 1 de 2016, Universidad Nacional de Colombia, Sede Manizales.; https://repositorio.unal.edu.co/handle/unal/55356; http://bdigital.unal.edu.co/50753/

  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المؤلفون: Medina Linares, Luisa Fernanda

    المساهمون: Clavijo Penagos, Josué Itsman, LABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍA

    وصف الملف: application/pdf

    Relation: M. Asif and T. Muneer, “Energy supply, its demand and security issues for developed and emerging economies,” Renew. Sustain. Energy Rev., vol. 11, no. 7, pp. 1388–1413, 2007.; A. Shahsavari and M. Akbari, “Potential of solar energy in developing countries for reducing energy-related emissions,” Renew. Sustain. Energy Rev., vol. 90, no. June 2017, pp. 275–291, 2018.; S. A. Khalate, R. S. Kate, and R. J. Deokate, “A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4(CZTS) solar cells: A focus towards efficiency,” Sol. Energy, vol. 169, no. January, pp. 616–633, 2018.; F A O Forestry, “Forests and energy: key issues,” p. 56, 2008.; R. Adib REN, M. Folkecenter, A. Development Bank, M. Eckhart Mohamed El-Ashry David Hales Kirsty Hamilton Peter Rae, and F. Bariloche, Renewables 2020 · Global Status Report. 2020.; M. Kahia, M. S. Ben Aïssa, and L. Charfeddine, “Impact of renewable and non-renewable energy consumption on economic growth: New evidence from the MENA Net Oil Exporting Countries (NOECs),” Energy, vol. 116, pp. 102–115, 2016.; P. Gonçalves, V. Sampaio, M. Orestes, and A. González, “Photovoltaic solar energy : Conceptual framework,” vol. 74, no. March, pp. 590–601, 2017.; D. Rodríguez-urrego and L. Rodríguez-urrego, “Photovoltaic energy in Colombia : Current status , inventory , policies and future prospects,” Renew. Sustain. Energy Rev., vol. 92, no. April, pp. 160–170, 2018.; E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K. Kim, “Solar energy : Potential and future prospects,” vol. 82, no. September 2016, pp. 894–900, 2018.; A. Mohammad Bagher, “Types of Solar Cells and Application,” Am. J. Opt. Photonics, vol. 3, no. 5, p. 94, 2015.; A. A. F. Husain, W. Z. W. Hasan, S. Shafie, M. N. Hamidon, and S. S. Pandey, “A review of transparent solar photovoltaic technologies,” Renew. Sustain. Energy Rev., vol. 94, no. January 2017, pp. 779–791, 2018.; L. Fraas and L. Partain, Semiconductor Device Physics. 2010.; D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 6, pp. 1421–1436, 2011.; F. Alta, “Best Research-Cell Efficiencies,” p. 2020, 2020.; Y. Alajlani, U. Kingdom, and S. Arabia, Inorganic Thin Film Materials for Solar Cell Applications, vol. 7. Elsevier Ltd., 2018.; N. A. Ludin et al., “Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review,” Renew. Sustain. Energy Rev., vol. 96, no. July, pp. 11–28, 2018.; M. P. Paranthaman, W. Wong-Ng, and R. N. Bhattacharya, Semiconductor materials for solar photovoltaic cells. 2015.; X. Liu et al., “The current status and future prospects of kesterite solar cells: a brief review,” Prog. photovoltaics Res. Appl., vol. 24, pp. 879–898, 2016.; S. Delbos, “Kësterite thin films for photovoltaics : a review,” EPJ Photovoltaics, vol. 3, p. 35004, 2012.; C. Platzer-Björkman, “Kesterite compound semiconductors for thin film solar cells,” Curr. Opin. Green Sustain. Chem., vol. 4, pp. 84–90, 2017.; S. Zhuk, A. Kushwaha, T. K. S. Wong, S. Masudy-Panah, A. Smirnov, and G. K. Dalapati, “Critical review on sputter-deposited Cu 2 ZnSnS 4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance,” Sol. Energy Mater. Sol. Cells, vol. 171, no. May, pp. 239–252, 2017.; Y. E. Romanyuk et al., “Recent trends in direct solution coating of kesterite absorber layers in solar cells,” Sol. Energy Mater. Sol. Cells, vol. 119, pp. 181–189, 2013.; J. Li et al., “Formation of Cu2ZnSnS4thin film solar cell by CBD-annealing route: Comparison of Cu and CuS in stacked layers SnS/Cu(S)/ZnS,” Sol. Energy, vol. 129, pp. 1–9, 2016.; J. Li, G. Chen, C. Xue, X. Jin, W. Liu, and C. Zhu, “Cu2ZnSnS4-xSex solar cells fabricated with precursor stacked layer ZnS/Cu/SnS by a CBD method,” Sol. Energy Mater. Sol. Cells, vol. 137, pp. 131–137, 2015.; A. Wangperawong, J. S. King, S. M. Herron, B. P. Tran, K. Pangan-Okimoto, and S. F. Bent, “Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers,” Thin Solid Films, vol. 519, no. 8, pp. 2488–2492, 2011.; R. Martí Valls, T. Stoyanova Lyubenova, I. Calvet Roures, L. Oliveira, D. Fraga Chiva, and J. B. Carda Castelló, “Easy and low-cost aqueous precipitation method to obtain Cu2ZnSn(S, Se)4 thin layers,” Sol. Energy Mater. Sol. Cells, vol. 161, no. December 2016, pp. 432–438, 2017.; T. R. Rana, N. M. Shinde, and J. Kim, “Novel chemical route for chemical bath deposition of Cu2ZnSnS4(CZTS) thin films with stacked precursor thin films,” Mater. Lett., vol. 162, pp. 40–43, 2016.; K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Cu2ZnSnS4thin film solar cells prepared by non-vacuum processing,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 5, pp. 583–587, 2009.; A. Wangperawong, J. S. King, S. M. Herron, B. P. Tran, K. Pangan-Okimoto, and S. F. Bent, “Aqueous bath process for deposition of Cu2ZnSnS4photovoltaic absorbers,” Thin Solid Films, vol. 519, no. 8, pp. 2488–2492, 2011.; S. Siebentritt, “Why are kesterite solar cells not 20% efficient?,” Thin Solid Films, vol. 535, no. 1, pp. 1–4, 2013.; H. Ibach and H. Luth, Solid-state physics: an introduction to principles of material science, vol. 2, no. 1. 2003.; L. Prat Viñas and J. Calderer Cardona, Dispositivos electrónicos y fotónicos: fundamentos. 2003.; D. Wang, W. Zhao, Y. Zhang, and S. Liu, “[1] D. Wang, W. Zhao, Y. Zhang, and S. Liu, ‘Path towards high-efficient kesterite solar cells,’ Journal of Energy Chemistry. 2017.Path towards high-efficient kesterite solar cells,” Journal of Energy Chemistry. 2017.; U. Mishra and J. Singh, SEMICONDUCTOR DEVICE PHYSICS AND DESIGN. 2008.; S. . Kasap, Optoelectronics and Photonics: Principles and Practices, Pearson Ed. 2013.; P. Tipler and G. Mosca, Física para la ciencia y la tecnología, Revertéfil. 2010.; M. Girtan, Future Solar Energy Devices, Springer. 2018.; Y. Wei et al., “An investigation on the relationship between open circuit voltage and grain size for CZTSSe thin film solar cells fabricated by selenization of sputtered precursors,” J. Alloys Compd., vol. 773, pp. 689–697, 2019.; L. Castner, Luis Silvestre, Modelling PV Systems Using PSpice, John Wiley., vol. 53, no. 9. 2002.; M. Garcia Villas and L. Arribas, Energía solar fotovoltaica y cooperación al desarrollo, IEPALA. 2001.; M. F. Barrera, Energía Solar: electricidad fotovoltaica., Liber Fact. 2010.; I. Dincer and M. A. Rosen, Exergy. 2000.; T. Dittrich, “Material Conceprt for solar cell.” .; T. Kirchartz, Generalized detailed balance theory of solar cells. .; R. Uwe and T. Kirchatz, The principle of detailed balance and the optoelectronic properties of solar cells., Photon Man. 2015.; S. Bae, H. Zhao, Y. Hsieh, L. Zuo, and N. De Marco, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem, vol. 1, no. 2, pp. 197–219, 2016.; S. Li, Semiconductor Physical Electronics, Springer. 2006.; C. S. Solanki, Solar photovoltaics: fundamentals, technologies and applications, PHI Learni. 2015.; M. Fukuda, Optical semiconductor devices, John Wiley. 1998.; J. Jean et al., “Radiative Efficiency Limit with Band Tailing Exceeds 30% for Quantum Dot Solar Cells,” ACS Energy Lett., vol. 2, no. 11, pp. 2616–2624, 2017.; A. S. Ionkin, B. M. Fish, W. J. Marshall, and R. H. Senigo, “Use of inorganic fluxes to control morphology and purity of crystalline késterite and related quaternary chalcogenides,” Sol. Energy Mater. Sol. Cells, vol. 104, pp. 23–31, 2012.; S. Adachi, Earth-Abundant Materials for Solar Cells, John Wiley. 2015.; N. Sankir and M. Sankir, Printable solar cells, John Wiley. 2017.; K. Ito, Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells. 2015.; R. Tilley, Crystals and Crystal Structures, John Wiley. 2006.; W. Borchardt-Ott, Crystallography: an introduction, Springer S. 2011.; Z. Shi, D. Attygalle, and A. H. Jayatissa, “Kesterite-based next generation high performance thin film solar cell: current progress and future prospects,” J. Mater. Sci. Mater. Electron., vol. 28, no. 2, pp. 2290–2306, 2017.; K. Pal, P. Singh, A. Bhaduri, and K. B. Thapa, “Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: A review,” Sol. Energy Mater. Sol. Cells, vol. 196, no. February, pp. 138–156, 2019.; S. Siebentritt et al., “What is the bandgap of kesterite?Siebentritt, S., Rey, G., Finger, A., Regesch, D., Sendler, J., Weiss, T. P., & Bertram, T. (2016). What is the bandgap of kesterite? Solar Energy Materials and Solar Cells, 158, 126–129. https://doi.org/10.1016/j.solmat.2,” Sol. Energy Mater. Sol. Cells, vol. 158, pp. 126–129, 2016.; D. Wang, W. Zhao, Y. Zhang, and S. Liu, “Path towards high-efficient kesterite solar cells,” J. Energy Chem., vol. 0, pp. 1–14, 2017.; S. Siebentritt and S. Schorr, “Kesterites — a challenging material for solar cells,” no. February, pp. 512–519, 2012.; Y. U. Peter and M. Cardona, Fundamentals of semiconductors: physics and materials properties, Springer S. 2010.; G. K. Gupta, R. Chaurasiya, and A. Dixit, “Theoretical studies on structural, electronic and optical properties of kesterite and stannite Cu2ZnGe(S/Se)4 solar cell absorbers,” Comput. Condens. Matter, vol. 19, p. e00334, 2019.; S. Chen, A. Walsh, X. Gong, and S. Wei, “Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers,” pp. 1522–1539, 2013.; C. Wang et al., “Design of I2-II-IV-VI4 semiconductors through element substitution: The thermodynamic stability limit and chemical trend,” Chem. Mater., vol. 26, no. 11, pp. 3411–3417, 2014.; J. J. Scragg, Copper Zinc Tin Sulfide Thin Films for Photovoltaics. Springer, 2011.; M. P. Suryawanshi et al., “Aqueous-solution-processed Cu 2 ZnSn(S,Se) 4 thin-film solar cells via an improved successive ion-layer-adsorption reaction sequence,” ACS Omega, vol. 2, no. 12, pp. 9211–9220, 2017.; R. Martí Valls, “Obtención de estructuras calcopirita (CIGS) y kesterita (CZTS) como absorbentes para dispositivos fotovoltaicos de capa fina mediante métodos de síntesis de bajo coste,” Universitat Jaume I, Castelló de la Plana, 2016.; L. Grenet, M. A. A. Suzon, F. Emieux, and F. Roux, “Analysis of failure modes in Kesterite solar cells,” ACS Appl. Energy Mater., p. acsaem.8b00194, 2018.; S. Siebentritt, S. Schorr, S. Giraldo, M. Placidi, and E. Saucedo, Kesterite: New Progress Toward Earth-Abundant Thin-Film Photovoltaic, no. February. Elsevier Inc., 2019.; N. M. Shinde, C. D. Lokhande, J. H. Kim, and J. H. Moon, “Low cost and large area novel chemical synthesis of Cu 2ZnSnS 4 (CZTS) thin films,” J. Photochem. Photobiol. A Chem., vol. 235, pp. 14–20, 2012.; C. Gao et al., “Cu2ZnSn(S,Se)4 solar cells based on chemical bath deposited precursors,” Thin Solid Films, vol. 562, pp. 621–624, 2014.; S. A. Vanalakar et al., “A review on pulsed laser deposited CZTS thin films for solar cell applications,” J. Alloys Compd., vol. 619, pp. 109–121, 2015.; X. Guo, J. Han, H. Zhang, X. Lv, J. Yan, and R. Sun, “Sol-gel synthesis of Cu2ZnSnS4thin films under mild conditions,” J. Alloys Compd., vol. 697, pp. 361–366, 2017.; M. Ravindiran and C. Praveenkumar, “Status review and the future prospects of CZTS based solar cell – A novel approach on the device structure and material modeling for CZTS based photovoltaic device,” Renew. Sustain. Energy Rev., vol. 94, no. December 2017, pp. 317–329, 2018.; T. Atwee, A. S. Gadallah, M. A. Salim, and A. M. Ghander, “Effect of film thickness on structural, morphological, and optical properties of Cu2ZnSnS4 thin films prepared by sol–gel spin coating,” Appl. Phys. A Mater. Sci. Process., vol. 125, no. 4, pp. 1–10, 2019.; H. Kirou et al., “Towards phase pure Kesterite Cu2ZnSnS4 thin films via Cu-Zn-Sn electrodeposition under a variable applied potential,” J. Alloys Compd., vol. 783, pp. 524–532, 2019.; G. Banerjee, S. Das, and S. Ghosh, “Optical Properties of Cu2ZnSnS4 (CZTS) Made by SILAR Method,” Mater. Today Proc., vol. 18, pp. 494–500, 2019.; S. Mahajan, E. Stathatos, N. Huse, R. Birajdar, A. Kalarakis, and R. Sharma, “Low cost nanostructure kesterite CZTS thin films for solar cells application,” Mater. Lett., vol. 210, pp. 92–96, 2018.; Z. Su et al., “Preparation of Cu 2 ZnSnS 4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method,” Appl. Surf. Sci., vol. 258, no. 19, pp. 7678–7682, 2012.; S. S. Mali et al., “Novel synthesis of kesterite Cu 2ZnSnS 4 nanoflakes by successive ionic layer adsorption and reaction technique: Characterization and application,” Electrochim. Acta, vol. 66, pp. 216–221, 2012.; T. Schneller, R. Waser, M. Kosec, and D. Payne, Chemical Solution Deposition of Functional Oxide Thin Films. Springer, 2013.; G. Hodes, CHEMICAL SOLUTION DEPOSITION OF SEMICONDUCTOR FILMS, Marcel Dek. 2002.; R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys., vol. 65, no. 1, pp. 1–31, 2000.; W. Andrés and V. Lozada, “DESARROLLO DE MATERIALES FOTOVOLTAICOS USADOS COMO VENTANA OPTICA EN CELDAS SOLARES,” 2011.; Walter Borchardt-Ott, Crystallography An Introduction, Tercera. Springer, 2011.; J. . Mullin, “crystallization,” in Crystallization, Elsevier Ltd., 2001, p. 600.; S. Gupta et al., “A low-cost, sulfurization free approach to control optical and electronic properties of Cu2ZnSnS4 via precursor variation,” Sol. Energy Mater. Sol. Cells, vol. 157, pp. 820–830, 2016.; E. M. Mkawi, Y. Al-Hadeethi, E. Shalaan, and E. Bekyarova, “Fabricating chalcogenide Cu2ZnSnS4 (CZTS) nanoparticles via solvothermal synthesis: Effect of the sulfur source on the properties,” Ceram. Int., vol. 4, no. June, pp. 0–1, 2020.; A. Fischereder et al., “Investigation of Cu2ZnSnS4 formation from metal salts and thioacetamide,” Chem. Mater., vol. 22, no. 11, pp. 3399–3406, 2010.; J. Henry, K. Mohanraj, and G. Sivakumar, “Effect of pH-induced on the photosensitivity of non-toxic Cu2 ZnSnS4 thin film by chemical bath deposition,” Int. J. Light Electron Opt., vol. 141, pp. 139–145, 2017.; F. Aslan, A. Göktaş, and A. Tumbul, “Influence of pH on structural, optical and electrical properties of solution processed Cu2ZnSnS4 thin film absorbers,” Mater. Sci. Semicond. Process., vol. 43, pp. 139–143, 2016.; T. F. Tadros, Basic Principles of Interface Science and Colloid Stability, Walter de. 2017.; P. Somasundaran, Encyclopedia of Surface and Colloid Science, CRC press. 2006.; K. L. Mittal, “Contact Angle, Wettability and Adhesion,” 2006, p. 600.; O. Reyes, D. Maldonado, J. Escorcia-García, and P. J. Sebastian, “Effect of temperature and pH on direct chemical bath deposition of cuprous oxide thin films,” J. Mater. Sci. Mater. Electron., vol. 29, no. 18, pp. 15535–15545, 2018.; R. Zein and I. Alghoraibi, “Influence of bath temperature and deposition time on topographical and optical properties of nanoparticles ZnS thin films synthesized by a chemical bath deposition method,” J. Nanomater., vol. 2019, 2019.; S. Pandharkar et al., “Soft annealing effect on the properties of sputter grown Cu2ZnSnS4 (CZTS) thin films for solar cell applications,” Mater. Today Proc., vol. 4, no. xxxx, pp. 1–7, 2020.; C. Gao, H. Shen, F. Jiang, and H. Guan, “Preparation of Cu 2 ZnSnS 4 film by sulfurizing solution deposited precursors,” Appl. Surf. Sci., vol. 261, pp. 189–192, 2012.; E. Indubala, V. Sudha, S. Sarveshvaran, S. Harinipriya, and A. Y. Mamajiwala, “Unusual composition of CZTS: Elemental sulfurization and solution method,” Mater. Today Proc., vol. 8, pp. 393–401, 2019.; C. Sripan, V. E. Madhavan, A. K. Viswanath, and R. Ganesan, “Sulfurization and annealing effects on thermally evaporated CZTS films,” Mater. Lett., vol. 189, no. November 2016, pp. 110–113, 2017.; A. Emrani, P. Vasekar, and C. R. Westgate, “Effects of sulfurization temperature on CZTS thin film solar cell performances,” Sol. Energy, vol. 98, no. PC, pp. 335–340, 2013.; M. P. Suryawanshi et al., “A chemical approach for synthesis of photoelectrochemically active Cu2ZnSnS4 (CZTS) thin films,” Sol. Energy, vol. 110, pp. 221–230, 2014.; E. Indubala, S. Sarveshvaran, V. Sudha, A. Y. Mamajiwala, and S. Harinipriya, “Secondary phases and temperature effect on the synthesis and sulfurization of CZTS,” Sol. Energy, vol. 173, no. July, pp. 215–224, 2018.; Y. Altowairqi et al., “The effect of annealing conditions: Temperature, time, ramping rate and atmosphere on nanocrystal Cu2ZnSnS4 (CZTS) thin film solar cell properties,” Mater. Today Proc., vol. 18, pp. 473–486, 2019.; I. Gupta and B. C. Mohanty, “Eliminating secondary phases: Understanding kesterite phase evolution of Cu2ZnSnS4 thin films grown from ethanol based solutions with high photosensitivity,” Sol. Energy, vol. 181, no. January, pp. 214–221, 2019.; N. M. Shinde, D. P. Dubal, D. S. Dhawale, C. D. Lokhande, J. H. Kim, and J. H. Moon, “Room temperature novel chemical synthesis of Cu 2ZnSnS 4 (CZTS) absorbing layer for photovoltaic application,” Mater. Res. Bull., vol. 47, no. 2, pp. 302–307, 2012.; S. Ma et al., “Synthesis of Cu2ZnSnS4 thin film through chemical successive ionic layer adsorption and reactions,” Appl. Surf. Sci., vol. 349, pp. 430–436, 2015.; S. S. Mali, P. S. Shinde, C. A. Betty, P. N. Bhosale, Y. W. Oh, and P. S. Patil, “Synthesis and characterization of Cu 2ZnSnS 4 thin films by SILAR method,” J. Phys. Chem. Solids, vol. 73, no. 6, pp. 735–740, 2012.; R. Garza-Hernández, S. Lugo-Loredo, and F. S. Aguirre-Tostado, “The role of copper during the growth of stoichiometric Cu2ZnSnS4 by successive ionic layer adsorption and reaction method,” Ceram. Int., vol. 46, no. 4, pp. 5185–5192, 2020.; G. Zangari, Fundamentals of electrodeposition, no. 1836. Elsevier, 2018; R. Manivannan and S. N. Victoria, “Preparation of chalcogenide thin films using electrodeposition method for solar cell applications – A review,” Sol. Energy, vol. 173, no. August, pp. 1144–1157, 2018.; G. Panzeri et al., “Copper electrodeposition onto zinc for the synthesis of kesterite Cu2ZnSnS4 from a Mo/Zn/Cu/Sn precursor stack,” Electrochem. commun., vol. 109, no. October, p. 106580, 2019.; M. Jeon, Y. Tanaka, T. Shimizu, and S. Shingubara, “Formation and characterization of single-step electrodeposited Cu 2ZnSnS 4 thin films: Effect of complexing agent volume,” Energy Procedia, vol. 10, pp. 255–260, 2011.; S. Azmi et al., “Towards phase pure kesterite Cu2ZnSnS4 absorber layers growth via single step free sulfurization electrodeposition under a fix applied potential on Mo substrate,” J. Alloys Compd., vol. 842, p. 155821, 2020.; H. Toura, Y. H. Khattak, F. Baig, B. M. Soucase, M. E. Touhami, and B. Hartiti, “Effect of complexing agent on the morphology and annealing temperature of CZTS kesterite thin films by electrochemical deposition,” Curr. Appl. Phys., vol. 19, no. 5, pp. 606–613, 2019.; K. V. Gurav et al., “Electrosynthesis of CZTS films by sulfurization of CZT precursor: Effect of soft annealing treatment,” Appl. Surf. Sci., vol. 283, pp. 74–80, 2013.; B. S. Pawar et al., “Effect of complexing agent on the properties of electrochemically deposited Cu 2 ZnSnS 4 (CZTS) thin films,” Appl. Surf. Sci., vol. 257, no. 5, pp. 1786–1791, 2010.; Y. H. Khattak, F. Baig, H. Toura, I. Harabi, S. Beg, and B. M. Soucase, “Single step electrochemical deposition for the fabrication of CZTS kesterite thin films for solar cells,” Appl. Surf. Sci., vol. 497, no. May, p. 143794, 2019.; A. Tang, J. Liu, J. Ji, M. Dou, Z. Li, and F. Wang, “One-step electrodeposition for targeted off-stoichiometry Cu 2 ZnSnS 4 thin films,” Appl. Surf. Sci., vol. 383, pp. 253–260, 2016.; T. Shiyani, D. Raval, M. Patel, I. Mukhopadhyay, and A. Ray, “Effect of initial bath condition and post-annealing on co-electrodeposition of Cu2ZnSnS4,” Mater. Chem. Phys., vol. 171, pp. 63–72, 2016.; Y. Wang, Y. Du, L. Meng, Y. Li, Z. Li, and Q. Tian, “Solution-processed method for high-performance Cu2ZnSn(S,Se)4 thin film solar cells and its characteristics,” Opt. Mater. (Amst)., vol. 98, no. October, p. 109485, 2019.; I. Gupta, K. J. Tiwari, P. Malar, and B. C. Mohanty, “Evaluating the role of precursor concentration in facile conformal coating of sub-micrometer thick Cu2ZnSnS4 films using non-toxic ethanol based solutions,” Appl. Surf. Sci., vol. 494, no. January, pp. 795–804, 2019.; C. Xue, J. Li, Y. Wang, G. Jiang, L. Weifeng, and C. Zhu, “Fabrication of Cu 2 ZnSn(S x Se 1 - X ) 4 solar cells by ethanol-ammonium solution process,” Appl. Surf. Sci., vol. 383, pp. 90–97, 2016.; A. Manuscript, “Novel Non-Hydrazine Solution Processing of Earth-Abundant Cu2ZnSn(S,Se)4 Absorbers for Thin-Film Solar Cells,” J. Mater. Chem. A, no. 207890, p. 21, 2013.; Y. Sun, H. Zheng, X. Li, K. Zong, H. Wang, and J. Liu, “Reaction routes for the formation of a Cu2ZnSnS4 absorber material from homogenous ethanol-based solution,” RSC Adv., vol. 3, pp. 22095–22101, 2013.; M. Jiang, F. Lan, X. Yan, and G. Li, “Cu2ZnSn(S1–xSex)4 thin film solar cells prepared by water-based solution process,” vol. 227, no. 3, pp. 223–227, 2014.; V. T. Nguyen et al., “Influence of sulfate residue on Cu2ZnSnS4 thin films prepared by direct solution method,” Sol. Energy Mater. Sol. Cells, vol. 136, pp. 113–119, 2015.; M. Cao et al., “One-step deposition of Cu2ZnSnS4 thin films for solar cells,” Sol. Energy Mater. Sol. Cells, vol. 117, pp. 81–86, 2013.; S. W. Shin et al., “Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 12, pp. 3202–3206, 2011.; A. Tang et al., “Electrodeposition mechanism of quaternary compounds Cu 2 ZnSnS 4 : Effect of the additives,” Appl. Surf. Sci., vol. 427, pp. 267–275, 2018.; https://repositorio.unal.edu.co/handle/unal/78794

  7. 7
    Academic Journal

    المؤلفون: Peinado Royero, Raul Alberto

    المساهمون: Novoa Castro, Carlos Fernando

    وصف الملف: application/pdf

    Relation: Instituto Colombiano de Bienestar Familiar. “Encuesta Nacional de la Situación Nutricional en Colombia. Bogotá: 2010.; Organización Mundial de la Salud, “Obesidad y sobrepeso,” 2017, Jun 16. [Online]. Available: http://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight; Organización Mundial de la Salud, “Perfiles de los países para la diabetes, Colombia,” 2016, May 15 [Online]. Available: http://www.who.int/diabetes/country-profiles/col_es.pdf?ua=1.; Organización Mundial de la Salud, “Diabetes,” 2017, Ago 13. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs312/es/.; C. D. Mathers and D. Loncar, “Projections of Global Mortality and Burden of Disease from 2002 to 2030,” PLoS Med., vol. 3, no. 11, p. e442, Nov. 2006.; The Emerging Risk Factors Collaboration, “Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies,” Lancet, vol. 375, no. 9733, pp. 2215–2222, Jun. 2010.; R. Saran, Y. Li, B. Robinson, J. Ayanian, R. Balkrishnan, J. Bragg-Gresham, J. T. L. Chen, E. Cope, D. Gipson, K. He, W. Herman, M. Heung, R. A. Hirth, S. S. Jacobsen, K. Kalantar-Zadeh, C. P. Kovesdy, A. B. Leichtman, Y. Lu, M. Z. Molnar, H. Morgenstern, B. Nallamothu, A. M. O’Hare, R. Pisoni, B. Plattner, F. K. Port, P. Rao, C. M. Rhee, D. E. Schaubel, D. T. Selewski, V. Shahinian, J. J. Sim, P. Song, E. Streja, M. Kurella Tamura, F. Tentori, P. W. Eggers, L. Y. C. Agodoa, and K. C. Abbott, “US Renal Data System 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States,” Am. J. Kidney Dis., vol. 66, no. 1, pp. 188–210, Jul. 2015.; Organización Mundial de la Salud, “Enfermedades crónicas,” 2018, Ene 15. [Online]. Available: http://www.who.int/topics/chronic_diseases/es/.; REPUBLICA DE COLOMBIA. Ministerio de la protección social. Resolución 2310 de 1986.; C. Novoa and D. Osorio, “Derivados lácteos, guía para la elaboración de algunos productos derivados de la leche: Dulce de Leche”, p.68-72. Universidad Nacional de Colombia, Bogotá, 2009.; F. Mojica, R. Trujillo, D. Castellanos, and N. Bernal, “Agenda prospectiva de investigación y desarrollo tecnológico de la cadena láctea colombiana: Proyecto transición de la agricultura,” Giro Editores Ltda, Ed. Bogotá, 2007.; Ministerio de Agroindustria, “Tablero de Control Sectorial: Lechería,” 2018, May 8. [Online]. Available: https: //www.agroindustria.gob.ar/sitio/areas/ss_lecheria/estadisticas/index.php.; Ministerio de Agroindustria, Subsecretaría de Lechería and Secretaría de Agricultura ganadería y pesca, “Exportaciones cumplidas de productos lácteos,” 2016, Ago 15. [Online]. Available: http://www.agroindustria.gob.ar/sitio/areas/ss_lecheria/estadisticas/_05_externo/_archivos/ME00516.pdf.; Revista Portafolio, 2018, Juni 6 [Online]. Available: https://www.portafolio.co/economia/finanzas/colombina-incursiona-produccion-arequipe-314654.; SENATI, “Elaboración de Manjar blanco (Documento de consulta),” 2015.; C. Novoa, “Memorias, Seminario Taller Elaboración de dulces de leche”, Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá, 1993.; J. Braverman, Introducción a la bioquímica de los alimentos. Nueva ed./Z. Berk. Mexico: El manual moderno, 2011.; S. Badui Dergal, Química de los alimentos. 4th ed. Mexico: Pearson educación, 2006.; J. Freyer, “Elaboración del dulce de leche”, FAO, 1972.; INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN. ICONTEC. Arequipe o dulce de leche y manjar blanco. Bogota, NTC 3757 2008.; A. Cameron and B. Fox, Ciencia de los alimentos, nutrición y salud. Nueva ed. Mexico: Limusa, 1996.; F. Ronda, “Effects of polyols and nondigestible oligosaccharides on the quality of sugar-free sponge cakes,” Food Chem., vol. 90, no. 4, pp. 549–555, May 2005.; M.-S. Chung, R. R. Ruan, P. L. Chen, and X. Wang, “Physical and Chemical Properties of Caramel Systems,” LWT - Food Sci. Technol., vol. 32, no. 3, pp. 162–166, May 1999.; F. Valencia, “Memorias, Curso de desarrollo de alimentos light”, Universidad de Antioquia, Medellín, 2006.; C. M. Brands and M. A. van Boekel, “Reactions of monosaccharides during heating of sugar-casein systems: building of a reaction network model.,” J. Agric. Food Chem., vol. 49, no. 10, pp. 4667–75, Oct. 2001.; American Dietetic Association, “Position of the American Dietetic Association: Use of Nutritive and Nonnutritive Sweeteners,” J. Am. Diet. Assoc., vol. 104, no. 2, pp. 255–275, Feb. 2004.; D. Benton, “¿Puede ayudar a los edulcorantes artificiales de control de peso corporal y la obesidad prevenir?,” NutrRev Res, vol. 18, no. 1, pp. 63–76, 2005.; “Aditivos Alimentarios. 2017, Jun 7. [Online]. Available: http://www.aditivos-alimentarios.com.; C. Agnasso, L. López, and M. Valencia, “Edulcorantes no nutritivos en bebidas sin alcohol: estimación de la ingesta diaria en niños y adolescentes,” Arch. argentinos pediatría, vol. 105, no. 6, pp. 517–521, 2007.; H. Ishii, T. Koshimizu, S. Usami, and T. Fujimoto, “Toxicity of aspartame and its diketopiperazine for Wistar rats by dietary administration for 104 weeks.,” Toxicology, vol. 21, no. 2, pp. 91–4, 1981.; M. Prudel, E. Davídková, J. Davídek, and M. Kmínek, “Kinetics of Decomposition of Aspartame Hydrochloride (Usal) in Aqueous Solutions,” J. Food Sci., vol. 51, no. 6, pp. 1393–1397, Nov. 1986.; M. L. Mitchell and R. L. Pearson, “Saccharin,” in Alternative Sweeteners, 2nd ed., Nabors and Gelardi and O’Brien L, Eds. New York: Macel Dekker, 1991, pp. 127–156.; P. Tornout, J. Pelgroms, and J. Meeren, “Sweetness Evaluation of Mixtures of Fructose with Saccharin, Aspartame or Acesulfame K,” J. Food Sci., vol. 50, no. 2, pp. 469–472, Aug. 2006.; M. S. Melis, S. T. Rocha, and A. Augusto, “Steviol effect, a glycoside of Stevia rebaudiana, on glucose clearances in rats.,” Braz. J. Biol., vol. 69, no. 2, pp. 371–4, May 2009.; E. Hernández, “Evaluación sensorial”, Universidad Nacional Abierta y a Distancia, UNAD, Facultad de ciencias básicas e ingeniería. Bogotá: 2005.; A. Drewnowski, “Sensory Properties of Fats and Fat Replacements,” Nutr. Rev., vol. 50, no. 4, pp. 17–20, Apr. 2009.; D. J. Mela, “The basis of dietary fat preferences,” Trends Food Sci. Technol., vol. 1, pp. 71–73, Jul. 1990.; J. Giese, “Fates, oils and fat replacers,” Food Technol, vol. 50, no. 4, pp. 78–84, 1996.; D. Kocer, Z. Hicsasmaz, A. Bayindirli, and S. Katnas, “Bubble and pore formation of the high-ratio cake formulation with polydextrose as a sugar- and fat-replacer,” J. Food Eng., vol. 78, no. 3, pp. 953–964, Feb. 2007.; C. Ribeiro, J. Zimeri, E. Yildiz, and J. Kokini, “Estimation of effective diffusivities and glass transition temperature of polydextrose as a function of moisture content,” Carbohydr. Polym., vol. 51, no. 3, pp. 273–280, Feb. 2003.; A. Pronczuk and K. C. Hayes, “Hypocholesterolemic effect of dietary polydextrose in gerbils and humans,” Nutr. Res., vol. 26, no. 1, pp. 27–31, Jan. 2006.; A. Escobar Gutiérrez, “Photosynthèse, partition du carbone et métabolisme du sorbitol dans les feuillesadultes de pêcher (Prunuspersica (L.) Batsch),” l’Université de Poitiers, France, 1995.; G. Livesey and H. Tagami, “Interventions to lower the glycemic response to carbohydrate foods with a low-viscosity fiber (resistant maltodextrin): meta-analysis of randomized controlled trials,” Am. J. Clin. Nutr., vol. 89, no. 1, pp. 114–125, Jan. 2009.; AR Patel, Nuevas estructuras coloidales de materiales de calidad alimentaria para aplicaciones en alimentos funcionales Simposio Inside Food, pp. 1–6, (Lovaina, Bélgica), 2013.; PA Williams, GO Phillips, Introducción a los hidrocoloides alimentarios, GO Phillips, PA Williams (Eds.), Manual de hidrocoloides (2a ed), CRC Press, Boca Raton, págs. 1 – 22, 2009.; W. Ai, Y. Fang, S. Xiang, X. Yao, K. Nishinari, GO Phillips, Complejos electrostáticos de proteínas/polisacáridos y sus aplicaciones en la estabilización de emulsiones de aceite en agua Revista de ciencia nutricional y vitaminaología, 61 (Suppl), págs. S168 - S169, 2015.; S. Damodaran, KL Parkin, OR Fennema, Química de Alimentos, (4a ed.), CRC Press, Nueva York 2008.; Y. Cao, Y. Fang, K. Nishinari, GO Phillips, Efectos del orden conformacional en la complejación electrostática de proteínas/polielectrolitos: unión iónica y rigidez de la cadena Informes científicos, artículo No. 23739, 2016.; A. Strom, E. Schuster, SM Goh Caracterización reológica de muestras de pectina ácida en ausencia y presencia de iones monovalentes Polímeros de carbohidratos, 113, págs. 336 – 343, 2014.; BM Elliott, KE Steckbeck, LR Murray, KA Erk, Investigación reológica de la resistencia al cizallamiento, durabilidad y recuperación de balsas de alginato formadas por medicamentos antiácidos en entornos de pH variables, Revista Internacional de Farmacia, 457, págs. 118–123, 2013.; T. Luan, LJ Wu, HB Zhang, Y. Wang, Un estudio sobre la naturaleza de los enlaces intermoleculares en los geles débiles criotrópicos de hialuronano, Polímeros de carbohidratos, págs. 2076 – 2085, 2012.; H. Hakert, T. Eckert, T. Muller, Cambios reológicos en formas ácidas de geles acuosos de carboximetilcelulosa (HCMC) Archiv Der Pharmazie, págs. 687–687, 1988.; Y. Fang, S. Al-Assaf, GO Phillips, K. Nishinari, T. Funami, PA Williams, Participación de iones en la promoción de asociaciones intermoleculares de polisacáridos de la pared celular. Química estructural, págs. 317 – 324, 2009.; M. Djabourov, K. Nishinari, SB Ross-Murphy, Geles físicos a partir de polímeros biológicos y sintéticos. (1a ed.), Cambridge University Press, Cambridge, 2013.; C. Viebke, J. Borgstrom, I. Carlsson, L. Piculell, P. Williams, Un estudio de calorimetría de barrido diferencial de kappa-carragenina en los sistemas NaCl / NaI / CsI / CsCl y análisis por cálculos de Poisson-Boltzmann, Macromoléculas, pp. 1,833 mil - 1,841 mil, 1998.; S. Ikeda, K. Nishinari, Propiedades reológicas de tipo “gel débil” de dispersiones acuosas de hélices kappa-carrageninas no agregadas, Journal of Agricultural and Food Chemistry, pp. 4 436 - 4,441, 2001.; CG de Kruif, T. Huppertz, VS Urban, AV Petukhov, Micelas de caseína y su estructura interna Advances in Colloid and Interface Science, págs. 36 – 52, 2012.; K. Nishinari, Y. Fang, S. Guo, GO Phillips, Proteínas de soja: revisión sobre composición, agregación y emulsificación Hidrocoloides alimentarios, págs. 301 – 318, 2014.; R. Guzzi, B. Rizzuti, C. Labate, B. Zappone, MP De Santo, Los iones férricos inhiben la fibrilación amiloide de beta-lactoglobulina a alta temperatura Biomacromoléculas, págs. 1794 – 1801, 2015.; Y. Fang, S. Al-Assaf, M. Sakata, GO Phillips, M. Schultz, V. Monnier, Origen y propiedades termodinámicas de la inestabilidad de colorantes azo sintéticos en soluciones de goma arábiga, Revista de química agrícola y alimentaria, págs.9274 – 9282, 2007.; MA Godshall, Cómo influyen los carbohidratos en el sabor de los alimentos, Tecnología de los alimentos, págs.63 – 67, 1997.; E. Guichard, Interacciones entre los componentes del sabor y los ingredientes alimentarios y su influencia en la percepción del sabor, Food Reviews International, págs. 49 – 70, 2002.; DJ McClements, EA Decker, Y. Park, J. Weiss, Principios de diseño estructural para la entrega de componentes bioactivos en nutracéuticos y alimentos funcionales, Revisiones críticas en ciencia de los alimentos y nutrición, págs. 577 – 606, 2009.; Y. Fang, S. Al-Assaf, GO Phillips, K. Nishinari, PA Williams, Interacción de goma arábiga con ácidos grasos estudiada mediante resonancia paramagnética electrónica Biomacromoléculas, págs. 1398 – 1405, 2010.; Y. Cao, L. Wang, K. Zhang, Y. Fang, K. Nishinari, GO Phillips Mapeo de los comportamientos de fase compleja de mezclas acuosas de kappa-carragenano y gelatina tipo B, Revista de química física B, págs. 9982 – 9992, 2015.; P. Mao, M. Zhao, F. Zhang, Y. Fang, GO Phillips, K. Nishinari, et al. Fraccionamiento molecular inducido por separación de fases de sistemas de goma arábiga-pectina de remolacha azucarera Polímeros de carbohidratos, págs. 699 – 705, 2013.; F. Weinbreck, M. Minor, CG De Kruif, Microencapsulación de aceites utilizando coacervados de proteína de suero/goma arábiga, Revista de microencapsulación, págs. 667 – 679, 2004.; F. Weinbreck, R. de Vries, P. Schrooyen, CG de Kruif, Coacervación compleja de proteínas de suero y goma arábiga, Biomacromoléculas, págs. 293 – 303, 2003.; X. Li, Y. Fang, S. Al-Assaf, GO Phillips, F. Jiang, Complejamiento de albúmina de suero bovino y pectina de remolacha azucarera: emulsiones estabilizadoras de aceite en agua, Diario de coloide y Ciencia Interface, pp. 103 – 111, 2.012.; P. J. Subramanian and S. Mizrahi, “Accelerated shelf-life tests,” in The Stability and Shelf-Life of Food, 1st ed., D. Kilcast and P. Subramaniam, Eds. Wood head Publishing, 2014, pp. 107–128.; J. C. Cheftel and H. Cheftel, Introducción a la bioquímica y tecnología de los alimentos, 3rd ed. Zaragoza, 1980.; O. Fennema, Química de los alimentos, 3rd ed. Zaragoza, 2010.; J. H. Baxter, “Free Amino Acid Stability in Reducing Sugar Systems,” J. Food Sci., vol. 60, no. 2, pp. 405–408, Mar. 1995.; KONOPACKA, D. Y PLOCHARSKI, W.J., Effect of storage conditions on the relationship between apple firmness and texture acceptability. Postharvest Biology and Technology, vol. 32, no. 2, p. 205-211, May. 2004.; COSTA, F., CAPPELLIN, L., LONGHI, S., GUERRA, W., MAGNAGO, P., PORRO, D., SOUKOULIS, C., SALVI, S., VELASCO, R., BIASIOLI, F., GASPERI, F., Assessment of apple (Malus domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling strategy. Postharvest Biology and Technology, vol. 61, no. 1, p. 21-28, Jul. 2011.; WANG, R., ZHOU, W. Y ISABELLE, M., Comparison study of the effect of green tea extract (GTE) on the quality of bread by instrumental analysis and sensory evaluation. Food Research International, vol. 40, no. 4, p. 470-479, Ma. 2007.; DE HOMBRE, R.A., CASTRO, E. PARÁMETROS MECÁNICOS Y TEXTURA DE LOS ALIMENTOS. Mediciones instrumentales de textura de sólidos y semisólidos. [online]. 2007. Disponible en:; BOURNE, M.C., Texture Profile Analysis. Food Technology, vol. 32, no. 1, p. 62-66, 1978.; SCOTT-BLAIR, G.W., Rheology in food research. Advances in Food Research, vol. 8, no. 1, p. 1-61, 1958.; SINGH, V., GUIZANI, N., AL-ALAWI, A., CLAEREBOUDT, M. Y RAHMAN, M.S., Instrumental texture profile analysis (TPA) of date fruits as a function of its physico-chemical properties. Industrial Crops and Products, vol. 50, no. 0, p. 866-873, Oct. 2013.; ALVIS, A., PÉREZ, L. Y ARRAZOLA, G., Determinación de las Propiedades de Textura de Tabletas de Chocolate Mediante Técnicas Instrumentales. Información Tecnológica, Vol. 22, no. 3, p. 11-18, 2011.; Peinado Royero, R. A. (2021). Monografía sobre arequipes y dulces de leche con bajo contenido calórico [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional; https://repositorio.unal.edu.co/handle/unal/79173

  8. 8
    Dissertation/ Thesis

    المساهمون: Rodas Rodríguez, José Mauricio, Ruíz Ortega, Francisco Javier, Grupo de Química Teórica y Bioinformática - QTB (Categoría B), García Castro, Giovanni, Ocampo Cardona, Libardo Andrés

    وصف الملف: 138 páginas; application/pdf

    Relation: Achury, L. C., & Álvarez, J. (2015). Desarrollo de la competencia argumentativa a través de la toma de decisiones en el abordaje de la cuestión sociocientífica “uso y comercialización del PVC”. Góndola, Enseñanza y Aprendizaje de las Ciencias. (Bogotá, Colombia), 10(1), 56. https://doi.org/10.14483/udistrital.jour.gdla.2015.1.a04; Andrews, R. (2005). Models of argumentation in educational discourse. Text, 25(1), 107–127. https://doi.org/10.1515/text.2005.25.1.107; Andriessen, J. E. B. (2009). Argumentation in Higher Education: Examples of Actual Practices with Argumentation Tools. Argumentation and Education: Theoretical Foundations and Practices, 203–222. https://doi.org/10.1007/978-0-387-98125-3; Arango Ramirez, J. S. (2012). Hacia una formación científica en y para la civilidad: la argumentación en el contexto de discusiones sobre la explotación minera del oro como asunto sociocientífico. 1–23.; Arboleda Martínez, C. A., & Gómez Uribe, L. J. (2022). Unidad Didáctica sobre Cuestiones Socio Científicas para la Resolución de Problemas sobre el Manejo de los Residuos Sólidos.; Arduíz, A., & Izquierdo, M. (2002). Acerca de la didáctica de las ciencias como disciplina autónoma. Revista Electrónica de Enseñanza de las Ciencias, Vol. 1(N°3), p.130-140. https://www.researchgate.net/publication/28092803; Ballesteros Ballesteros, V., & Gallego Torres, A. P. (2019). La educación en energías renovables desde las controversias socio-científicas en la educación en ciencias. Revista científica, 2(35), 192–200. https://doi.org/10.14483/23448350.14869; Barab, S. (2014). Design-based research: A methodological toolkit for engineering change. The Cambridge Handbook of the Learning Sciences, Second Edition, 151–170. https://doi.org/10.1017/CBO9781139519526.011; Beltrán Castillo, M. J. (2010). Una cuestión sociocientífica motivante para trabajar pensamiento crítico. Zona Próxima, 12, 144–157. https://doi.org/10.14482/zp.12.117.33; Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765–793. https://doi.org/10.1002/sce.20402; Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26–55. https://doi.org/10.1002/sce.20286; Betancourth, J. R., & Ortiz Hurtado, M. A. (2011). Argumentación en ciencias.; Böttcher, F., & Meisert, A. (2011). Argumentation in Science Education: A Model-based Framework. Science and Education, 20(2), 103–140. https://doi.org/10.1007/s11191-010- 9304-5; Buitrago, Á. R., Neisa, M., Mejía, M., Rubinsten, C., & Barbosa, H. (2013). La argumentación: de la retórica a la enseñanza de las ciencias Argumentation: from rhetoric to science teaching. Aleph, 13(63), 1665–2673.; Carvajal, I. X., & Martínez, L. F. (2014). Enculturación Científica a Partir De La Argumentación: Una Cuestión Sociocientífica (Csc) Sobre Implantes Estéticos. Góndola, Enseñanza y Aprendizaje de las Ciencias. (Bogotá, Colombia), 9(1), 96–102. http://revistas.udistrital.edu.co/ojs/index.php/GDLA/article/view/7316/9159; Chion, R., Couló, A. ;, Erduran, A. ;, Furman, S. ;, Iglesia, M. ;, & Adúriz-Bravo, P.; (2003). Estudios sobre la enseñanza de la argumentación científica escolar; (2005). Estudios sobre la enseñanza de la argumentación científica escolar. Enseñanza de las Ciencias; Christenson, N. (2015). Socioscientific argumentation : aspects of content and structure; Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312. https://doi.org/10.1002/(sici)1098- 237x(200005)84:33.0.co;2-a; Duarte, G. G., Cubillos, D. M., & Zapata, P. N. (2014). Desarrollo de la habilidad argumentativa a través de cuestiones socio científicas (CSC). Tecné, Episteme y Didaxis: TED, 128–134. https://doi.org/10.17227/01203916.3199; Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. En Studies in Science Education (Vol. 38, Número 1, pp. 39–72). Informa UK Limited. https://doi.org/10.1080/03057260208560187; Erduran, S., & Aleixandre, M. (2008). Argumentation in science education : perspectives from classroom-based research. En Science & technology education library (Número v 35).; Erduran, S., Ardac, D., & Yakmaci-Guzel, B. (2006). Learning to teach argumentation: case studies of pre-service secondary science teachers. En Eurasia Journal of Mathematics, Science and Technology Education (Vol. 2, Número 2). www.ejmste.com; Erduran, S., Simon, S., & Osborne, J. (2004a). TAPping into argumentation: Developments in the application of Toulmin’s Argument Pattern for studying science discourse. Science Education, 88(6), 915–933. https://doi.org/10.1002/sce.20012; Erduran, S., Simon, S., & Osborne, J. (2004b). TAPping into argumentation: Developments in the application of Toulmin’s Argument Pattern for studying science discourse. Science Education, 88(6), 915–933. https://doi.org/10.1002/sce.20012; Ford, M. (2008). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92(3), 404–423. https://doi.org/10.1002/sce.20263; Fowler, S. R., Zeidler, D. L., & Sadler, T. D. (2009). Moral Sensitivity in the Context of Socioscientific Issues in High School Science Students. International Journal of Science Education, 31(2), 279–296. https://doi.org/10.1080/09500690701787909; Gutiérrez Romero, M. F. (2018). Argumentar a través de analogías: La emoción en el análisis de una problemática socio- científica. Revista Signos, 52(99), 55–76. https://doi.org/10.4067/S0718-09342019000100055; Henao, B. L., & Stipcich, M. S. (2008). Educación en ciencias y argumentación: la perspectiva de Toulmin como posible respuesta a las demandas y desafíos contemporáneos para la enseñanza de las Ciencias Experimentales (Vol. 7).; https://www.edglossary.org/. (2014). Glosario de la reforma educativa.; ICFES. (2022). Cuadernillo de preguntas Prueba de ciencias naturales.; Isabel, L., & Bello, R. (2004). El Modelo Argumentativo De Toulmin En La Escritura De Artículos De Investigación Educativa Resumen the Argumentative Model of Toulmin in the Article Writing of Educative Investigation. 1–18. http://www.revista.unam.mx/vol.5/num1/art2/art2.htm; Jiménez-Aleixandre, M. P. (2011). 10 ideas clave. Competencias en argumentación y uso de pruebas. Educatio Siglo XXI, 29(2010), 363–366.; Jiménez Aleixandre, M. P., & Díaz de Bustamante, J. (2003a). Discurso de aula y argumentación en la clase de ciencias: cuestiones teóricas y metodológicas. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 21(3), 359–369. https://doi.org/10.5565/rev/ensciencias.3914; Jiménez Aleixandre, M. P., & Díaz de Bustamante, J. (2003b). Discurso de aula y argumentación en la clase de ciencias: cuestiones teóricas y metodológicas. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 21(3), 359–369. https://doi.org/10.5565/rev/ensciencias.3914; Jorge, S., & Puig, N. S. (2000). Enseñar a argumentar científicamente: un reto de las clases de ciencias. Enseñanza de las Ciencias, 18(3), 405–422. https://ddd.uab.cat/pub/edlc/02124521v18n3/02124521v18n3p405.pdf; Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337. https://doi.org/10.1002/sce.3730770306; Kuhn, D., Wang, Y., & Li, H. (2010). Why Argue? Developing Understanding of the Purposes and Values of Argumentive Discourse. Discourse Processes, 48(1), 26–49. https://doi.org/10.1080/01638531003653344; Longhi, D., & Lía, A. (2000). El discurso del profesor y del alumno: análisis didáctico en clases de ciencias (Vol. 18, Número 2); Martínez, L. F. (2014). Cuestiones sociocientíficas en la formación de profesores de ciencias: aportes y desafíos. Tecné, Episteme y Didaxis: TED, 1(36), 77–94. https://doi.org/10.17227/01213814.36ted77.94; Martínez, L. F., & Gallo, D. del C. (2021). Argumentación de futuros profesores de química sobre la anorexia tratada como cuestión sociocientífica. Praxis & Saber, 12(30), e11847. https://doi.org/10.19053/22160159.v12.n30.2021.11847; Martínez, L. F., & Parga, D. L. (2013). Discurso ético y ambiental sobre cuestiones sociocientíficas: Aportes para la formación del profesorado.; Mazo Murcia, C. A. (2020). Uso de Cuestiones Sociocientíficas para promover una formación científica y acciones sociopolíticas en los educandos: Discusiones sobre la práctica del Fracking en Colombia. 137. http://bibliotecadigital.udea.edu.co/bitstream/10495/15762/1/MazoCarlos_2020_Discusione sFrackingMetacientíficas.pdf; McNeill, K. L., & Pimentel, D. S. (2010). Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94(2), 203–229. https://doi.org/10.1002/sce.20364; Morin, E. (1998). ¿Qué saberes enseñar en las escuelas?; Mosquera., C. J., Ariza A., L. G., Reyes G., A. M., & Hernández R., C. (2010). Una propuesta didáctica para la enseñanza de los conceptos estructurantes de discontinuidad de la materia y unión química desde la epistemología y la historia de la ciencia contemporáneas. Revista científica, 12. https://doi.org/10.14483/23448350.426; Naylor, S., Keogh, B., & Downing, B. (2007). Argumentation and primary science. Research in Science Education, 37(1), 17–39. https://doi.org/10.1007/s11165-005-9002-5; Newton, P., Driver, R., & Osborne, J. (1999a). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576. https://doi.org/10.1080/095006999290570; Newton, P., Driver, R., & Osborne, J. (1999b). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576. https://doi.org/10.1080/095006999290570; Orobio R, J. K. (2019). Niveles argumentativos, actitudes y comportamientos hacia el cuidado del agua. Progress in Retinal and Eye Research, 561(3), S2–S3.; Osborne, J. (2007). Towards a more social pedagogy in science education: the role of argumentation. Revista Brasileira de Pesquisa em Educação em Ciências ISSN 1806-5104. https://doi.org/10.1016/0005-2760(75)90159-9; Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020. https://doi.org/10.1002/tea.20035; Pelayo, D. A., & Martínez, L. F. (2016). Argumentación en estudiantes de educación media a partir del abordaje sociocientífico de la automedicación. Revista Latinoamericana de Estudios Educativos (Colombia), 12(2), 57–82. https://www.redalyc.org/articulo.oa?id=134149931004; Perlman, & Olbrechts. (1989). Tratado de la Argumentacion Retorica oratoria. https://eva.fder.udelar.edu.uy/pluginfile.php/122123/mod_resource/content/1/Perelman_Ch _-_Tratado_de_la_Argumentacion_Retorica_oratoria_.pdf; Plantin, C. (2012). La argumentación. Historia, teorías, perspectivas. 2(27), 102–104; Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536. https://doi.org/10.1002/tea.20009; Rodríguez, B. (2017). Conocimiento profesional del profesor de ciencias al abordar cuestiones sociocientíficas : un estudio de caso de un grupo de investigación en la interacción universidad-escuela. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, Extra, 2931; Ruiz, F. J., Tamayo, O. E., & Márquez, C. (2013). La enseñanza de la argumentación en ciencias: un proceso que requiere cambios en las concepciones. Revista Latinoamericana de Estudios Educativos., 9(1), 29–52. https://www.redalyc.org/html/1341/134129372003/; Sadler, T. D. (2006). Promoting discourse and argumentation in science teacher education. Journal of Science Teacher Education, 17(4), 323–346. https://doi.org/10.1007/s10972-006- 9025-4; Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26(4), 387–409. https://doi.org/10.1080/0950069032000119456; Sadler, T. D., & Fowler, S. R. (2006a). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90(6), 986–1004. https://doi.org/10.1002/sce.20165; Sadler, T. D., & Fowler, S. R. (2006b). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90(6), 986–1004. https://doi.org/10.1002/sce.20165; Sadler, T. D., & Fowler, S. R. (2006c). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90(6), 986–1004. https://doi.org/10.1002/sce.20165; Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447–472. https://doi.org/10.1002/sce.20276; Sanmartí, N., Sardá, J., & Pipitone, C. (2009). Argumentación en clases de ciencias. Enseñanza de las ciencias, Extra, 1709–1714. http://ensciencias.uab.xn--espg1709-bza; Sardá, J., & Neus Sanmartí, P. (2000). Enseñar a argumentar científicamente: un reto de las clases de ciencias. Enseñanza de las Ciencias, 18(3), 405–422. http://europa.sim.ucm.es/compludoc/AA?articuloId=802843; Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260. https://doi.org/10.1080/09500690500336957; Simonneaux, L. (2007). Chapter 9 Argumentation in Socio-Scientific Contexts. Erduran & Jiminez-Aleixandre), Argumentation in Science Education Perspectives from Classroom-Based Research (35 ed., pp. 179–199). Springer; Tamayo, O. E. (2012). La argumentación como constituyente del pensamiento crítico en niños. Hallazgos, 9(17). https://doi.org/10.15332/s1794-3841.2012.0017.10; Torres Merchán, N. Y. (2011). Las cuestiones sociocientíficas: una alternativa de educación para la sostenibilidad. Luna Azul, 32. https://doi.org/10.17151/luaz.2011.32.5; Toulmin, S. (2019). Los usos de la Argumentación. En Journal of Chemical Information and Modeling (Vol. 53, Número 9).; van Dijk, T. A. (1985). Semantic Discourse Analysis. En Discourse (Vol. 2). http://www.discourses.org/OldArticles/Semantic; Weigand, E. (2006). Argumentation: The mixed game. Argumentation, 20(1), 59–87. https://doi.org/10.1007/s10503-006-9000-4; Yager, R. E. (1996). History of science/Tecnology/Sociesty as reform in te United States. The cultural production of the educated person: Critical ethnographies of schooling and local practice, 1–56. https://www.sunypress.edu/pdf/53395.pdf; Zapata, D. A. (2016). Enseñanza de la argumentación en la clase de ciencias: diseño de una secuencia didáctica para estudiantes de quinto de básica primaria sobre el concepto Germinación de semillas. 146. http://bdigital.unal.edu.co/53965/1/1044501783.2016.pdf; Zona-López, J. R., Ruíz-Ortega, F. J., & Márquez-Bargalló, C. (2023). Modelos de explicación sociocientífica sobre el cambio climático desde una perspectiva multimodal. Educación y Humanismo, 25(44), 100–120. https://doi.org/10.17081/eduhum.25.44.5747; https://repositorio.ucaldas.edu.co/handle/ucaldas/20238; Universidad de Caldas; Repositorio Institucional; https://repositorio.ucaldas.edu.co

  9. 9
    Dissertation/ Thesis

    المساهمون: Rodas Rodriguez, José Mauricio, Ocampo Serna, Diana Marcela, López Rua, Ana Milena, Marín Giraldo, Yelicza

    وصف الملف: 311 páginas; application/pdf

    Relation: Aguilera, L. (2015). Plantas medicinales en la enseñanza de las ciencias. Recuperado el 15 de 03 de 2024, de Ciencia y tecnología: https://www.google.com/url.academia.edu; Alsina, D., Cagnola, E., Güemes, R., Noseda, J. C., & Odetti, H. (2014). Unidad 5. Sustancias. Química conceptos fundamentales;, 41.; Andica, L. (2015). La enseñanza-aprendizaje de la Química a través de las plantas medicinales. Maestría de ciencias exactas y naturales, Universidad Nacional de Colombia, Caldas, Manizales. Recuperado el 5 de Marzo de 2023, de https://repositorio.unal.edu.co/handle/unal/54010; Arias, D., & Torres, E. (23 de Febrero de 2000). Unidades didácticas, herramientas de la enseñanza. Recuperado el 5 de Agosto de 2023, de file:///C:/Users/Usuario/Downloads/lbiermannl,+Arti%CC%81culo_Unidades+dida%CC %81cticas.+Herramientas-B+(1)-1.pdf; Artunduaga, L. (3 de Septiembre de 2021). La etnoeducación: una dimensión de trabajo para la educación en comunidades indígenas de Colombia. (M. d. Nacional, Ed.) Revista Iberoamericana de Educación, 2(13), 9. Recuperado el 30 de Abril de 2023, de https://rieoei.org/historico/oeivirt/rie13a02.htm; Bautista, Y., & Téllez, J. (15 de Octubre de 2021). Las plantas y sus aplicaciones: Una propuesta para la enseñanza-aprendizaje de la química. Tecné, episteme y didaxis, 8. Recuperado el 12 de Marzo de 2023, de https://revistas.upn.edu.co/index.php/TED/article/view/15345/10133; Benito, M. (25 de Noviembre de 2008). Debates en torno a las ciencias. (U. N. Córdoba, Ed.) Perfiles educativos, 31(123), 17. Recuperado el 6 de Junio de 2024, de https://www.scielo.org.mx/pdf/peredu/v31n123/v31n123a3.pdf; Bernal, H. (2020). La enseñanza mediante el debate en la formación inicial del docente: dificultades y oportunidades. Bogotá: Pontificia Universidad Javeriana. Recuperado el 25 de Febrero de 2023, de https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://reposi tory.javeriana.edu.co/bitstream/handle/10554/50049/La%2520ense%25C3%25B1anza% 2520mediante%2520el%2520debate%2520en%2520la%2520formaci%25C3%25B3n%2 520inicial%2520docente%2520Di; Camberos, J., Camacho, A., Váldez, M., Angulo, C., Guadron, A., Osuna, J., . . . Kousuke, A. (2023). Exposición oral en clase, docente vs estudiante: efectos en la retención del conocimiento grupal. (U. a. Sinaloa, Ed.) Inv Ed Med, 12(48), 17. Recuperado el 6 de Junio de 2024, de file:///C:/Users/Usuario/Downloads/1280-Texto del artículo-7794-110-20231218.pdf; Candela, B. (2012). La captura, documentación y la representación del CPC de un profesor experimentado y "ejemplar" acerca del núcleo conceptual de la discontinuidad de la materia. Valle del Cauca. Cali: Universidad del Valle. Recuperado el 2 de Abril de 2023, de https://bibliotecadigital.univalle.edu.co/server/api/core/bitstreams/8880d289-2c864491-9866-c22248804ff8/content; Cárdenas, F. R., Herrera, B., Lomas, M. L., Uribe, P. L., & Zepeda., M. M. (2021). El aprendizaje de la reacción química:el uso de modelos en el laboratorio. Enseñanza de las ciencias, 20.; Cardona, R. D. (2008). Modelos de argumentación en ciencias: Una aplicación a genética. Centro de Estudios Avanzados en Niñez y Juventud alianza de la Universidad de, 217.; Carrillo Guerrero, L. (2007). Argumentación y argumento. (R. Signa, Ed.) Obtenido de Dialnet: oogle.com/search?q=argumentacion+y+argumento&sca_esv=ffa6a5b912f672b6&sca_up v=1&rlz=1C1YTUH_esCO1023CO1023&sxsrf=ACQVn0_aK8iWnOjS8x_hv7bUHcJ0BaH9w%3A17; Carvajal, I. M. (2015). Criterios para el diseño de unidades didácticas contextualizadas: aplicación al aprendizaje de un modelo teórico para la estructura atómica (versión PDF). Educativo. quím vol.26 no.4 Ciudad de México, 8. Obtenido de https://www.scielo.org.mx/scielo.php?pid=S0187893X2015000400267&script=sci_abstract; Carvajal, M., & Sanmartí, P. (2013). Una revisión sobre el uso de contextos en la enseñanza de las ciencias y su potencial para el desarrollo de la competencia científica. (s/n), 9.; Casado, G., & Raviolo, A. (2 de Febrero de 2005). Las dificultades de los alumnos al relacionar distintos niveles de representación en una reacción química. (Universidad Nacional del Comahue, Ed.) Revistas de facultades de ciencias, 10. Recuperado el 22 de Mayo de 2024, de https://revistas.javeriana.edu.co/index.php/scientarium/article/view/5015/3865; Castro, M., & María, M. (2015). Los ambientes de aula que promueven el aprendizaje, desde la perspectiva de los niños y niñas escolares. Educare, 19(3), 13. Recuperado el 26 de 02 de 2023, de https://www.redalyc.org/journal/1941/194140994008/html/; Cattani, A. (18 de Julio de 2017). Debate inter escolar "Debatiendo historia" quisimos preguntarle a su sprotagonistas acerca del valor de esta estrategia para la enseñanza aprendizaje. (U. católica, Ed.) Adamio, 176. Recuperado el 5 de Junio de 2024, de https://revista-andamio.cl/index.php/revista/article/view/88/76; Cisneros, M. (2008). Ciencia y lenguaje en el contexto académico. Cundinamarca. Bogotá: Colciencias. Recuperado el 6 de Junio de 2024, de https://media.utp.edu.co/referenciasbibliograficas/uploads/referencias/articulo/634-ciencia-y-lenguaje; Colombia, M. d. (6 de Mayo de 2020). Principios y fines de la educación nacional. Recuperado el 1 de Mayo de 2023, de Educación ne grupos étnicos: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www. mineducacion.gov.co/1621/articles85384_archivo_pdf.pdf&ved=2ahUKEwiTlID_tdGGAxUtczABHXsNAAgQFnoECBsQ AQ&usg=AOvVaw097yxUKTwU1AzWfTE80b7M; Colorado, Y. (2022). Niveles de representación sobre estructura de la materia y fenómenos asociados en estudiantes de séptimo de la institución educativa Gabriela Mistral. Caldas. Manizales: Universidad Autónoma de Manizales. Recuperado el 7 de Marzo de 2024, de https://repositorio.autonoma.edu.co/bitstream/11182/1332/1/Niveles_representación_sobr e_estructura_materia_; Contreras, S., & González, A. (17 de Febrero de 2014). La selección de contenidos conceptuales en los programas e estudio de Química y ciencias naturales chilenos: análisis de los niveles macroscópico, microscópico y simbólico. (U. a. México, Ed.) Educación de la química, 7. Recuperado el 13 de Mayo de 2024, de https://www.elsevier.es/es-revistaeducacion-quimica-78-pdf-S0187893X14705312; Corales, A. (2009). La programación a medio plazo dentro del tercer nivel de concreción: las unidades didácticas. Emásf, 1(2), 13. Recuperado el 5 de Junio de 2024, de https://www.google.com/search?q=Ant%C3%BAnez+et+al; Cridec. (2018). Plan de salvaguarda pueblo embera de Caldas. Caldas. Manizales: Verdad abierta.com. Recuperado el 27 de Febrero de 2023, de https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://verda dabierta.com/wp-content/uploads/2018/11/Plan-Salvaguarda-Pueblo-EmberaCaldas.pdf&ved=2ahUKEwjfv8TpltGGAxWhtoQIHaLaF8AQFnoECBgQAQ&usg=AO vVaw3XzIDKF26KLvbW0BoIWUQz; Cutrera, G. (7 de Julio de 2016). El triplete químico. Estado de situación de una idea central en la enseñanza de la Química. (U. N. Plata, Ed.) Revista electrónica sobre cuerpos académicos y grupos de investigación en Iberoamérica, 24. Recuperado el 24 de Marzo de 2023, de file:///C:/Users/Usuario/Downloads/103Texto%20del%20art%C3%AD_culo-448-2-10-20161029.pdf; DANE. (16 de Septiembre de 2019). Población indígena de Colombia. Recuperado el 05 de Marzo de 2024, de https://www.dane.gov.co/files/investigaciones/boletines/gruposetnicos/presentacion-grupos-etnicos-2019.pdf; Díaz, M. (1990). De la práctica pedágogica al texto pedagógico. Red academia, 14. Recuperado el 3 de Febrero de 2023, de https://d1wqtxts1xzle7.cloudfront.net; Dogan, N., María, M.-M., & Vasquéz, Á. (2020). El pensamiento creativo en estudiantes para profesores en ciencias: efectos del aprendizaje basado en problemas y en la historia de la ciencia. (s/n), 4(2), 13. Recuperado el 20 de 02 de 2023, de https://orcid.org/0000-00015830-7062; Espinoza, F., & Eudaldo, E. (12 de 08 de 2021). La argumentación científica una herramienta didáctica. Uniandes EPISTEME. Revista digital de Ciencia, Tecnología e Innovación, 8(1), 16. Recuperado el 25 de 02 de 2023, de file:///C:/Users/Usuario/Downloads/DialnetLaArgumentacionCientificaUnaHerramientaDidactica-8298135-1.pdf; Francisco, R., Tamayo, O., & Conxita, M. (2013). La enseñanza de la argumentación en ciencias: un proceso que requiere cambios en las concepciones epistemólogicas, conceptuales, didácticas y en la estructura argumentativa de los docentes. Revista Latinoamericana de Estudios Educativos (Colombia), 25.; Galagovsky, L. (4 de Noviembre de 2004). Del aprendizaje significativo al aprendizaje sutentable. (U. d. Aires, Ed.) Centro de Formación e Investigación en Enseñanza de las Ciencias, 12. Recuperado el 14 de Mayo de 2024, de file:///C:/Users/Usuario/Downloads/21974-Texto%20del%20art%C3%ADculo-21898-110-20060309.pdf; Galagovsky, L., Di Giacomo, M., & Castelo, V. (10 de Enero de 2009). Modelos vs. dibujos: el caso de la enseñanza de las fuerzas intermoleculares. (U. d. Aires, Ed.) Revista electrónica de enseñanza de las ciencias, 8(1), 23. Recuperado el 30 de Mayo de 2024, de file:///C:/Users/Usuario/Downloads/Modelos_vs_dibujos_el_caso_de_la_ensenanza_de_l as_.pdf; García, A. (1999). Compartición de conocimiento tradicional y científico para una gestión más adecuada de las pesquerías. Etnográfica, 3(2), 25. Recuperado el 12 de Marzo de 2023, de file:///C:/Users/Usuario/Downloads/etnografica-3043.pdf; Gómez, L., Muriel, L., & Londoño, D. (15 de Mayo de 2019). El papel del docente para el logro de un aprendizaje significativo apoyado en las TIC. Redalyc, 17(2), 118-131. Obtenido de https://www.redalyc.org/journal/4766/476661510011/html/; Gómez, M. (3 de Junio de 2021). Material de enseñanza de los grupos funcionales de la química orgánica, desde el uso de la especie vegetal limoncillo (cymbopogom citratus) en la medicina indígena ancestral de la comunidad Yaporogos Taira. (U. A. Nariño, Ed.) CRAI, 55. Recuperado el 6 de Marzo de 2023, de https://repositorio.uan.edu.co/server/api/core/bitstreams/e280a4bf-da61-4bb0-91159a4561aca3ed/content; Granada, U. d. (Ed.). (3 de Septiembre de 2014). El desarrollo cognoscitivo de los estudiantes en el área de la naturaleza corpuscular de la materia. Investigación didáctica, 35. Recuperado el 9 de Mayo de 2024, de file:///C:/Users/Usuario/Downloads/El_desarrollo_cognoscitivo_de_los_estudiantes_en_e .pdf; Greca, L., & Jerez, E. (12 de Agosto de 2017). Propuesta para la enseñanza de ciencias naturales en educación primaria en un aula inclusiva. Eureka sobre enseñanza y divulgación de las ciencias, 14(2), 14. Recuperado el 4 de Marzo de 2023, de https://www.redalyc.org/pdf/920/92050579007.pdf; Henao, B., & María, S. (18 de Octubre de 2018). Educación en ciencias y argumentación: la perspectiva de Toulmin como posible respuesta a las demandas y desafíos contemporáneos para la enseñanza de las ciencias experimentales. (U. d. Antioquia, Ed.) Electrónica de enseñanza de las ciencias, 7(1), 16. Recuperado el 24 de Abril de 2023, de http://reec.uvigo.es/volumenes/volumen07/ART3_Vol7_N1.pdf; Hernández, R., Fernández, C., & Pilar, B. (16 de Noviembre de 1997). Metodología de la investigación. Recuperado el 5 de Septiembre de 2023, de https://josetavarez.net/Compendio-Metodologia-de-la-Investigacion.pdf; ICFES. (13 de Agosto de 2023). Entidades territoriales. Recuperado el 25 de Marzo de 2024, de Sistema prisma: https://www.icfesinteractivo.gov.co/resultados-saber2016web/pages/publicacionResultados/; Jiménez Aleixandre, M. P. (2003). Discurso de aula y argumentación en la clase de ciencias: Cuestiones teóricas y metodológicas. Investigación didáctica, 12.; Julia, L. (22 de Julio de 2013). De madres a hijas, de hijas a madres: El cambio en la transmisión intergeneracional de lenguas. (U. a. Barcelona, Ed.) Bellaterra, 6(3), 19. Recuperado el 5 de Junio de 2024; Khan academy. (3 de Mayo de 2024). Biología avanzada grupos funcionales. Obtenido de https://es.khanacademy.org/science/ap-biology/chemistry-of-life/elements-oflife/a/functional-groups; Lituma, M. (2022). Elaboración de una unidad didáctica de estrategias sensoriales para estimular el aprendizaje cognitivo en niños de 2-3 años de la unidad educativa Gualaceo, año lectivo 2020-2021. Ecuador. Cuenca: Universidad politécnica salesiana. Recuperado el 8 de Mayo de 2024, de https://dspace.ups.edu.ec/bitstream/123456789/22629/4/UPSCT009788.pdf; Mantilla, L. (2018). El profesorado como Agente Educativo. La formación del docenteinvestigador en la Universidad Nacional de Educación. Maestría de investigación en sociología, Quito. Recuperado el 12 de 02 de 2023, de http://8.242.217.84:8080/xmlui/handle/123456789/3509; Marquez, M. (19 de Abril de 2014). Utilidad del modelo de toulmin para la enseñanza de argumentación en el aula de ciencias. Reposorio nacional, 2(1), 12. Recuperado el 1 de Junio de 2024, de http://creativecommons.org/licenses/by-nc-nd/4.0; Martín, Y., & Trujillo, M. (10 de Octubre de 2018). Enseñanza de las funciones orgánicas oxigenadas, tomando como modelo la planta aloe vera y la estrategia del aprendizaje cooperativo- colaborativo. (U. N. Colombia, Ed.) Tecné, Episteme y Didaxis, (s/v), 9. Recuperado el 8 de Marzo de 2023, de https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://revist as.upn.edu.co/index.php/TED/article/download/8768/6591/21673&ved=2ahUKEwi_pva Xn9GGAxWPRDABHawlAccQFnoECBYQAQ&usg=AOvVaw3cqwOvfa5O9ycHkVF B8X5C; Martínez, S., Gamboa, S., & Gómez, M. (2009). Diseño, aplicación y evaluación de estrategias de enseñanza para mejorar la argumentación de los estudiantes en ciencias naturales a partir de un estudio comparativo de ocntexto. Antioquía. Medellín: Universidad de Antioquia. Recuperado el 2 de Marzo de 2023, de https://bibliotecadigital.udea.edu.co/bitstream/10495/21573/1/MartinezSandra_2009_Eva luacionCienciasNaturales.pdf; McMurry, J. (2008). Química orgánica (7 ed.). México: Cengaje. Recuperado el 12 de Julio de 2023, de https://fcen.uncuyo.edu.ar/catedras/john-mcmurry-quimica-organica-2008cengage-learning.pdf; Mejía, L. S., Abril, J. G., & Martínez, Á. G. (2013). La argumentación en la enseñanza de las ciencias. Revista Latinoamericana de estudios educativos, 19.; Mercado, J. (2016). Un análisis del concepto de argumento en la teoría de argumentación de Stephen Toulmin. Obtenido de https://repositorio.unicartagena.edu.co/bitstream/handle/11227/2825/Trabajo%20de%20g rado%20-%20Toumin.pdf?sequence=1&isAllowed=y: https://repositorio.unicartagena.edu.co/bitstream/handle/11227/2825/Trabajo%20de%20g rado%20-%20Toumin.pdf?sequence=1&isAllowed=y; Ministerio de educación nacional. (2001). Modelo pedagógico del pueblo embera de Caldas. Bogotá: Manuel Arroyave.; Montaña, C. P. (2018). Articulación de los tres niveles representacionales de la enseñanza de la química en el concepto de cambio de la materia en básica secundaria. Medellin: Universidad Nacional de Colombia.; Montoya, M., Pérez, N., & Pérez, A. (2019). Exposición oral. (s/n). Recuperado el 5 de Junio de 2024, de https://cuaed.unam.mx/publicaciones/libro-evaluacion/pdf/Capitulo-23EXPOSICION-ORAL.pdf; Moreira, M. (5 de Octubre de 2013). Aprendizaje significativo: Un concepto subyacente. (I. d. física, Ed.) Caixa, 26. Recuperado el 5 de Junio de 2024, de https://www.if.ufrgs.br/~moreira/apsigsubesp.pdf; Ordenes, R., Areyano, M., Jara, R., & Merino, C. (15 de 12 de 2013). Representaciones macroscópicas, submicroscópicas, y simbólicas sobre la materia. (U. N. México, Ed.) Educación en química, 10. Recuperado el 21 de 4 de 2024, de https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187893X2014000100008; Orobio, J. (2019). Niveles argumentativos, actitudes y comportamientos hacia el cuidado del agua. Caldas. Manizales: Universidad autónoma. Recuperado el 2 de Junio de 2024, de https://repositorio.autonoma.edu.co/bitstream/11182/898/1; Ortegón, A. (2020). Implementación de la huerta escolar como enseñanza de las ciencias naturales y la educación ambiental en el grado 201 de la Fundación Instituto Tecnológico del sur de Bogotá. Cundinamarca. Bogotá: Universidad Santo Tomas de Aquino. Recuperado el 12 de Marzo de 2023, de https://repository.usta.edu.co/bitstream/handle/11634/29580/2020angieortegon.pdf?seque nce=1; Oviedo, T. (1 de Junio de 2015). Argumentación . [Interpretando a Toulmin (1958)]. Icesi, 9. Recuperado el 31 de Mayo de 2024, de http://hdl.handle.net/10906/77934; Palomar, J. (2022). Enseñanza-aprendizaje de las ciencias naturales y la educación ambiental en contextos multiculturales. Amazonas. Leticia: Universidad Nacional de Colombia. Recuperado el 16 de Marzo de 2023, de https://repositorio.unal.edu.co/bitstream/handle/unal/81605/TM%20Patricia%20Palomar %20Jun%2009%20%281%29.pdf?sequence=1&isAllowed=y; Patti, P. (2007). El debate como metodología de enseñanza-aprendizaje. Córdoba. Recuperado el 6 de Junio de 2024, de https://rdu.unc.edu.ar/bitstream/handle/11086/11593/; Perales, F., & Jimenéz, J. (9 de Enero de 2002). Las ilustraciones en la enseñanza-aprendizaje de las ciencias. Análisis de libros de texto. (U. d. Granada, Ed.) Revista de investigación y experiencias didácticas, 19. Recuperado el 30 de Mayo de 2024, de file:///C:/Users/Usuario/Downloads/Las_ilustraciones_en_la_ensenanzaaprendizaje_de_l.pdf; Pérez, M. (12 de Julio de 2016). Currículum Transversal Etnoeducativo: Una propuesta. (U. d. Atlántico, Ed.) Cedotic, 1(1), 25. Recuperado el 25 de Marzo de 2023, de http://portal.amelica.org/ameli/journal/381/3811815004/3811815004.pdf; Pinochet, J. (2015). El modelo argumentativo de Toulmin y la educación. Ciênc. Educ., Bauru,, 21(2), 21. Recuperado el 21 de 02 de 2023, de https://doi.org/10.1590/1516731320150020004; Pozo, J., & Gómez, M. (2006). Aprender y enseñar ciencia del conocimiento cotidiano al conocimiento científico (Vol. 5). Madrid, España: Morata. Recuperado el 12 de Mayo de 2024, de https://books.google.com.co/books; Raviolo, A. (5 de Octubre de 2015). Los dibujos esquemáticos en la enseñanza y aprendizaje de las ciencias. Novedades educativas, 8(3), 8. Recuperado el 7 de Septiembre de 2023, de https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=http://rid.unr n.edu.ar:8080/bitstream/20.500.12049/2425/1/Dibujos; Reyes, Cárdenas Flor, María. (2021). Investigaciones didácticas, 20.; Rodríguez, L. (21 de Enero de 2004). El modelo argumentativo de Toulmin en la escritura de artículos de investigación educativa. (U. p. Libertador, Ed.) Digital universitaria, 5(1), 18. Recuperado el 26 de Abril de 2023, de https://www.revista.unam.mx/vol.5/num1/art2/ene_art2.pdf; Romero, M. (2020). La argumentación en la clase de ciencias mediante un ambiente virtual de aprendizaje. Cundinamarca. Bogotá: Universidad distrital Francisco Jose de Caldas. Recuperado el 1 de Junio de 2024, de https://repository.udistrital.edu.co/bitstream/handle/11349/28561/RomeroAgudeloMyria mLucia2021.pdf?sequence=1&isAllowed=y; Ruíz, F. (2015). La argumentación en clase de ciencias, un modelo para su enseñanza. Educ. Pesqui., São Paulo, 41(3). Recuperado el 14 de 2 de 2023, de https://www.scielo.br/j/ep/a/; Ruíz, G. (15 de Enero de 2013). La teoría de la experiencia de John Dewey: significación histórica y vigencia en el debate teórico. Red de Revistas Científicas de América Latina, el Caribe, España y Portugal, 23. Recuperado el 4 de Febrero de 2023, de https://www.redalyc.org; Sánchez, E. (2018). Etnoeducación y prácticas interculturales para saberes otros. (U. d. Zulia, Ed.) Utopía práxis Latinoamericana, 23(83), 12. Obtenido de https://www.redalyc.org/journal/279/27957772015/html/; Sanchéz, e. a. (12 de Enero de 2013). Argumentación en la enseñanza de las ciencias. Recuperado el 25 de Enero de 2013, de https://www.redalyc.org; Sánchez, J., Olga, C., & Tamayo, Ó. (Julio de 2025). La argumentación metacognitiva en el aula de. Revista latinoamericana de ciencias sociales, niñez y juventud, 17. Recuperado el 2 de Marzo de 2023, de https://www.redalyc.org/pdf/773/77340728042.pdf; Sarda, J., & Ana, S. (30 de Enero de 2000). Enseñar a argumentar científicamente: un reto de las clases de ciencias. Research Gate, 19. Recuperado el 23 de Agosto de 2023, de file:///C:/Users/Usuario/Downloads/02124521v18n3p405.pdf; Solbes, J. (2010). Debates y argumentación. Monografía, España. Recuperado el 5 de Junio de 2014, de https://www.uv.es/jsolbes/documentos/Alambique_Solbes_Ruiz_Furio_2010.pdf; Tabares, L. (2020). Desarrollo de la habilidad argumentativa en estuidantes de grado once a través del aprendizaje de los grupos funcionales de los compuestos orgánicos. Caldas. Manizales: Universidad autónoma. Recuperado el 2 de Junio de 2024, de https://repositorio.autonoma.edu.co/bitstream/11182/1074/1; Tamayo, ó., Zona, R., & Loaiza, Y. (11 de Diciembre de 2015). El pensamiento crítico en la educación. Algunas categorías centrales en su estudio. (U. d. Caldas, Ed.) Revista Latinoamericana de estudios educativos, 11(2), 24. Recuperado el 30 de Abril de 2023, de https://www.redalyc.org/pdf/1341/134146842006.pdf; Triana, O. (2016). Enseñanza-aprendizaje de grupos funcionales de la química orgánica, basado en la extracción de principios activos presentes en la especie vegetal Lippia alba (alivia dolor). Bogotá: Universidad Nacional de Colombia. Recuperado el 6 de Junio de 2024, de https://repositorio.unal.edu.co/bitstream/handle/unal/57738/onesimojesustrianavillazon.2 016.pdf; Vargas, O. (2018). Argumentación en la comprensión del concepto del dolor en estudiates de enfermería. Caldas. Manizales: Universidad autónoma. Recuperado el 1 de Mayo de 2023, de https://repositorio.autonoma.edu.co/bitstream/11182/791/1/Argumentaci%C3%B3n_com prensi%C3%B3n_concepto_dolor_estudiantes_enfermer%C3%ADa.pdf; Velandia, G. (2016). Aprendizaje significativo de los grupos funcionales de química orgánica en la universidad de Pamplona. Santander. Bucaramanga: Universidad de Pamplona. Recuperado el 6 de Junio de 2023, de http://repositoriodspace.unipamplona.edu.co/jspui/bitstream/20.500.12744/1245/1/Velan dia_2016_TG.pdf; Villegas, M. A. (2020). La argumentación como herramienta para el aprendizaje del cambio químico en el aula. Manizales: Universidad de Manizales.; Wade, L. (2011). Química orgánica (Vol. 2). México: Pearson educación. Recuperado el 28 de Junio de 2023, de https://www.academia.edu/42300137/Quimica_Organica_Vol_2_Wade; Zuluaga, G. (2006). Medicina indígena y occidental : diálogo de saberes. (U. d. rosario, Ed.) Edocur, 12. Recuperado el 5 de Junio de 2024, de http://repository.urosario.edu.co/handle/10336/3377; https://repositorio.ucaldas.edu.co/handle/ucaldas/21656; Universidad de Caldas; Repositorio Institucional Universidad de Caldas; repositorio.ucaldas.edu.co

  10. 10
    Dissertation/ Thesis

    وصف الملف: text

    Relation: https://ri.ues.edu.sv/id/eprint/35045/1/INFORME%20FINAL%20DE%20SEMINARIO%20DE%20GRADO.pdf; Rivas Rodríguez, Ingrid Liset and Guevara de Cortez, Gabriela María and Castillo Hernández, Stephanie Carolina (2024) Estado del Sistema de Vigilancia Epidemiológica de los Licenciados en Radiología e Imágenes que laboran en los Hospitales del Área Metropolitana de San Salvador en el periodo de Marzo a Octubre 2023. Other thesis, Universidad de El Salvador.

  11. 11
    Dissertation/ Thesis

    المؤلفون: Preciado Muñoz, Nicolas

    المساهمون: Sierra Ávila, Cesar Augusto, Grupo de Investigación en Macromoléculas

    وصف الملف: viii, 74 páginas; application/pdf

    Relation: United Nations, “World Population Prospects 2022, Online Edition.,” 2022.; A. B. David Jimenez-Arias, Estefania Carrillo, Agricultural Research Updates. New york: Nova Science Publishers Inc., 2017.; D. Gerten et al., “Feeding ten billion people is possible within four terrestrial planetary boundaries,” Nat. Sustain., vol. 3, no. 3, pp. 200–208, Jan. 2020, doi:10.1038/s41893-019-0465-1.; I. H. Elsokkary, “Silicon as a Beneficial Element and as an Essential Plant Nutrient: An Outlook (Review),” Alexandria Sci. Exch. J., vol. 39, no. 3, pp. 534–550, 2018, doi:10.21608/asejaiqjsae.2018.16920.; D. Coskun et al., “The controversies of silicon’s role in plant biology,” New Phytologist, vol. 221, no. 1. Blackwell Publishing Ltd, pp. 67–85, Jan. 01, 2019. doi:10.1111/nph.15343.; FAO, “Perspectivas de cosechas y situación alimentaria N.o 4, diciembre 2022,” FAO, Roma, Jan. 2023. doi:10.4060/cc3233es.; J. Singh, R. Boddula, and H. Digambar Jirimali, “Utilization of secondary agricultural products for the preparation of value added silica materials and their important applications: a review,” J. Sol-Gel Sci. Technol., vol. 96, no. 1, pp. 15–33, Oct. 2020, doi:10.1007/s10971-020-05353-5.; S. Gaur, J. Kumar, D. Kumar, D. K. Chauhan, S. M. Prasad, and P. K. Srivastava, “Fascinating impact of silicon and silicon transporters in plants: A review,” Ecotoxicol. Environ. Saf., vol. 202, no. March, p. 110885, 2020, doi:10.1016/j.ecoenv.2020.110885; H. E. Bergna, “Colloid Chemistry of Silica,” 1994, pp. 1–47. doi:10.1021/ba-1994-0234.ch001.; S. Prabha, D. Durgalakshmi, S. Rajendran, and E. Lichtfouse, “Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review,” Environmental Chemistry Letters, vol. 19, no. 2. Springer Science and Business Media Deutschland GmbH, pp. 1667–1691, Apr. 01, 2021. doi:10.1007/s10311-020-01123-5.; O. Katz, D. Puppe, D. Kaczorek, N. B. Prakash, and J. Schaller, “Silicon in the Soil–Plant Continuum: Intricate Feedback Mechanisms within Ecosystems,” Plants, vol. 10, no. 4, p. 652, Mar. 2021, doi:10.3390/plants10040652.; J. G. Croissant, K. S. Butler, J. I. Zink, and C. J. Brinker, “Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications,” Nature Reviews Materials, vol. 5, no. 12. Nature Research, pp. 886–909, Dec. 01, 2020. doi:10.1038/s41578-020-0230-0.; I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, Nov. 2019, doi:10.1016/j.arabjc.2017.05.011.; S. A. Afolalu, S. B. Soetan, S. O. Ongbali, A. A. Abioye, and A. S. Oni, “Morphological characterization and physio-chemical properties of nanoparticle - review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 640, no. 1, p. 012065, Nov. 2019, doi:10.1088/1757-899X/640/1/012065.; N. Ranjan and R. Kumar, “Nanoparticles: Properties and its 3D printing applications,” Mater. Today Proc., vol. 48, pp. 1316–1319, 2022, doi:10.1016/j.matpr.2021.09.004.; E. A. Tejeda Villagómez, L. Hernandez-Adame, F. Nieto Navarro, and M. Anzaldo Montoya, “Nanopartículas de silicio como vehículos de transporte para moléculas de interés agrícola,” Mundo Nano. Rev. Interdiscip. en Nanociencias y Nanotecnología, vol. 16, no. 30, pp. 1e-20e, Oct. 2022, doi:10.22201/ceiich.24485691e.2023.30.69732.; V. S. Smetacek, “Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance,” 1985.; R. J. Haynes, “Significance and Role of Si in Crop Production,” Adv. Agron., vol. 146, pp. 83–166, 2017, doi:10.1016/bs.agron.2017.06.001.; E. Epstein, “The anomaly of silicon in plant biology,” 1994.; M. Yuvaraj et al., “Silicon nanoparticles (SiNPs): Challenges and perspectives for sustainable agriculture,” Physiological and Molecular Plant Pathology, vol. 128. Academic Press, Nov. 01, 2023. doi:10.1016/j.pmpp.2023.102161.; A. Rastogi et al., “Application of silicon nanoparticles in agriculture,” 3 Biotech, vol. 9, no. 3. Springer Verlag, Mar. 01, 2019. doi:10.1007/s13205-019-1626-7.; D. Coskun, D. T. Britto, W. Q. Huynh, and H. J. Kronzucker, “The role of silicon in higher plants under salinity and drought stress,” Front. Plant Sci., vol. 7, no. 2016JULY, pp. 1–7, 2016, doi:10.3389/fpls.2016.01072.; J. Cooke and M. R. Leishman, “Consistent alleviation of abiotic stress with silicon addition: a meta-analysis,” Funct. Ecol., vol. 30, no. 8, pp. 1340–1357, 2016, doi:10.1111/1365-2435.12713.; M. Luyckx, J. F. Hausman, S. Lutts, and G. Guerriero, “Silicon and plants: Current knowledge and technological perspectives,” Front. Plant Sci., vol. 8, Mar. 2017, doi:10.3389/fpls.2017.00411.; Z. Li et al., “Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis,” Agron. Sustain. Dev., vol. 38, no. 3, 2018, doi:10.1007/s13593-018-0496-4.; Z. Souri, K. Khanna, N. Karimi, and P. Ahmad, “Silicon and Plants: Current Knowledge and Future Prospects,” Journal of Plant Growth Regulation, vol. 40, no. 3. Springer, pp. 906–925, Jun. 01, 2021. doi:10.1007/s00344-020-10172-7.; J. K. Zhu, “Abiotic Stress Signaling and Responses in Plants,” Cell, vol. 167, no. 2. Cell Press, pp. 313–324, Oct. 06, 2016. doi:10.1016/j.cell.2016.08.029.; S. Wang, F. Wang, S. Gao, and X. Wang, “Heavy Metal Accumulation in Different Rice Cultivars as Influenced by Foliar Application of Nano-silicon,” Water. Air. Soil Pollut., vol. 227, no. 7, Jul. 2016, doi:10.1007/s11270-016-2928-6.; D. Puppe and M. Sommer, Experiments, Uptake Mechanisms, and Functioning of Silicon Foliar Fertilization—A Review Focusing on Maize, Rice, and Wheat, vol. 152. Elsevier Ltd, 2018. doi:10.1016/bs.agron.2018.07.003.; O. L. Reynolds, M. P. Padula, R. Zeng, and G. M. Gurr, “Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture,” Front. Plant Sci., vol. 7, no. June2016, pp. 1–13, 2016, doi:10.3389/fpls.2016.00744.; D. Debona, F. A. Rodrigues, and L. E. Datnoff, “Silicon’s Role in Abiotic and Biotic Plant Stresses,” Annu. Rev. Phytopathol, 2017, doi:10.1146/annurev-phyto-080516.; G. J. Gascho, “Silicon sources for agriculture,” 2001.; J. F. Ma and N. Yamaji, “Silicon uptake and accumulation in higher plants,” Trends Plant Sci., vol. 11, no. 8, pp. 392–397, 2006, doi:10.1016/j.tplants.2006.06.007.; J. A. Bhat et al., “Silicon nanoparticles (SiNPs) in sustainable agriculture: Major emphasis on the practicality, efficacy and concerns,” Nanoscale Advances, vol. 3, no. 14. Royal Society of Chemistry, pp. 4019–4028, Jul. 21, 2021. doi:10.1039/d1na00233c.; W. Pan et al., “Silica nanoparticle accumulation in plants: current state and future perspectives,” Nanoscale, vol. 15, no. 37. Royal Society of Chemistry, pp. 15079–15091, Sep. 06, 2023. doi:10.1039/d3nr02221h.; V. Selvarajan, S. Obuobi, and P. L. R. Ee, “Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections,” Frontiers in Chemistry, vol. 8. Frontiers Media S.A., Jul. 15, 2020. doi:10.3389/fchem.2020.00602.; R. Yuvakkumar, V. Elango, V. Rajendran, N. S. Kannan, and P. Prabu, “Influence of nanosilica powder on the growth of maize crop (Zea Mays L.),” Int. J. Green Nanotechnol. Biomed., vol. 3, no. 3, pp. 180–190, 2011, doi:10.1080/19430892.2011.628581.; M. Mukarram, M. M. A. Khan, and F. J. Corpas, “Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield,” J. Hazard. Mater., vol. 412, Jun. 2021, doi:10.1016/j.jhazmat.2021.125254.; F. Asgari, A. Majd, P. Jonoubi, and F. Najafi, “Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.),” Plant Physiol. Biochem., vol. 127, pp. 152–160, 2018, doi:10.1016/j.plaphy.2018.03.021.; R. Azimi, M. J. Borzelabad, H. Feizi, and A. Azimi, “Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron Elongatum L.),” Polish J. Chem. Technol., vol. 16, no. 3, pp. 25–29, Sep. 2014, doi:10.2478/pjct-2014-0045.; M. Mukarram, P. Petrik, Z. Mushtaq, M. M. A. Khan, M. Gulfishan, and A. Lux, “Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules,” Environ. Pollut., vol. 310, Oct. 2022, doi:10.1016/j.envpol.2022.119855.; M. Ghorbanpour, H. Mohammadi, and K. Kariman, “Nanosilicon-based recovery of barley (: Hordeum vulgare) plants subjected to drought stress,” Environ. Sci. Nano, vol. 7, no. 2, pp. 443–461, Feb. 2020, doi:10.1039/c9en00973f.; D. Sun, H. I. Hussain, Z. Yi, J. E. Rookes, L. Kong, and D. M. Cahill, “Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin,” Chemosphere, vol. 152, pp. 81–91, Jun. 2016, doi:10.1016/j.chemosphere.2016.02.096.; R. Suriyaprabha, G. Karunakaran, K. Kavitha, R. Yuvakkumar, V. Rajendran, and N. Kannan, “Application of silica nanoparticles in maize to enhance fungal resistance,” IET Nanobiotechnology, vol. 8, no. 3, pp. 133–137, 2014, doi:10.1049/iet-nbt.2013.0004.; J. Karimi and S. Mohsenzadeh, “Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings,” Russ. J. Plant Physiol., vol. 63, no. 1, pp. 119–123, Jan. 2016, doi:10.1134/S1021443716010106.; A. M. S. Kheir, H. M. Abouelsoud, E. M. Hafez, and O. A. M. Ali, “Integrated effect of nano-Zn, nano-Si, and drainage using crop straw–filled ditches on saline sodic soil properties and rice productivity,” Arab. J. Geosci., vol. 12, no. 15, Aug. 2019, doi:10.1007/s12517-019-4653-0.; D. M. Naguib and H. Abdalla, “Metabolic Status during Germination of Nano Silica Primed Zea mays Seeds under Salinity Stress,” J. Crop Sci. Biotechnol., vol. 22, no. 5, pp. 415–423, Dec. 2019, doi:10.1007/s12892-019-0168-0; F. Behboudi, Z. T. Sarvestani, M. Zaman Kassaee, S. A. M. Modares Sanavi, and A. Sorooshzadeh, “Improving Growth and Yield of Wheat under Drought Stress via Application of SiO 2 Nanoparticles,” 2018.; P. Aqaei, W. Weisany, M. Diyanat, J. Razmi, and P. C. Struik, “Response of maize (Zea mays L.) to potassium nano-silica application under drought stress,” J. Plant Nutr., vol. 43, no. 9, pp. 1205–1216, May 2020, doi:10.1080/01904167.2020.1727508.; A. Hussain, M. Rizwan, Q. Ali, and S. Ali, “Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains,” Environ. Sci. Pollut. Res., vol. 26, no. 8, pp. 7579–7588, Mar. 2019, doi:10.1007/s11356-019-04210-5.; A. Emamverdian, Y. Ding, F. Mokhberdoran, Y. Xie, X. Zheng, and Y. Wang, “Silicon dioxide nanoparticles improve plant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity,” Trees - Struct. Funct., vol. 34, no. 2, pp. 469–481, Apr. 2020, doi:10.1007/s00468-019-01929-z.; A. Banerjee, A. Singh, M. Sudarshan, and A. Roychoudhury, “Silicon nanoparticle-pulsing mitigates fluoride stress in rice by fine-tuning the ionomic and metabolomic balance and refining agronomic traits,” Chemosphere, vol. 262, Jan. 2021, doi:10.1016/j.chemosphere.2020.127826.; N. I. Elsheery, V. S. J. Sunoj, Y. Wen, J. J. Zhu, G. Muralidharan, and K. F. Cao, “Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane,” Plant Physiol. Biochem., vol. 149, pp. 50–60, Apr. 2020, doi:10.1016/j.plaphy.2020.01.035.; D. K. Tripathi, S. Singh, V. P. Singh, S. M. Prasad, N. K. Dubey, and D. K. Chauhan, “Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings,” Plant Physiol. Biochem., vol. 110, pp. 70–81, Jan. 2017, doi:10.1016/j.plaphy.2016.06.026; M. E. F. Abdel-Haliem, H. S. Hegazy, N. S. Hassan, and D. M. Naguib, “Effect of silica ions and nano silica on rice plants under salinity stress,” Ecol. Eng., vol. 99, pp. 282–289, Feb. 2017, doi:10.1016/j.ecoleng.2016.11.060.; S. Wang, F. Wang, and S. Gao, “Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings,” Environ. Sci. Pollut. Res., vol. 22, no. 4, pp. 2837–2845, 2015, doi:10.1007/s11356-014-3525-0.; M. Rizwan et al., “Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa),” Acta Physiol. Plant., vol. 41, no. 3, p. 0, 2019, doi:10.1007/s11738-019-2828-7.; B. Hussain et al., “Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.),” Sci. Total Environ., vol. 712, Apr. 2020, doi:10.1016/j.scitotenv.2020.136497.; D. K. Tripathi, S. Singh, V. P. Singh, S. M. Prasad, D. K. Chauhan, and N. K. Dubey, “Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance,” Front. Environ. Sci., vol. 4, no. JUL, 2016, doi:10.3389/fenvs.2016.00046.; A. A. Younis, H. Khattab, and M. M. Emam, “Impacts of silicon and silicon nanoparticles on leaf ultrastructure and tapip1 and tanip2 gene expressions in heat stressed wheat seedlings,” Biol. Plant., vol. 64, pp. 343–352, 2020, doi:10.32615/bp.2020.030.; J. Cui, Y. Li, Q. Jin, and F. Li, “Silica nanoparticles inhibit arsenic uptake into rice suspension cells: Via improving pectin synthesis and the mechanical force of the cell wall,” Environ. Sci. Nano, vol. 7, no. 1, pp. 162–171, Jan. 2020, doi:10.1039/c9en01035a.; L. Nghiem Anh Tuan, L. Thi Kim Dung, N. Quoc Hien, D. Van Phu, and B. Duy Du, “Effect of nanosilica/chitosan hybrid on leaf blast and blight diseases of rice in Vietnam,” Vietnam J. Chem., vol. 54, no. 6, pp. 719–723, 2016, doi:10.15625/0866-7144.2016-00393.; A. de Sousa et al., “Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil,” Sci. Total Environ., vol. 693, Nov. 2019, doi:10.1016/j.scitotenv.2019.133636.; G. chao YAN, M. Nikolic, M. jun YE, Z. xi XIAO, and Y. chao LIANG, “Silicon acquisition and accumulation in plant and its significance for agriculture,” J. Integr. Agric., vol. 17, no. 10, pp. 2138–2150, 2018, doi:10.1016/S2095-3119(18)62037-4.; M. Wang, L. Gao, S. Dong, Y. Sun, Q. Shen, and S. Guo, “Role of silicon on plant–pathogen interactions,” Front. Plant Sci., vol. 8, no. May, pp. 1–14, 2017, doi:10.3389/fpls.2017.00701.; J. F. Ma and N. Yamaji, “A cooperative system of silicon transport in plants,” Trends Plant Sci., vol. 20, no. 7, pp. 435–442, 2015, doi:10.1016/j.tplants.2015.04.007.; P. J. O’Reagain and M. T. Mentis, “Leaf silicification in grasses - A review,” J. Grassl. Soc. South. Africa, vol. 6, no. 1, pp. 37–43, 1989, doi:10.1080/02566702.1989.9648158.; K. Tamai and J. F. Ma, “Characterization of silicon uptake by rice roots,” New Phytol., vol. 158, no. 3, pp. 431–436, 2003, doi:10.1046/j.1469-8137.2003.00773.x.; X. Wang, H. Xie, P. Wang, and H. Yin, “Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root,” Materials (Basel)., vol. 16, no. 8, pp. 1–21, 2023, doi:10.3390/ma16083097.; H. Zhang et al., “Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves,” Nat. Nanotechnol., vol. 17, no. 2, pp. 197–205, Feb. 2022, doi:10.1038/s41565-021-01018-8.; D. Sun et al., “Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles,” Plant Cell Rep., vol. 33, no. 8, pp. 1389–1402, 2014, doi:10.1007/s00299-014-1624-5.; F. & Factors, “Nano Silica Market Size, Share Global Analysis Report, 2022 – 2030,” FAF-2191, 2023. https://www.fnfresearch.com/nano-silica-market; S. Research, “Silica Market report forecast 2031,” 2023, [Online]. Available: https://straitsresearch.com/report/silica-market; J. Virkutyte and R. S. Varma, “Environmentally friendly preparation of metal nanoparticles,” RSC Green Chem., no. 19, pp. 7–33, 2013.; S. M. Zargar, R. Mahajan, J. A. Bhat, M. Nazir, and R. Deshmukh, “Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system,” 3 Biotech, vol. 9, no. 3, pp. 1–16, 2019, doi:10.1007/s13205-019-1613-z; K. Vishwakarma et al., Potential Applications and Avenues of Nanotechnology in Sustainable Agriculture, vol. 1. Elsevier, 2017. doi:10.1016/B978-0-12-811487-2.00021-9.; M. Karumanchi, R. Nerella, and I. Mikkili, “An integrated approach on extraction methodologies of nanosilica from cultivated agricultural wastes and microstructural characteristics – A review,” Mater. Today Proc., vol. 62, pp. 2883–2891, Jan. 2022, doi:10.1016/j.matpr.2022.02.476.; N. K. Mohd, N. N. A. N. Wee, and A. A. Azmi, “Green synthesis of silica nanoparticles using sugarcane bagasse,” in AIP Conference Proceedings, Sep. 2017, vol. 1885. doi:10.1063/1.5002317.; S. K. S. Hossain, L. Mathur, and P. K. Roy, “Rice husk/rice husk ash as an alternative source of silica in ceramics: A review,” Journal of Asian Ceramic Societies, vol. 6, no. 4. Taylor and Francis Ltd., pp. 299–313, Oct. 02, 2018. doi:10.1080/21870764.2018.1539210.; D. F. Hincapié-Rojas, S. P. Rojas-Hernández, F. Castaño-González, K. N. Parra-Castaño, and L. R. Giraldo-Torres, “Mesoporous silica nanoparticles obtention, functionalization and biomedical applications: A review,” DYNA (Colombia), vol. 87, no. 215. Universidad Nacional de Colombia, pp. 239–253, 2020. doi:10.15446/DYNA.V87N215.88586.; J. I. Tobón and O. J. Restrepo, “Análisis comparativo del desempeño del cemento portlan adicionado con nanosílice y humo de cemento.,” vol. 77, 2010.; Peñaranda, S. P. Montenegro Gómez, P. Andrea, and G. Abad, “Aprovechamiento de residuos agroindustriales Exploitation of agroindustrial waste in Colombia” 2017.; N. F. Molina, O. I. Fragozo Tarifa, and L. Vizcaíno Mendoza, “Residuos agroindustriales como adiciones en la elaboración de bloques de concreto no estructural,” Cienc. e Ing. Neogranadina, vol. 25, no. 2, p. 99, Dec. 2015, doi:10.18359/rcin.1434.; N. El Ashkar, A. MORSY, and A. TAREK, “Using of Nanoparticles Extracted from Rice Husk as Cementitious Material for Sustainability Issues,” Stroit. Mater., vol. 770, no. 5, pp. 25–31, 2019, doi:10.31659/0585-430x-2019-770-5-25-31.; P. P. Abhilash, D. K. Nayak, B. Sangoju, R. Kumar, and V. Kumar, “Effect of nano-silica in concrete; a review,” Construction and Building Materials, vol. 278. Elsevier Ltd, Apr. 05, 2021. doi:10.1016/j.conbuildmat.2021.122347.; J. David and P. Suárez, “Efecto de la nanosílice sobre las propiedades reológicas de la matriz cementante y su influencia en el estado endurecido del concreto hidráulico,” 2019.; E. Lagos Burbano, “Subproductos de la caña de azúcar (Saccharum officinarum L.): usos en alimentación animal y producción de compost,” 2022.; D. Álvarez Sánchez and D. M. Chaves, “El cultivo de trigo en Colombia: Su agonía y posible desaparición,” Rev. Ciencias Agrícolas, vol. 34, no. 2, Dec. 2017, doi:10.22267/rcia.173402.77.; S. Chakroborty et al., “Sustainable synthesis of multifunctional nanomaterials from rice wastes: a comprehensive review,” Environ. Sci. Pollut. Res., vol. 30, no. 42, pp. 95039–95053, Aug. 2023, doi:10.1007/s11356-023-29235-9.; G. Yan, Q. Huang, S. Zhao, Y. Liang, and Z. Zhu, “Silicon nanoparticles in sustainable agriculture : synthesis , absorption , and plant stress alleviation,” no. March, pp. 1–13, 2024, doi:10.3389/fpls.2024.1393458.; M. M. Sarkar, P. Mathur, T. Mitsui, and S. Roy, “A review on functionalized silica nanoparticle amendment on plant growth and development under stress,” Plant Growth Regulation, vol. 98, no. 3. Springer Science and Business Media B.V., pp. 421–437, Dec. 01, 2022. doi:10.1007/s10725-022-00891-0.; P. Chen, W. Gu, W. Fang, X. Ji, and R. Bie, “Removal of metal impurities in rice husk and characterization of rice husk ash under simplified acid pretreatment process,” Environ. Prog. Sustain. Energy, vol. 36, no. 3, pp. 830–837, May 2017, doi:10.1002/ep.12513.; T. H. Liou and C. C. Yang, “Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash,” Mater. Sci. Eng. B, vol. 176, no. 7, pp. 521–529, Apr. 2011, doi:10.1016/j.mseb.2011.01.007.; D. J. Belton, O. Deschaume, and C. C. Perry, “An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances,” FEBS Journal, vol. 279, no. 10. pp. 1710–1720, May 2012. doi:10.1111/j.1742-4658.2012.08531.x.; S. Khurana, S. Negi, and A. Chandra, “Effect of surface modification of dispersoid on hybrid polymer electrolyte,” Polym. Test., vol. 96, p. 107118, Apr. 2021, doi:10.1016/j.polymertesting.2021.107118.; M. Kley, A. Kempter, V. Boyko, and K. Huber, “Silica Polymerization from Supersaturated Dilute Aqueous Solutions in the Presence of Alkaline Earth Salts,” 2017.; R. Narayan, U. Y. Nayak, A. M. Raichur, and S. Garg, “Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances,” Pharmaceutics, vol. 10, no. 3. MDPI AG, Sep. 01, 2018. doi:10.3390/pharmaceutics10030118.; P. Singh, S. Srivastava, and S. K. Singh, “Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications,” ACS Biomater. Sci. Eng., vol. 5, no. 10, pp. 4882–4898, Oct. 2019, doi:10.1021/acsbiomaterials.9b00464.; F. Akhter et al., “A Comprehensive Review of Synthesis, Applications and Future Prospects for Silica Nanoparticles (SNPs),” Silicon, vol. 14, no. 14. Springer Science and Business Media B.V., pp. 8295–8310, Sep. 01, 2022. doi:10.1007/s12633-021-01611-5.; J. Sarkar et al., “Synthesis of nanosilica from agricultural wastes and its multifaceted applications: A review,” Biocatal. Agric. Biotechnol., vol. 37, p. 102175, Oct. 2021, doi:10.1016/j.bcab.2021.102175.; J. Cui, H. Sun, Z. Luo, J. Sun, and Z. Wen, “Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process,” Mater. Lett., vol. 156, pp. 42–45, Oct. 2015, doi:10.1016/j.matlet.2015.04.134.; T. Witoon, M. Chareonpanich, and J. Limtrakul, “Synthesis of bimodal porous silica from rice husk ash via sol–gel process using chitosan as template,” Mater. Lett., vol. 62, no. 10–11, pp. 1476–1479, Apr. 2008, doi:10.1016/j.matlet.2007.09.004.; S. D. Karande, S. A. Jadhav, H. B. Garud, V. A. Kalantre, S. H. Burungale, and P. S. Patil, “Green and sustainable synthesis of silica nanoparticles,” Nanotechnology for Environmental Engineering, vol. 6, no. 2. Springer Science and Business Media Deutschland GmbH, Aug. 01, 2021. doi:10.1007/s41204-021-00124-1.; A. Pieła et al., “Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing,” Bioorg. Chem., vol. 99, Jun. 2020, doi:10.1016/j.bioorg.2020.103773.; N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, “Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes,” Sci. Rep., vol. 3, pp. 1–7, 2013, doi:10.1038/srep01919.; F. Adam, T.-S. Chew, and J. Andas, “A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass,” J. Sol-Gel Sci. Technol., vol. 59, no. 3, pp. 580–583, Sep. 2011, doi:10.1007/s10971-011-2531-7.; P. Mathur and S. Roy, “Nanosilica facilitates silica uptake, growth and stress tolerance in plants,” Plant Physiology and Biochemistry, vol. 157. Elsevier Masson s.r.l., pp. 114–127, Dec. 01, 2020. doi:10.1016/j.plaphy.2020.10.011.; N. Debnath, S. Das, D. Seth, R. Chandra, S. C. Bhattacharya, and A. Goswami, “Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.),” J. Pest Sci. (2004)., vol. 84, no. 1, pp. 99–105, Mar. 2011, doi:10.1007/s10340-010-0332-3.; S. Rangaraj, K. Gopalu, P. Muthusamy, Y. Rathinam, R. Venkatachalam, and K. Narayanasamy, “Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.),” RSC Adv., vol. 4, no. 17, p. 8461, 2014, doi:10.1039/c3ra46251j.; L. Cao, H. Zhang, C. Cao, J. Zhang, F. Li, and Q. Huang, “Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release,” Nanomaterials, vol. 6, no. 7, p. 126, Jun. 2016, doi:10.3390/nano6070126.; N. Boroumand, M. Behbahani, and G. Dini, “Combined Effects of Phosphate Solubilizing Bacteria and Nanosilica on the Growth of Land Cress Plant,” J. Soil Sci. Plant Nutr., vol. 20, no. 1, pp. 232–243, Mar. 2020, doi:10.1007/s42729-019-00126-8.; M. Moradipour, R. Saberi-Riseh, R. Mohammadinejad, and A. Hosseini, “Nano-Encapsulation of Plant Growth-Promoting Rhizobacteria and Their Metabolites Using Alginate-Silica Nanoparticles and Carbon Nanotube Improves UCB1 Pistachio Micropropagation,” J. Microbiol. Biotechnol., vol. 29, no. 7, pp. 1096–1103, Jul. 2019, doi:10.4014/jmb.1903.03022.; Y. Shen, J. Zhou, and C. Du, “Development of a Polyacrylate/Silica Nanoparticle Hybrid Emulsion for Delaying Nutrient Release in Coated Controlled-Release Urea,” Coatings, vol. 9, no. 2, p. 88, Jan. 2019, doi:10.3390/coatings9020088.; Y. Niu, R. Ke, T. Yang, and J. Song, “pH-Responsively Water-Retaining Controlled-Release Fertilizer Using Humic Acid Hydrogel and Nano-Silica Aqueous Dispersion,” J. Nanosci. Nanotechnol., vol. 20, no. 4, pp. 2286–2291, Apr. 2020, doi:10.1166/jnn.2020.17216; Y. Gao et al., “A Bioresponsive System Based on Mesoporous Organosilica Nanoparticles for Smart Delivery of Fungicide in Response to Pathogen Presence,” ACS Sustain. Chem. Eng., vol. 8, no. 14, pp. 5716–5723, Apr. 2020, doi:10.1021/acssuschemeng.0c00649.; M. E. Beltrán Pineda, L. M. Lizarazo Forero, and C. A. Sierra, “Antibacterial fibers impregnated with mycosynthetized AgNPs for control of Pectobacterium carotovorum,” Heliyon, vol. 10, no. 1, p. e23108, Jan. 2024, doi:10.1016/j.heliyon.2023.e23108.; H. R. Zea Ramírez, K. G. Bastidas Gómez, and C. A. Sierra Ávila, “Adsorción de mercurio sobre nanopartículas de hierro soportadas en fibra de Fique: cinética e isoterma de adsorción,” Ing. y Compet., vol. 25, no. Suplemento, Dec. 2023, doi:10.25100/iyc.v25i4.13109.; R. J. Solano, C. A. Sierra, and M. Ávila Murillo, “Antifungal activity of LDPE/lauric acid films against Colletotrichum tamarilloi,” Food Packag. Shelf Life, vol. 24, p. 100495, Jun. 2020, doi:10.1016/j.fpsl.2020.100495.; D. K. Tripathi, V. P. Singh, P. Ahmad, D. K. Chauhan, and S. M. Prasad, Advances and Future Prospects Silicon in Plants, First. CRC Press, 2016. doi:10.1201/9781315369310.; A. Mushtaq et al., “Synthesis of Silica Nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress,” 2017, [Online]. Available: www.researchtrend.net; U. of oxford Our world in data, “Agricultural land use,” https://ourworldindata.org/grapher/agricultural-land, 2022.; U. of oxford Our world in data, “Global agricultural land use by major crop type,” https://ourworldindata.org/grapher/global-agricultural-land-use-by-major-crop-type, 2022.; M. Alejandro and R. Manzano, “Nanosílice como aditivo para el concreto-caso Colombia.” [Online]. Available: https://www.researchgate.net/publication/341600696; V. K. Yadav and M. H. Fulekar, “Green synthesis and characterization of amorphous silica nanoparticles from fly ash,” 2019. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853; https://repositorio.unal.edu.co/handle/unal/86584; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  12. 12
    Dissertation/ Thesis

    المساهمون: García Castañeda, Javier Eduardo, Cárdenas Martínez, Karen Johanna 0000-0002-7266-8769

    وصف الملف: 199 páginas; application/pdf

    Relation: Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell, 646–674 (2011).; Siegel Mph, R. L. et al. Cancer statistics, 2023. CA Cancer J Clin, 17–48 (2023).; World Health Organization. WHO %7C Cancer Key statistics. https://www.who.int/cancer/resources/keyfacts/en/ (2020).; Infografías cáncer en cifras INC - Instituto Nacional de Cancerología. https://www.cancer.gov.co/portafolio-1/salud-publica/grupos/grupo-vigilancia-epidemiologica-del-cancer/infografias-cancer-cifras-inc (2023).; Bonnor, R. M. & Ludwig, K. A. Laparoscopic colectomy for colon cancer: Comparable to conventional oncologic surgery? Clin Colon Rectal Surg, 174–181 (2005).; Ministerio de Salud y Protección Social. Guía de Práctica Clínica para la detección temprana, diagnóstico, tratamiento integral, seguimiento y rehabilitación del cáncer de colon y recto. gpc.mimsalud.gov.co (2017).; Vogel, J. D., et al. The American society of colon and rectal surgeons clinical practice guidelines for the treatment of colon cancer. Dis Colon Rectum, 999–1017 (2017).; Paschke, S. Value of adjuvant chemotherapy for colon and rectal cancer from a surgeon´s point of view. Practical oncology 1–9 (2017).; Ramphal, W. et al. Oncologic outcome and recurrence rate following anastomotic leakage after curative resection for colorectal cancer. Surg Oncol, 730–736 (2018).; Ruiz-tovar, J. et al. De La Cirugía Colónica. Cir Cir, 283–291 (2010).; Artinyan, A. et al. Infectious postoperative complications decrease long-term survival in patients undergoing curative surgery for colorectal cancer: A study of 12,075 patients. Ann Surg, 497–505 (2015).; Alves Costa De Jesus, C., et al. Quality of life of colorectal cancer patients with intestinal stomas Quality of Life of Colorectal Cancer Patients with Intestinal Stomas. J Carcinog Mutagen (2014).; Hilchie, A. L. et al. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Research, 1–16 (2011).; Felício, M. R., et al. Peptides with dual antimicrobial and anticancer activities. Front Chem, 1–9 (2017).; Marqus, S., Pirogova, E, Piva, T. J. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci, (2017).; Roudi, R., Syn, N. L, Roudbary, M. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: A comprehensive overview. Frontiers in Immunology (2017).; Hao, Y. et al. A review of the design and modification of lactoferricins and their derivatives. BioMetals, 331–341 (2018).; Mader, J. S., Salsman, J., Conrad, D. M, Hoskin, D. W. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther, 612–624 (2005).; Gibbons, J., Kanwar, R, Kanwar Jagat. Lactoferrin and Cancer in Different Cancer Models. Front Biosci 1080–1088 (2011).; Insuasty-Cepeda, D. S. et al. Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. Int J Mol Sci, 4550 (2020).; Vargas Casanova, Y. et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules, 1–11 (2017).; Barragán-Cárdenas, A. et al. Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin. RSC Adv, 17593–17601 (2020).; Richardson, A., et al. Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells. Biochem Biophys Res Commun, 736–741 (2009).; Guerra, J. R. et al. The tetrameric peptide LfcinB (20-25)4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line. RSC Adv, 20497–20504 (2019).; Solarte, V. A. et al. A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model. PLoS One, (2017).; World Health Organization GLOBOCAN. Cancer Today 2020. https://gco.iarc.fr/today/ (2020).; Galán, E. F., et al. Manual Para La Detección Temprana Del Cáncer de Colon y Recto. (2015).; Labianca, R. et al. Colon cancer. Critical Reviews in Oncology/Hematology vol. 74 106–133 (2010).; Testa, U., Pelosi, E., Castelli, G. Colorectal Cancer: Genetic Abnormalities, Tumor Progression, Tumor Heterogeneity, Clonal Evolution and Tumor-Initiating Cells. Medical Sciences, 31 (2018).; Fearon, E. R., Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell vol. 61 759–767 (1990).; Kim, S. H. et al. Tropism between hepatic and pulmonary metastases in colorectal cancers. Oncol Rep, 459–464 (2012).; Ghidini, M., Petrelli, F, Tomasello, G. Right Versus Left Colon Cancer: Resectable and Metastatic Disease. Current Treatment Options in Oncology (2018).; Rawla, P., Sunkara, T., Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Przeglad Gastroenterologiczny vol. 14 89–103 (2019).; Stidham, R. W., Higgins, P. D. R. Colorectal Cancer in Inflammatory Bowel Disease. Clin Colon Rectal Surg, 168–178 (2018).; Galiano de Sánchez, M. T. Cáncer colorrectal (CCR). Revista Colombia de Gastroenterología, (2005).; Hamel, J. F. et al. Comparison of treatment to improve gastrointestinal functions after colorectal surgery within enhanced recovery programmes: a systematic review and meta-analysis. Scientific Reports 2021 11:1, 1–12 (2021).; Banaszkiewicz, Z. et al. Intestinal stoma in patients with colorectal cancer from the perspective of 20-year period of clinical observation. Prz Gastroenterol, 23 (2015).; Silva, N. M., et al. Psychological aspects of patients with intestinal stoma: integrative review1. Rev Lat Am Enfermagem, 2950 (2017).; McKenzie, F. et al. Psychological impact of colostomy pouch change and disposal. Br J Nurs, 308–316 (2006).; Brown, S. R. et al. The Impact of Postoperative Complications on Long-term Quality of Life After Curative Colorectal Cancer Surgery. Ann Surg, 916–923 (2014).; Alty, I. G. et al. Refusal of surgery for colon cancer: Sociodemographic disparities and survival implications among US patients with resectable disease. The American Journal of Surgery, 39–45 (2021).; Benson, A. B. et al. NCCN Guidelines Version 2.2021 Colon Cancer NCCN Framework TM : Basic Resources Continue NCCN Guidelines Panel Disclosures. (2021).; Aparicio, T. Oxaliplatin, fluorouracil and leucovorin as adjuvant treatment for colon cancer. Colon and Rectum, 33–35 (2011).; Yamazaki, K. et al. Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Annals of Oncology, 1539–1546 (2016).; Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer, 330–338 (2003).; Walko, C. M. & Lindley, C. Capecitabine: A review. Clin Ther, 23–44 (2005).; Alcindor, T. & Beauger, N. Oxaliplatin: a review in the era of molecularly targeted therapy. Current Oncology, 18 (2011).; Kciuk, M., Marciniak, B., Kontek, R. Irinotecan—Still an Important Player in Cancer Chemotherapy: A Comprehensive Overview. International Journal of Molecular Sciences, 4919 (2020).; De Rosa, M. et al. The biological complexity of colorectal cancer: Insights into biomarkers for early detection and personalized care. Therapeutic Advances in Gastroenterology, 861–886 (2016).; Kazazi-Hyseni, F., Beijnen, J. H. & Schellens, J. H. M. Bevacizumab. Oncologist, 819 (2010).; Kronfol, M. M. & McClay, J. L. Epigenetic biomarkers in personalized medicine. Prognostic Epigenetics 375–395 (2019).; Nguyen, C. M. & Jacob, S. E. Pembrolizumab. J Dermatol Nurses Assoc, 95–97 (2017).; Carrera, P. M., Kantarjian, H. M. & Blinder, V. S. The financial burden and distress of patients with cancer: Understanding and stepping-up action on the financial toxicity of cancer treatment. CA Cancer J Clin, 153–165 (2018).; Siddiqui, M. & Rajkumar, S. V. The High Cost of Cancer Drugs and What We Can Do About It. JMCP, 935–943 (2012).; Kunnumakkara, A. B. et al. Cancer drug development: The missing links. Experimental Biology and Medicine, 663–689 (2019).; Ronen, J., Hayat, S. & Akalin, A. Methods Evaluation of colorectal cancer subtypes and cell lines using deep learning (2019).; Menter, D. G. et al. Back to the Colorectal Cancer Consensus Molecular Subtype Future. Curr Gastroenterol Rep, 5 (2019).; Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat Med, 1350–1356 (2015).; Okita, A. et al. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget, 18698 (2018).; Baker, S. et al. Cancer Hallmarks Analytics Tool (CHAT): A text mining approach to organize and evaluate scientific literature on cancer. Bioinformatics, 3973–3981 (2017).; Paul, D. The systemic hallmarks of cancer. J Cancer Metastasis Treat, (2020).; Alves, A. C., Ribeiro, D., Nunes, C. & Reis, S. Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochimica et Biophysica Acta – Biomembranes, 2231–2244 (2016).; Sherbet, G. V. Membrane Fluidity and Cancer Metastasis. Pathobiology, 198–205 (1989).; Chiangjong, W., Chutipongtanate, S. & Hongeng, S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). International Journal of Oncology vol, 678–696 (2020).; Bhatia, R. et al. Cancer-associated mucins: role in immune modulation and metastasis. Cancer and Metastasis Reviews, 223–236 (2019).; Ren, J. et al. Correlation between the Presence of Microvilli and the Growth or Metastatic Potential of Tumor Cells. Japanese Journal of Cancer Research, 920–926 (1990).; Butler, L. M. et al. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Advanced Drug Delivery Reviews, 245–293 (2020).; Yang, M. & Brackenbury, W. J. Membrane potential and cancer progression. Frontiers in Physiology (2013).; Baba, A. I. & Câtoi, C. Tumor cell morphology. (2007).; Fischer, E. G. Nuclear Morphology and the Biology of Cancer Cells. Acta Cytol, 511–519 (2020).; Thiran, J. P., Macq, B., Mairesse, J. Morphological classification of cancerous cells. Proceedings - International Conference on Image Processing, 706–710 (1994).; Hilchie, A. L., Hoskin, D. W, Power Coombs, M. R. Anticancer activities of natural and synthetic peptides. in Advances in Experimental Medicine and Biology, 131–147 (2019).; Xie, M., Liu, D., Yang, Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification: Anticancer peptides. Open Biology (2020).; Qin, Y. et al. From Antimicrobial to Anticancer Peptides: The Transformation of Peptides. Recent Pat Anticancer Drug Discov, 70–84 (2019).; Camilio, K. A., Rekdal, Ø., Sveinbjörnsson, B. LTX-315 (OncoporeTM): A short synthetic anticancer peptide and novel immunotherapeutic agent. Oncoimmunology, (2014).; Stangelberger, A., Schally, A. V., Djavan, B. New Treatment Approaches for Prostate Cancer Based on Peptide Analogues. European Urology, 890–900 (2008).; Garton, M. et al. Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc Natl Acad Sci U S A, 1505–1510 (2018).; Gentilucci, L., De Marco, R., Cerisoli, L. Chemical Modifications Designed to Improve Peptide Stability: Incorporation of Non-Natural Amino Acids, Pseudo-Peptide Bonds, and Cyclization. Curr Pharm Des, 3185–3203 (2010).; Vlieghe, P., Lisowski, V., Martinez, J., Khrestchatisky, M. Synthetic therapeutic peptides: science and market. Drug Discovery Today vol. 15 40–56 (2010).; Otvos, L. & Wade, J. D. Current challenges in peptide-based drug discovery. Front Chem (2014).; D’Arcy, M. S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int, 582–592 (2019).; Sancho-Martínez, S. M et al. Necrotic Concentrations of Cisplatin Activate the Apoptotic Machinery but Inhibit Effector Caspases and Interfere with the Execution of Apoptosis. Toxicological Sciences, 73–85 (2011).; Johnstone, R. W., Ruefli, A. A., Lowe, S. W. Apoptosis: A Link between Cancer Genetics and Chemotherapy. Cell, 153–164 (2002).; Hoskin, D. W. & Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta Biomembr, 357–375 (2008).; Papo, N. & Shai, Y. Host defense peptides as new weapons in cancer treatment. Cellular and Molecular Life Sciences CMLS, 784–790 (2005).; Zhou, X. R. et al. From a pro-apoptotic peptide to a lytic peptide: One single residue mutation. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1914–1925 (2016).; Arias, M. et al. Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin. Biochim Biophys Acta Biomembr, (2020).; Kashyap, D., Garg, V. K., Goel, N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol, 73–120 (2021).; Min, K. A., Maharjan, P., Ham, S., Shin, M. C. Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy. Arch Pharm Res, 594–616 (2018).; Faraji, N., Arab, S. S., Doustmohammadi, A., Daly, N. L., Khosroushahi, A. Y. ApInAPDB: a database of apoptosis-inducing anticancer peptides. Scientific Reports 2022, 1–7 (2022).; Wang, H. et al. Antimicrobial Peptides Mediate Apoptosis by Changing Mitochondrial Membrane Permeability. Int J Mol Sci, (2022).; Zong, W. X. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev, 1–15 (2006).; Kim, J. J. Y. et al. Necrosis-inducing peptide has the beneficial effect on killing tumor cells through neuropilin (NRP-1) targeting. Oncotarget, 32449 (2016).; Lu, Y. et al. PFR peptide, one of the antimicrobial peptides identified from the derivatives of lactoferrin, induces necrosis in leukemia cells. Scientific Reports 2016, 1–12 (2016).; Do, T. N. et al. Preferential induction of necrosis in human breast cancer cells by a p53 peptide derived from the MDM2 binding site. Oncogene 2003, 1431–1444 (2003).; Qiu, Y. et al. Cell-penetrating peptides induce apoptosis and necrosis through specific mechanism and cause impairment of Na+–K+-ATPase and mitochondria. Amino Acids, 75–88 (2017).; Decraene, B. et al. Immunogenic cell death and its therapeutic or prognostic potential in high-grade glioma. Genes & Immunity, 1–11 (2022).; Zhou, J. et al. Immunogenic cell death in cancer therapy: Present and emerging inducers. J Cell Mol Med, 4854 (2019).; Aria, H., Rezaei, M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomedicine & Pharmacotherapy, 114503 (2023).; Mathew, R., Karantza-Wadsworth, V. , White, E. Role of autophagy in cancer. Nature Reviews Cancer, 961–967 (2007).; Tilija Pun, N., Jang, W. J. & Jeong, C. H. Role of autophagy in regulation of cancer cell death/apoptosis during anti-cancer therapy: focus on autophagy flux blockade. Arch Pharm Res, 475–488 (2020).; Thorburn, A., Thamm, D. H. & Gustafson, D. L. Autophagy and Cancer Therapy. Mol Pharmacol, 830 (2014).; Ren, S. X. et al. FK-16 Derived from the Anticancer Peptide LL-37 Induces Caspase-Independent Apoptosis and Autophagic Cell Death in Colon Cancer Cells. PLoS One (2013).; Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature, 201–206 (2013).; Pan, W. R. et al. Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage. J Dairy Sci, 7511–7520 (2013).; Tomita, M. et al. Twenty-five years of research on bovine lactoferrin applications. Biochimie, 52–57 (2009).; Cutone, A. et al. Lactoferrin’s anti-cancer properties: Safety, selectivity, and wide range of action. Biomolecules vol. 10, (2020).; Tsuda, H., Sekine, K., Fujita, K. I., Iigo, M. Cancer prevention by bovine lactoferrin and underlying mechanisms - A review of experimental and clinical studies. in Biochemistry and Cell Biology, 131–136 (2002).; Iigo, M. et al. Inhibition of intestinal polyp growth by oral ingestion of bovine lactoferrin and immune cells in the large intestine. BioMetals, 1017–1029 (2014).; Cutone, A. et al. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel), 3806 (2020).; Tanaka, H. et al. Effects of oral bovine lactoferrin on a mouse model of inflammation associated colon cancer. Biochemistry and Cell Biology, 1–7 (2020).; Giansanti, F., Panella, G., Leboffe, L., Antonini, G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals, 61 (2016).; Arias, M. et al. Anticancer activities of bovine and human lactoferricin-derived peptides1. in Biochemistry and Cell Biology, 91–98 (2017).; Sadiq, I. Z., Babagana, K., Danlami, D., Abdullahi, L. I., Khan, A. R. Molecular Therapeutic Cancer Peptides: A Closer Look at Bovine Lactoferricin. Asian Journal of Biochemistry, Genetics and Molecular Biology, 1–9 (2018).; Zhou, N., Tieleman, D. P., Vogel, H. J. Molecular dynamics simulations of bovine lactoferricin: turning a helix into a sheet. Biometals, 217–223 (2004).; Huertas, N., et al. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules, 987 (2017).; Tolokh, I. S., et al. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane. Phys Rev E Stat Nonlin Soft Matter Phys, (2009).; Rahman, R. et al. Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide. J Cell Mol Med, 7181–7189 (2021).; Furlong, S. J., Mader, J. S., Hoskin, D. W. Lactoferricin-induced apoptosis in estrogen-nonresponsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen. Oncol Rep, 1385–1390 (2006).; Muj, C., Mukhopadhyay, S., Jana, P., Kondapi, A. K. Synergistic action of lactoferrin in enhancing the safety and effectiveness of docetaxel treatment against prostate cancer. Cancer Chemother Pharmacol, 375–387 (2023).; Guedes, J. P., Pereira, C. S., Rodrigues, L. R., Côrte-Real, M. Bovine milk lactoferrin selectively kills highly metastatic prostate cancer PC-3 and osteosarcoma MG-63 cells in vitro. Front Oncol, 355424 (2018).; Tone Eliassen, L. et al. Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res, 2703–2710 (2002).; Mistry, N. et al. The anti-papillomavirus activity of human and bovine lactoferricin. Antiviral Res, 258–265 (2007).; Jiang, R. & Lönnerdal, B. Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways1. in Biochemistry and Cell Biology, 99–109 (2017).; Freiburghaus, C., Janicke, B., Lindmark-Månsson, H., Oredsson, S. M. & Paulsson, M. A. Lactoferricin treatment decreases the rate of cell proliferation of a human colon cancer cell line. J Dairy Sci, 2477–2484 (2009).; Freiburghaus, C., Lindmark-Månsson, H., Paulsson, M. & Oredsson, S. Reduction of ultraviolet light-induced DNA damage in human colon cancer cells treated with a lactoferrin-derived peptide. J Dairy Sci, 5552–5560 (2012).; Spicer, J. et al. Safety, anti-tumor activity and T-cell responses in a dose-ranging phase 1 trial of the oncolytic peptide LTX-315 in patients with solid tumors. Clinical Cancer Research, 3435 (2021).; Tomita, M., Wakabayashi, H., Yamauchi, K., Teraguchi, S., Hayasawa, H. Bovine lactoferrin and lactoferricin derived from milk: Production and applications. in Biochemistry and Cell Biology, 109–112 (2002).; Agouridas, V. et al. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chemical Reviews (2019).; Jensen, K. J. Solid-phase peptide synthesis: An introduction. Methods in Molecular Biology, 1–21 (2013).; Kato, H., Hayashi, M., Fukumori, Y., Kaneko, H. MHC restriction in contact hypersensitivity to dicyclohexylcarbodiimide. Food and Chemical Toxicology, 1713–1718 (2002).; Graham, J. C. et al. An Evaluation of the Occupational Health Hazards of Peptide Couplers. Chem Res Toxicol, 1011–1022 (2022).; Navarrete, E. L. Síntesis de péptidos. Universidad nacional autonoma de méxico, Instituto de Biotecnología, 1–53 (2007).; Manne, S. R. et al. Understanding OxymaPure as a Peptide Coupling Additive: A Guide to New Oxyma Derivatives. ACS Omega, 6007–6023 (2022).; Román Bothia, J. T. Implementación y optimización del proceso sintético de i) complejos aminoácido - estaño IV y ii) péptidos conjugados con Ferroceno, como contribución al desarrollo de fármacos basados en moléculas Organometálicas. (Universidad Nacional de Colombia, Bogotá, 2020).; Vrettos, E. I. et al. Unveiling and tackling guanidinium peptide coupling reagent side reactions towards the development of peptide-drug conjugates. RSC Adv, 50519–50526 (2017).; Luna, O. F. et al. Deprotection Reagents in Fmoc Solid Phase Peptide Synthesis: Moving Away from Piperidine? Molecules, (2016).; Fields, G. B. Methods for Removing the Fmoc Group. Peptide Synthesis Protocols 17–27 (1994).; Suzuki, R. & Konno, H. Stain Protocol for the Detection of N-Terminal Amino Groups during Solid-Phase Peptide Synthesis. ACS Appl Mater Interfaces (2020).; Yemm, E. W., Cocking, E. C., Ricketts, R. E. The determination of amino-acids with ninhydrin. Analyst, 209–214 (1955).; Pedersen, S. L., Jensen, K. J. Peptide release, side-chain deprotection, work-up, and isolation. Methods Mol Biol, 43–63 (2013).; Craik, D. J. & Kan, M. W. How can we improve peptide drug discovery? Learning from the past, 1399–1402 (2021).; Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nature Reviews Drug Discovery, 309–325 (2021).; Henninot, A., Collins, J. C. & Nuss, J. M. The Current State of Peptide Drug Discovery: Back to the Future? Journal of Medicinal Chemistry vol. 61, 1382–1414 (2018).; Timur, S. S. & Gürsoy, R. N. The role of peptide-based therapeutics in oncotherapy. J Drug Target, 1048–1062 (2021).; McErlean, E. M. et al. Rational design and characterisation of a linear cell penetrating peptide for non-viral gene delivery. Journal of Controlled Release, 1288–1299 (2021).; Pappa, E. V. et al. Structure–activity studies of lGnRH-III through rational amino acid substitution and NMR conformational studies. Peptide Science, 525–534 (2012).; Kumar, A. et al. Single Amino Acid Substitutions at Specific Positions of the Heptad Repeat Sequence of Piscidin-1 Yielded Novel Analogs That Show Low Cytotoxicity and In Vitro and In Vivo Antiendotoxin Activity. Antimicrob Agents Chemother, 3687 (2016).; Irazazabal, L. N. et al. Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2699–2708 (2016).; Schmidt, S. et al. Identification of Short Hydrophobic Cell-Penetrating Peptides for Cytosolic Peptide Delivery by Rational Design. Bioconjug Chem, 382–389 (2017).; Räder, A. F. B. et al. Orally Active Peptides: Is There a Magic Bullet? Angewandte Chemie International Edition, 14414–14438 (2018).; Hicks, R. P. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C(α) amino acids. Bioorg Med Chem, 4056–4065 (2016).; Scorciapino, M. A., Serra, I., Manzo, G. & Rinaldi, A. C. Antimicrobial dendrimeric peptides: Structure, activity and new therapeutic applications. Int J Mol Sci, (2017).; Liu, S. P., Zhou, L., Lakshminarayanan, R. & Beuerman, R. W. Multivalent antimicrobial peptides as therapeutics: Design principles and structural diversities. in International Journal of Peptide Research and Therapeutics, 199–213 (2010).; Lorenzon, E. N., Piccoli, J. P., Santos-Filho, N. A. & Cilli, E. M. Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity. Protein Pept Lett, 98–107 (2019).; Zhong, J. & Chau, Y. Synthesis, characterization, and thermodynamic study of a polyvalent lytic peptide-polymer conjugate as novel anticancer agent. Bioconjug Chem, 2055–2064 (2010).; Gunasekera, S., Muhammad, T., Strömstedt, A. A., Rosengren, K. J. & Göransson, U. Backbone Cyclization and Dimerization of LL-37-Derived Peptides Enhance Antimicrobial Activity and Proteolytic Stability. Front Microbiol, 1–15 (2020).; Tam, J. P. & Zavala, F. Multiple antigen peptide. A novel approach to increase detection sensitivity of synthetic peptides in solid-phase immunoassays. J Immunol Methods, 53–61 (1989).; Bondaryk, M., Staniszewska, M., Zielińska, P. & Urbańczyk-Lipkowska, Z. Natural antimicrobial peptides as inspiration for design of a new generation antifungal compounds. Journal of Fungi (2017).; Galati, R., Verdina, A., Falasca, G. & Chersi, A. Increased resistance of peptides to serum proteases by modification of their amino groups. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 558–561 (2003).; Arispe, N., Carlos Diaz, J. & Flora, M. Efficiency of Histidine-Associating Compounds for Blocking the Alzheimer’s Ab Channel Activity and Cytotoxicity. Biophys J, (2008).; Feng, Z. & Xu, B. Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches. Biomolecular Concepts, 179–187 (2016).; Oliva, R. et al. Exploring the role of unnatural amino acids in antimicrobial peptides. Sci Rep, 8888 (2018).; Cardoso, M. H., Cândido, E. S., Oshiro, K. G. N., Rezende, S. B. & Franco, O. L. Peptides containing D-amino acids and retro-inverso peptides: General applications and special focus on antimicrobial peptides. in Peptide Applications in Biomedicine, Biotechnology and Bioengineering, 131–155 (2018).; Aghamiri, S. et al. Antimicrobial peptides as potential therapeutics for breast cancer. Pharmacol Res, 105777 (2021).; Gan, B. H., Gaynord, J., Rowe, S. M., Deingruber, T., Spring, D. R. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev, 7820–7880 (2021).; Kowalczyk, R., Harris, P. W. R., Williams, G. M., Yang, S. H. & Brimble, M. A. Peptide lipidation - A synthetic strategy to afford peptide based therapeutics. Advances in Experimental Medicine and Biology, 185–227 (2017).; Albada, B. Tuning Activity of Antimicrobial Peptides by Lipidation. Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids, 317–334 (2018).; Morstein, J. et al. Medium-Chain Lipid Conjugation Facilitates Cell-Permeability and Bioactivity. J Am Chem Soc, 18532–18544 (2022).; Wang, D. et al. Anticancer Properties of Lipidated Peptide Drug Supramolecular Self-Assemblies with Enhanced Stability. ACS Appl Bio Mater, 5995–6003 (2019).; Menacho-Melgar, R., Decker, J. S., Hennigan, J. N. & Lynch, M. D. A review of lipidation in the development of advanced protein and peptide therapeutics. Journal of Controlled Release, 1–12 (2019).; Wang, Y. et al. The molecular basis for the prolonged blood circulation of lipidated incretin peptides: Peptide oligomerization or binding to serum albumin? J Control Release, 25–33 (2016).; Zhang, X. et al. A Lipidated Peptide with Mitochondrial Membrane Localization in Human A549 Lung Cells: From Enhanced Cell-Penetrating Properties to Biological Activity Mechanism. ACS Appl Bio Mater, 8277–8290 (2021).; Bech, E. M., Pedersen, S. L. & Jensen, K. J. Chemical Strategies for Half-Life Extension of Biopharmaceuticals: Lipidation and Its Alternatives. ACS Med Chem Lett, 577–580 (2018).; Milton Harris, J. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 214–221 (2003).; Porfiryeva, N. N., Moustafine, R. I. & Khutoryanskiy, V. V. PEGylated Systems in Pharmaceutics. Polymer Science - Series C, 62–74 (2020).; Maiti, S. & Paira, P. Biotin conjugated organic molecules and proteins for cancer therapy: A review. European Journal of Medicinal Chemistry, 206–223 (2018).; Zempleni, J., Hassan, Y. I. & Wijeratne, S. S. K. Biotin and biotinidase deficiency. Expert Rev Endocrinol Metab, 715–724 (2008).; Yang, W., Cheng, Y., Xu, T., Wang, X. & Wen, L. ping. Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem, 862–868 (2009).; Lee, H. S. et al. Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett, 47–55 (2008).; Ren, W. X. et al. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chemical Communications, 10403–10418 (2015).; Eliassen, L. T., Haug, B. E., Berge, G. & Rekdal, Ø. Enhanced antitumour activity of 15-residue bovine lactoferricin derivatives containing bulky aromatic amino acids and lipophilic N-terminal modifications. J Pept Sci, 510–517 (2003).; Svendsen, J. S. M., Grant, T. M., Rennison, D., Brimble, M. A. & Svenson, J. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses. Acc Chem Res, 749–759 (2019).; Vogel, H. J. et al. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides, 49–63 (2011).; Arias, M., Piga, K. B., Hyndman, M. E. & Vogel, H. J. Improving the activity of trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules (2018).; Madorran, E., Stožer, A., Bevc, S. & Maver, U. In vitro toxicity model: Upgrades to bridge the gap between preclinical and clinical research. Bosn J Basic Med Sci, 157 (2020).; Van Norman, G. A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Part 2: Potential Alternatives to the Use of Animals in Preclinical Trials. JACC Basic Transl Sci, 387 (2020).; HT-29 - HTB-38 %7C ATCC. https://www.atcc.org/products/htb-38.; Kleiveland, C. et al. The Impact of Food Bioactives on Health In Vitro and Ex Vivo Models. Chapter 11; HT29 Cell line.; Caco-2 [Caco2] - HTB-37 %7C ATCC. https://www.atcc.org/products/htb-37.; Kleiveland, C. et al. The Impact of Food Bioactives on Health In Vitro and Ex Vivo Models.Chapter 10: Caco-2 Cell line.; HCT 116 - CCL-247 %7C ATCC. https://www.atcc.org/products/ccl-247.; HEK-293 - CRL-1573 %7C ATCC. https://www.atcc.org/products/crl-1573.; Thomas, P. & Smart, T. G. HEK293 cell line: A vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods, 187–200 (2005).; DU 145 - HTB-81 %7C ATCC. https://www.atcc.org/products/htb-81.; Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H. & Paulson, D. F. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer, 274–281 (1978).; HeLa - CCL-2 %7C ATCC. https://www.atcc.org/products/ccl-2.; Horwitz, K. B., Costlow, M. E. & McGuire, W. L. MCF-7: A human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors. Steroids, 785–795 (1975).; MCF7 - HTB-22 %7C ATCC. https://www.atcc.org/products/htb-22.; Vargas-Casanova, Y. et al. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv, 7239–7245 (2019).; Barragán‐Cárdenas, A. et al. The Nonapeptide RWQWRWQWR: A Promising Molecule for Breast Cancer Therapy. ChemistrySelect, 9691–9700 (2020).; Rodríguez, J. Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama. (Universidad Nacional de Colombia, 2019).; Ngoma, T. World Health Organization cancer priorities in developing countries. Cancer Initiatives in Developing Countries (2005).; Magalhaes, L. G., Ferreira, L. L. G. & Andricopulo, A. D. Recent Advances and Perspectives in Cancer Drug Design. An Acad Bras Cienc, 1233–1250 (2018).; Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 394–424 (2018).; Orangio, G. R. The Economics of Colon Cancer. Surgical Oncology Clinics of North America, 327–347 (2018).; Riedl, S., Zweytick, D., Lohner, K. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids, 766–781 (2011).; Muller, P. Y. & Milton, M. N. The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov, 751–761 (2012).; Insuasty Cepeda, D. S. et al. Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology. Molecules, (2019).; Busquet, F. et al. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regulatory Toxicology and Pharmacology, 496–511 (2014).; Huertas Méndez, N. D. J. et al. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules, 1–10 (2017).; Cárdenas-Martínez, K. J. et al. Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int J Pept Res Ther 1–12 (2021).; De Both, N. J., Vermey, M., Dinjens, W. N., Bosman, F. T. A comparative evaluation of various invasion assays testing colon carcinoma cell lines. Br J Cancer, 934–941 (1999).; Gheytanchi, E. et al. Morphological and molecular characteristics of spheroid formation in HT-29 and Caco-2 colorectal cancer cell lines. Cancer Cell Int, 1–16 (2021).; Rousset, M. The human colon carcinoma cell lines HT-29 and Caco-2: Two in vitro models for the study of intestinal differentiation. Biochimie, 1035–1040 (1986).; Ahmed, D. et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis, (2013).; Hilchie, A. L., Vale, R., Zemlak, T. S., Hoskin, D. W. Generation of a hematologic malignancy-selective membranolytic peptide from the antimicrobial core (RRWQWR) of bovine lactoferricin. Exp Mol Pathol , 192–198 (2013).; Kawai, K. et al. Comprehensive karyotyping of the HT-29 colon adenocarcinoma cell line. Genes Chromosomes Cancer, 1–8 (2002).; Beter, M. et al. Multivalent Presentation of Cationic Peptides on Supramolecular Nanofibers for Antimicrobial Activity. Mol Pharm, 3660–3668 (2017).; Zhang, F. et al. Short, mirror-symmetric antimicrobial peptides centered on “RRR” have broad-spectrum antibacterial activity with low drug resistance and toxicity. Acta Biomater, 145–167 (2022).; Jia, B. Y. et al. High Cell Selectivity and Bactericidal Mechanism of Symmetric Peptides Centered on d-Pro–Gly Pairs. Int J Mol Sci, (2020).; Yang, S. T., Shin, S. Y. & Kim, J. Il. Interaction mode of a symmetric Trp-rich undeca peptide PST11-RK with lipid bilayers. FEBS Lett, 157–163 (2007).; Zhong, C. et al. Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. Biochem Pharmacol (2021).; Vargas-Casanova, Y. et al. Palindromic Peptide LfcinB (21-25)Pal Exhibited Antifungal Activity against Multidrug-Resistant Candida. Chemistry Select, 7236–7242 (2020).; Barragán-Cárdenas, A. C. et al. Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines. ACS Omega, 2712–2722 (2022).; Vargas-Casanova, Y. et al. Combining the Peptide RWQWRWQWR and an Ethanolic Extract of Bidens pilosa Enhances the Activity against Sensitive and Resistant Candida albicans and C. auris Strains. J Fungi, (2023).; Svenson, J. et al. Metabolic fate of lactoferricin-based antimicrobial peptides: effect of truncation and incorporation of amino acid analogs on the in vitro metabolic stability. J Pharmacol Exp Ther, 1032–1039 (2010).; Isidro-Llobet, A., Álvarez, M., Albericio, F. Amino acid-protecting groups. Chem Rev, 2455–2504 (2009).; Alhassan, M., Kumar, A., Lopez, J., Albericio, F., de la Torre, B. G. Revisiting NO2 as Protecting Group of Arginine in Solid-Phase Peptide Synthesis. Int J Mol Sci, 1–12 (2020).; Ragnarsson, U., Grehn, L. Dual protection of amino functions involving Boc. RSC Adv, 18691–18697 (2013).; Applied Biosystems- ThermoFisher. Cleavage, Deprotection, and Isolation of Peptides after Fmoc Synthesis Potential Problems.; GenScript. Peptide solubility Guidelines. https://www.genscript.com/peptide_solubility_and_stablity.html.; Gutman, I. et al. Predicting the Success of Fmoc-Based Peptide Synthesis. ACS Omega, 23771–23781 (2022).; GenScript. Recommended Peptide Purity Guidelines. https://www.genscript.com/recommended_peptide_purity.html.; Mueller, L. K., Baumruck, A. C., Zhdanova, H., Tietze, A. A. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Frontiers in Bioengineering and Biotechnology (2020).; Peptide Hydrophobicity/Hydrophilicity Analysis Tool. https://www.peptide2.com/N_peptide_hydrophobicity_hydrophilicity.php.; Zapadka, K. L., Becher, F. J., Gomes dos Santos, A. L. & Jackson, S. E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus (2017).; Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform (2009).; Peter M. Hwang, Ning Zhou, Xi Shan, Cheryl H. Arrowsmith, Hans J. Vogel. Three-Dimensional Solution Structure of Lactoferricin B, an Antimicrobial Peptide Derived from Bovine Lactoferrin†. Biochemistry, 4288–4298 (1998).; Arbeláez, M. D. L. R., Aleixo, D. T., Barragán Cárdenas, A. C., Pittella, F., Tavares, G. D. The role of synthetic peptides derived from bovine lactoferricin against breast cancer cell lines: A mini-review. Oncologie, 629–633 (2023).; Li, L., Vorobyov, I., Allen, T. W. The different interactions of lysine and arginine side chains with lipid membranes. Journal of Physical Chemistry B, 11906–11920 (2013).; Hristova, K. & Wimley, W. C. A Look at Arginine in Membranes. J Membr Biol, 49 (2011).; Khemaissa, S., Walrant, A., Sagan, S. Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys, (2022).; Åmand, H. L., Fant, K., Nordén, B., Esbjörner, E. K. Stimulated endocytosis in penetratin uptake: Effect of arginine and lysine. Biochem Biophys Res Commun, 621–625 (2008).; Yang, S.-T. et al. Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure. FEBS Lett, 229–233 (2003).; Szabó, I. et al. Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics 2022, 907 (2022).; Svenson, J. et al. Altered activity and physicochemical properties of short cationic antimicrobial peptides by incorporation of arginine analogues. Mol Pharm, 996–1005 (2009).; Sahsuvar, S., Kocagoz, T., Gok, O., Can, O. In vitro efficacy of different PEGylation designs on cathelicidin-like peptide with high antibacterial and antifungal activity. Scientific Reports, 1–13 (2023).; Greco, I. et al. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep, (2020).; Rodgers, G. M., Gilreath, J. A. The Role of Intravenous Iron in the Treatment of Anemia Associated with Cancer and Chemotherapy. Acta Haematol, 13–20 (2019).; Timmons, P. B., Hewage, C. M. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Scientific Reports, 1–18 (2020).; Win, T. S. et al. HemoPred: a web server for predicting the hemolytic activity of peptides. Future Med Chem, 275–291 (2017).; Askari, P., Namaei, M. H., Ghazvini, K., Hosseini, M. In vitro and in vivo toxicity and antibacterial efficacy of melittin against clinical extensively drug-resistant bacteria. BMC Pharmacol Toxicol, 1–12 (2021).; Takahashi S. et al. The Structure-Function Relationship of Mastoparan : Loss of the Hemolytic Activity of Mastoparan by Substituting Lysine with Ornithine Residues in the Molecule. The Journal of Tokyo Academy of Health Sciences, 86–96 (2002).; Kang, A., Lee, J. H., Lin, E., Westerhoff, M. Metastatic colon carcinoma to the prostate gland. J Comput Assist Tomogr, 463–465 (2013).; Insuasty-Cepeda, D. S. et al. Non-natural amino acids into LfcinB-derived peptides: effect in their (i) proteolytic degradation and (ii) cytotoxic activity against cancer cells. R Soc Open Sci (2023).; Del Genio, V. et al. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics, (2022).; Hollville, E., Martin, S. J. Measuring Apoptosis by Microscopy and Flow Cytometry. Curr Protoc Immunol (2016).; Green, D. R., Llambi, F. Cell Death Signaling. Cold Spring Harb Perspect Biol (2015).; Jan, R., Chaudhry, G. e. S. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv Pharm Bull, 205 (2019).; Vaseva, A. V., Moll, U. M. The mitochondrial p53 pathway. Biochim Biophys Acta, 414–420 (2009).; Piatek, M., Sheehan, G., Kavanagh, K. Galleria mellonella: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions. Antibiotics, 1545 (2021).; Ignasiak, K., Maxwell, A. Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Res Notes, 428 (2017).; Erhirhie, E. O., Ihekwereme, C. P., Ilodigwe, E. E. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdiscip Toxicol, 5–12 (2018).; McCann, M. et al. In vitro and in vivo studies into the biological activities of 1,10-phenanthroline, 1,10-phenanthroline-5,6-dione and its copper(ii) and silver(i) complexes. Toxicol Res, 47–54 (2012).; Perše, M. Cisplatin mouse models: Treatment, toxicity and translatability. Biomedicines (2021).; Al Shoyaib, A., Archie, S. R., Karamyan, V. T. Intraperitoneal Route of Drug Administration: Should it Be Used in Experimental Animal Studies? Pharm Res, 12 (2019).; Redfern, W. S. et al. The functional observational battery and modified Irwin test as global neurobehavioral assessments in the rat: Pharmacological validation data and a comparison of methods. J Pharmacol Toxicol Methods (2019).; ICH S7A Safety pharmacology studies for human pharmaceuticals - Scientific guideline %7C European Medicines Agency.; Zhao, X. et al. Optimized lactoferrin as a highly promising treatment for intracerebral hemorrhage: Pre-clinical experience. Journal of Cerebral Blood Flow & Metabolism (2021).; Kumari, S., Ahsan, S. M., Kumar, J. M., Kondapi, A. K., Rao, N. M. Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433). Scientific Reports, 1–13 (2017).; Arcella, A. et al. In vitro and in vivo effect of human lactoferrin on glioblastoma growth. J Neurosurg, 1026–1035 (2015).; Begley, D. J. Strategies for delivery of peptide drugs to the central nervous system: exploiting molecular structure. Journal of Controlled Release, 293–306 (1994).; Qi, N. et al. Combined integrin αvβ3 and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect. J Nanobiotechnology, 1–17 (2021).; Caballero, M. V., Candiracci, M. Zebrafish as screening model for detecting toxicity and drugs efficacy. Journal of Unexplored Medical Data (2018).; Chahardehi, A. M., Arsad, H., Lim, V. Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants, 1–35 (2020).; Brotzmann, K., Wolterbeek, A., Kroese, D., Braunbeck, T. Neurotoxic effects in zebrafish embryos by valproic acid and nine of its analogues: the fish-mouse connection? Arch Toxicol, 641–657 (2021).; https://repositorio.unal.edu.co/handle/unal/86567; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  13. 13
    Dissertation/ Thesis

    المساهمون: Álvarez Diaz, Diego Alejandro, Lozano Moreno, José Manuel, Genómica de Microorganismos Emergentes, Chivatá Avila, Jaime Alexander 0001692043

    وصف الملف: 89 páginas; application/pdf

    Relation: E. B. Hayes, “Zika virus outside Africa,” Emerging Infectious Diseases, vol. 15, no. 9. Centers for Disease Control and Prevention, pp. 1347–1350, Sep. 2009, doi:10.3201/eid1509.090442.; M. Hennessey, M. Fischer, and J. E. Staples, “Zika Virus Spreads to New Areas — Region of the Americas, May 2015–January 2016,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 3, pp. 1–4, Jan. 2019, doi:10.15585/MMWR.MM6503E1ER.; P. Pielnaa et al., “Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development,” Virology, vol. 543, pp. 34–42, Apr. 2020, doi:10.1016/J.VIROL.2020.01.015.; PAHO/WHO, “PLISA Plataforma de Información en Salud para las Américas. Zika - Reporte de Casos Acumulados,” 2023. https://www3.paho.org/data/index.php/es/temas/zika-weekly-es/ (accessed Dec. 14, 2023).; S. Gasco and M. Á. Muñoz-Fernández, “A review on the current knowledge on zikv infection and the interest of organoids and nanotechnology on development of effective therapies against zika infection,” International Journal of Molecular Sciences, vol. 22, no. 1. MDPI AG, pp. 1–13, Jan. 01, 2020, doi:10.3390/ijms22010035; G. W. . Dick, “Zika virus (II). Pathogenicity and physical properties,” Trans. R. Soc. Trop. Med. Hyg., vol. 46, no. 5, pp. 521–534, Sep. 1952, doi:10.1016/0035-9203(52)90043-6.; F. Noorbakhsh et al., “Zika Virus Infection, Basic and Clinical Aspects: A Review Article,” Iran. J. Public Health, vol. 48, no. 1, pp. 20–31, May 2019, doi:10.18502/ijph.v48i1.779.; M. E. Rice et al., “ Vital Signs: Zika-Associated Birth Defects and Neurodevelopmental Abnormalities Possibly Associated with Congenital Zika Virus Infection — U.S. Territories and Freely Associated States, 2018 ,” MMWR. Morb. Mortal. Wkly. Rep., vol. 67, no. 31, p. 858, Aug. 2018, doi:10.15585/mmwr.mm6731e1; S. Cauchemez et al., “Association between Zika virus and microcephaly in French Polynesia, 2013-15: A retrospective study,” Lancet, vol. 387, no. 10033, pp. 2125–2132, May 2016, doi:10.1016/S0140-6736(16)00651-6/ATTACHMENT/068A34FA-E44F-414A-9486-1BD82EC6E75A/MMC1.PDF.; K. Nielsen-Saines et al., “Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children.,” Nat. Med., vol. 25, no. 8, p. 1213, Aug. 2019, doi:10.1038/S41591-019-0496-1.; V. van der Linden et al., “Description of 13 Infants Born During October 2015–January 2016 With Congenital Zika Virus Infection Without Microcephaly at Birth — Brazil,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 47, pp. 1343–1348, Dec. 2019, doi:10.15585/MMWR.MM6547E2.; S. B. Mulkey et al., “Neurodevelopmental Abnormalities in Children with in Utero Zika Virus Exposure Without Congenital Zika Syndrome,” JAMA Pediatr., vol. 174, no. 3, pp. 269–276, Mar. 2020, doi:10.1001/JAMAPEDIATRICS.2019.5204.; A. Grant et al., “Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling,” Cell Host Microbe, vol. 19, no. 6, pp. 882–890, Jun. 2016, doi:10.1016/J.CHOM.2016.05.009.; J. J. Miner et al., “Zika virus infection in mice causes pan-uveitis with shedding of virus in tears,” Cell Rep., vol. 16, no. 12, p. 3208, Sep. 2016, doi:10.1016/J.CELREP.2016.08.079.; L. J. Yockey et al., “Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection,” Cell, vol. 166, no. 5, p. 1247, Aug. 2016, doi:10.1016/J.CELL.2016.08.004.; H. Li et al., “Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation,” Cell Stem Cell, vol. 19, no. 5, p. 593, Nov. 2016, doi:10.1016/J.STEM.2016.08.005.; H. M. Lazear et al., “A Mouse Model of Zika Virus Pathogenesis,” Cell Host Microbe, vol. 19, no. 5, pp. 720–730, May 2016, doi:10.1016/J.CHOM.2016.03.010.; K. Laiton-Donato et al., “Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c Mouse Brain after Intraperitoneal Inoculation,” Microbiol. Resour. Announc., vol. 8, no. 46, pp. 2–4, 2019, doi:10.1128/mra.01719-18.; A. C. Rengifo et al., “Morphological and Molecular Changes in the Cortex and Cerebellum of Immunocompetent Mice Infected with Zika Virus,” Viruses, vol. 15, no. 8, p. 1632, Aug. 2023, doi:10.3390/V15081632/S1.; C. P. Figueiredo et al., “Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice,” Nat. Commun. 2019 101, vol. 10, no. 1, pp. 1–16, Sep. 2019, doi:10.1038/s41467-019-11866-7.; A. M. Paul et al., “Congenital Zika Virus Infection in Immunocompetent Mice Causes Postnatal Growth Impediment and Neurobehavioral Deficits,” Front. Microbiol., vol. 9, no. AUG, p. 2028, Aug. 2018, doi:10.3389/fmicb.2018.02028.; M. Marín-Padilla, “Development of the human cerebral cortex. A cytoarchitectonic theory,” Rev. Neurol., vol. 29, no. 3, pp. 208–216, Aug. 1999, doi:10.33588/rn.2903.99148.; J. Silbereis et al., “Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates,” Mol. Cell. Neurosci., vol. 44, no. 4, pp. 362–373, Aug. 2010, doi:10.1016/J.MCN.2010.05.001.; B. Martynoga, D. Drechsel, and F. Guillemot, “Molecular Control of Neurogenesis: A View from the Mammalian Cerebral Cortex,” Cold Spring Harb. Perspect. Biol., vol. 4, no. 10, Oct. 2012, doi:10.1101/CSHPERSPECT.A008359.; B. D. Semple, K. Blomgren, K. Gimlin, D. M. Ferriero, and L. J. Noble-Haeusslein, “Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species,” Prog. Neurobiol., vol. 0, p. 1, Jul. 2013, doi:10.1016/J.PNEUROBIO.2013.04.001.; J. M. Delgado-García, “Modelos experimentales en ratones silvestres y transgénicos para el estudio de funciones motoras y cognitivas,” Rev. Neurol., vol. 41, no. S01, p. S163, 2005, doi:10.33588/rn.41s01.2005374.; M. R. Duffy et al., “Zika Virus Outbreak on Yap Island, Federated States of Micronesia,” https://doi.org/10.1056/NEJMoa0805715, vol. 360, no. 24, pp. 2536–2543, Jun. 2009, doi:10.1056/NEJMOA0805715.; C. Y. P. Lee and L. F. P. Ng, “Zika virus: from an obscurity to a priority,” Microbes Infect., vol. 20, no. 11–12, pp. 635–645, Dec. 2018, doi:10.1016/J.MICINF.2018.02.009.; J. Mlakar et al., “Zika Virus Associated with Microcephaly,” N. Engl. J. Med., vol. 374, no. 10, pp. 951–958, Mar. 2016, doi:10.1056/nejmoa1600651.; PAHO/WHO, “Zika cases and congenital syndrome associated with Zika virus reported by countries and territories in the Americas, 2015 - 2018 Cumulative cases,” Washington, D.C, Jan. 2018. Accessed: Jun. 05, 2022. [Online]. Available: https://www3.paho.org/hq/index.php?option=com_docman&view=download&category_slug=cumulative-cases-pdf-8865&alias=43296-zika-cumulative-cases-4-january-2018-296&Itemid=270&lang=en.; INS-SIVIGILA, “Vigilancia integrada de arbovirus, Colombia 2021- 2022,” Bogotá, 2022. doi:10.33610/23576189.2022.12.; INS-SIVIGILA, “Boletín epidemiologico semanal. Semana epidemiologica 48 26 de nov. al 2 de dic de 2023,” Inf. epidemiológico Nac., pp. 1–36, 2023, doi:10.33610/01229907.v22n7.; D. A. Freitas et al., “Congenital Zika syndrome: A systematic review,” PLoS One, vol. 15, no. 12, Dec. 2020, doi:10.1371/JOURNAL.PONE.0242367.; A. Q. C. Araujo, M. T. T. Silva, and A. P. Q. C. Araujo, “Zika virus-associated neurological disorders: a review,” Brain, vol. 139, no. 8, pp. 2122–2130, Aug. 2016, doi:10.1093/BRAIN/AWW158.; M. L. Ospina et al., “Zika Virus Disease and Pregnancy Outcomes in Colombia,” N. Engl. J. Med., vol. 383, no. 6, pp. 537–545, Aug. 2020, doi:10.1056/nejmoa1911023.; M. A. Johansson, L. Mier-y-Teran-Romero, J. Reefhuis, S. M. Gilboa, and S. L. Hills, “Zika and the Risk of Microcephaly,” N. Engl. J. Med., vol. 375, no. 1, pp. 1–4, Jul. 2016, doi:10.1056/NEJMP1605367/SUPPL_FILE/NEJMP1605367_DISCLOSURES.PDF.; M. R. Reynolds et al., “Vital Signs: Update on Zika Virus–Associated Birth Defects and Evaluation of All U.S. Infants with Congenital Zika Virus Exposure — U.S. Zika Pregnancy Registry, 2016,” Morb. Mortal. Wkly. Rep., vol. 66, no. 13, p. 366, Apr. 2017, doi:10.15585/MMWR.MM6613E1.; S. Reid, H. Thompson, and K. T. Thakur, “Nervous System Infections and the Global Traveler,” Semin. Neurol., vol. 38, no. 02, pp. 247–262, May 2018, doi:10.1055/S-0038-1649335.; M. E. L. Moreira et al., “Neurodevelopment in Infants Exposed to Zika Virus In Utero,” N. Engl. J. Med., vol. 379, no. 24, p. 2377, Dec. 2018, doi:10.1056/NEJMC1800098.; P. M. Peçanha et al., “Neurodevelopment of children exposed intra-uterus by Zika virus: A case series,” PLoS One, vol. 15, no. 2, p. e0229434, 2020, doi:10.1371/JOURNAL.PONE.0229434.; F. Azouz, K. Arora, K. Krause, V. R. Nerurkar, and M. Kumar, “Integrated MicroRNA and mRNA profiling in zika virus-infected neurons,” Viruses, vol. 11, no. 2, Feb. 2019, doi:10.3390/v11020162.; PAHO/WHO, “Boletin Anual Arbovirosis 2022,” 2023. https://www3.paho.org/data/index.php/es/temas/indicadores-dengue/boletin-anual-arbovirosis-2022.html (accessed Dec. 13, 2023).; J. Dang et al., “Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3,” Cell Stem Cell, vol. 19, no. 2, pp. 258–265, Aug. 2016, doi:10.1016/J.STEM.2016.04.014/ATTACHMENT/A03E1AAA-801A-486C-82C2-329BBC28B849/MMC3.XLSX.; P. P. Garcez et al., “Zika virus: Zika virus impairs growth in human neurospheres and brain organoids,” Science (80-. )., vol. 352, no. 6287, pp. 816–818, May 2016, doi:10.1126/SCIENCE.AAF6116/SUPPL_FILE/PAPV2.PDF.; H. Tang et al., “Zika virus infects human cortical neural progenitors and attenuates their growth,” Cell Stem Cell, vol. 18, no. 5, pp. 587–590, May 2016, doi:10.1016/J.STEM.2016.02.016/ATTACHMENT/BFC7BD43-6F4D-42A6-B218-D53B655255B0/MMC2.XLSX.; Q. Shao et al., “Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage,” Development, vol. 143, no. 22, pp. 4127–4136, Nov. 2016, doi:10.1242/DEV.143768.; K.-Y. Wu et al., “Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice,” Cell Res. 2016 266, vol. 26, no. 6, pp. 645–654, May 2016, doi:10.1038/cr.2016.58.; R. M. J. Deacon, “Measuring Motor Coordination in Mice,” J. Vis. Exp., no. 75, p. 2609, 2013, doi:10.3791/2609.; R. M. J. Deacon and J. N. P. Rawlins, “T-maze alternation in the rodent,” Nat. Protoc., vol. 1, no. 1, pp. 7–12, 2006, doi:10.1038/nprot.2006.2.; K. J. L. Osmon, M. Vyas, E. Woodley, P. Thompson, and J. S. Walia, “Battery of Behavioral Tests Assessing General Locomotion, Muscular Strength, and Coordination in Mice,” J. Vis. Exp., vol. 2018, no. 131, p. 55491, Jan. 2018, doi:10.3791/55491; J. Rivera et al., “Inmunorreacción de la infección por el virus de Zika en retina de ratones,” Biomédica, 2019. https://revistabiomedica.org/index.php/biomedica/article/view/4402/4241 (accessed May 02, 2022).; J. Barbeito-Andrés et al., “Congenital Zika syndrome is associated with maternal protein malnutrition,” Sci. Adv., vol. 6, no. 2, Jan. 2020, doi:10.1126/SCIADV.AAW6284.; P. P. Garcez et al., “Zika virus disrupts molecular fingerprinting of human neurospheres,” Sci. Rep., vol. 7, Jan. 2017, doi:10.1038/SREP40780.; N. Liscovitch and G. Chechik, “Specialization of Gene Expression during Mouse Brain Development,” PLOS Comput. Biol., vol. 9, no. 9, p. e1003185, Sep. 2013, doi:10.1371/JOURNAL.PCBI.1003185.; S. Dutta and P. Sengupta, “Men and mice: Relating their ages,” Life Sci., vol. 152, pp. 244–248, May 2016, doi:10.1016/J.LFS.2015.10.025.; H. J. Kang et al., “Spatiotemporal transcriptome of the human brain,” Nature, vol. 478, no. 7370, p. 483, Oct. 2011, doi:10.1038/NATURE10523.; D. Paul and R. Bartenschlager, “Flaviviridae Replication Organelles: Oh, What a Tangled Web We Weave,” Annu. Rev. Virol., vol. 2, pp. 289–310, Nov. 2015, doi:10.1146/annurev-virology-100114-055007.; R. Hamel et al., “Biology of Zika Virus Infection in Human Skin Cells,” J. Virol., vol. 89, no. 17, pp. 8880–8896, Sep. 2015, doi:10.1128/jvi.00354-15.; B. H. Song, S. I. Yun, M. Woolley, and Y. M. Lee, “Zika virus: History, epidemiology, transmission, and clinical presentation,” J. Neuroimmunol., vol. 308, pp. 50–64, 2017, doi:10.1016/j.jneuroim.2017.03.001.; R. Basu and E. Tumban, “Zika Virus on a Spreading Spree: what we now know that was unknown in the 1950’s,” Virol. J., vol. 13, no. 1, pp. 1–9, Oct. 2016, doi:10.1186/S12985-016-0623-2/FIGURES/5.; A. D. Haddow et al., “Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage,” PLoS Negl. Trop. Dis., vol. 6, no. 2, p. e1477, Feb. 2012, doi:10.1371/JOURNAL.PNTD.0001477.; A. R. Salehuddin et al., “Zika virus infection and its emerging trends in Southeast Asia,” Asian Pac. J. Trop. Med., vol. 10, no. 3, pp. 211–219, Mar. 2017, doi:10.1016/J.APJTM.2017.03.002.; G. Carteaux et al., “Zika Virus Associated with Meningoencephalitis,” https://doi.org/10.1056/NEJMc1602964, vol. 374, no. 16, pp. 1595–1596, Apr. 2016, doi:10.1056/NEJMC1602964.; P. Brasil et al., “Zika Virus Infection in Pregnant Women in Rio de Janeiro,” N. Engl. J. Med., vol. 375, no. 24, pp. 2321–2334, Dec. 2016, doi:10.1056/NEJMOA1602412/SUPPL_FILE/NEJMOA1602412_DISCLOSURES.PDF.; L. S. Muñoz, M. A. Garcia, E. Gordon-Lipkin, B. Parra, and C. A. Pardo, “Emerging Viral Infections and Their Impact on the Global Burden of Neurological Disease,” Semin Neurol, vol. 38, pp. 163–175, 2018, doi:10.1055/s-0038-1647247.; M. Martínez-Sellés, “Editorial commentary: Cardiovascular events after Zika virus infection,” Trends Cardiovasc. Med., vol. 32, no. 1, pp. 59–60, Jan. 2022, doi:10.1016/J.TCM.2020.11.008.; G. W. A. Dick, S. F. Kitchen, and A. J. Haddow, “Zika Virus (I). Isolations and serological specificity,” Trans. R. Soc. Trop. Med. Hyg., vol. 46, no. 5, pp. 509–520, Sep. 1952, doi:10.1016/0035-9203(52)90042-4.; F. N. MacNamara, “Zika virus : A report on three cases of human infection during an epidemic of jaundice in Nigeria,” Trans. R. Soc. Trop. Med. Hyg., vol. 48, no. 2, pp. 139–145, Mar. 1954, doi:10.1016/0035-9203(54)90006-1.; G. Morris, T. Barichello, B. Stubbs, C. A. Köhler, A. F. Carvalho, and M. Maes, “Zika Virus as an Emerging Neuropathogen: Mechanisms of Neurovirulence and Neuro-Immune Interactions,” Mol. Neurobiol. 2017 555, vol. 55, no. 5, pp. 4160–4184, Jun. 2017, doi:10.1007/S12035-017-0635-Y.; V. M. Cao-Lormeau et al., “Zika Virus, French Polynesia, South Pacific, 2013,” Emerg. Infect. Dis., vol. 20, no. 6, p. 1085, 2014, doi:10.3201/EID2006.140138.; L. Watrin, F. Ghawché, P. Larre, J. P. Neau, S. Mathis, and E. Fournier, “Guillain-Barré Syndrome (42 Cases) Occurring during a Zika Virus Outbreak in French Polynesia,” Med. (United States), vol. 95, no. 14, Apr. 2016, doi:10.1097/MD.0000000000003257.; T. V. B. de Araújo et al., “Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study,” Lancet Infect. Dis., vol. 16, no. 12, pp. 1356–1363, Dec. 2016, doi:10.1016/S1473-3099(16)30318-8/ATTACHMENT/8D50372D-779F-483B-8F44-F24C67C1E0C9/MMC1.PDF.; W. K. de Oliveira, G. V. A. de França, E. H. Carmo, B. B. Duncan, R. de Souza Kuchenbecker, and M. I. Schmidt, “Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis,” Lancet, vol. 390, no. 10097, pp. 861–870, Aug. 2017, doi:10.1016/S0140-6736(17)31368-5/ATTACHMENT/B71BC16F-F814-4987-B44B-F8C6D3988903/MMC1.PDF.; W. Kleber de Oliveira et al., “Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy - Brazil, 2015,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 9, pp. 242–247, Mar. 2016, doi:10.15585/MMWR.MM6509E2.; F. Marinho et al., “Microcefalia en Brasil: prevalencia y caracterización de casos a partir del Sistema de Informaciones sobre Nacidos Vivos (Sinasc), 2000-2015,” Epidemiol. e Serviços Saúde, vol. 25, no. 4, pp. 701–712, Sep. 2016, doi:10.5123/S1679-49742016000400004.; A. S. Oliveira Melo, G. Malinger, R. Ximenes, P. O. Szejnfeld, S. Alves Sampaio, and A. M. Bispo De Filippis, “Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg?,” Ultrasound Obstet. Gynecol., vol. 47, no. 1, pp. 6–7, Jan. 2016, doi:10.1002/UOG.15831.; M. Yeasmin, M. M. A. Molla, H. M. A. Al Masud, and K. M. Saif-Ur-Rahman, “Safety and immunogenicity of Zika virus vaccine: A systematic review of clinical trials,” Rev. Med. Virol., vol. 33, no. 1, p. 33, Jan. 2023, doi:10.1002/RMV.2385.; P. M. S. Castanha and E. T. A. Marques, “Vaccine development during global epidemics: the Zika experience,” Lancet Infect. Dis., vol. 20, no. 9, pp. 998–999, Sep. 2020, doi:10.1016/S1473-3099(20)30360-1.; E. Marbán-Castro, A. Goncé, V. Fumadó, L. Romero-Acevedo, and A. Bardají, “Zika virus infection in pregnant women and their children: A review,” Eur. J. Obstet. Gynecol. Reprod. Biol., vol. 265, pp. 162–168, Oct. 2021, doi:10.1016/J.EJOGRB.2021.07.012.; A. Higuera and J. D. Ramírez, “Molecular epidemiology of dengue, yellow fever, Zika and Chikungunya arboviruses: An update,” Acta Trop., vol. 190, pp. 99–111, 2019, doi:10.1016/j.actatropica.2018.11.010; C. V. Portilla Cabrera and J. J. Selvaraj, “Geographic shifts in the bioclimatic suitability for Aedes aegypti under climate change scenarios in Colombia,” Heliyon, vol. 6, no. 1, Jan. 2020, doi:10.1016/j.heliyon.2019.e03101.; F. C. Coelho et al., “Higher incidence of Zika in adult women than adult men in Rio de Janeiro suggests a significant contribution of sexual transmission from men to women,” Int. J. Infect. Dis., vol. 51, pp. 128–132, Oct. 2016, doi:10.1016/J.IJID.2016.08.023/ATTACHMENT/9A00DB06-6A12-458F-89A7-C4655720F143/MMC1.DOCX.; O. Pacheco et al., “Zika Virus Disease in Colombia — Preliminary Report,” N. Engl. J. Med., vol. 383, no. 6, p. e44, Aug. 2020, doi:10.1056/NEJMOA1604037/SUPPL_FILE/NEJMOA1604037_DISCLOSURES.PDF.; S. Masmejan et al., “Zika Virus,” Pathog. 2020, Vol. 9, Page 898, vol. 9, no. 11, p. 898, Oct. 2020, doi:10.3390/PATHOGENS9110898.; L. Pomar, D. Musso, G. Malinger, M. Vouga, A. Panchaud, and D. Baud, “Zika virus during pregnancy: From maternal exposure to congenital Zika virus syndrome,” Prenat. Diagn., vol. 39, no. 6, pp. 420–430, May 2019, doi:10.1002/PD.5446.; S. A. Rasmussen and D. J. Jamieson, “Teratogen update: Zika virus and pregnancy,” Birth Defects Res., vol. 112, no. 15, pp. 1139–1149, Sep. 2020, doi:10.1002/BDR2.1781.; A. Benavides-Lara et al., “Zika Virus–Associated Birth Defects, Costa Rica, 2016–2018,” Emerg. Infect. Dis., vol. 27, no. 2, p. 360, Feb. 2021, doi:10.3201/EID2702.202047.; B. Hoen et al., “Pregnancy Outcomes after ZIKV Infection in French Territories in the Americas,” N. Engl. J. Med., vol. 378, no. 11, pp. 985–994, Mar. 2018, doi:10.1056/NEJMOA1709481/SUPPL_FILE/NEJMOA1709481_DISCLOSURES.PDF.; S. H. Leisher et al., “Systematic review: fetal death reporting and risk in Zika-affected pregnancies,” Trop. Med. Int. Heal., vol. 26, no. 2, pp. 133–145, Feb. 2021, doi:10.1111/TMI.13522.; D. Musso, A. I. Ko, and D. Baud, “Zika Virus Infection — After the Pandemic,” N. Engl. J. Med., vol. 381, no. 15, pp. 1444–1457, Oct. 2019, doi:10.1056/NEJMRA1808246/SUPPL_FILE/NEJMRA1808246_DISCLOSURES.PDF.; D. Tappe et al., “Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase,” Med. Microbiol. Immunol., vol. 205, no. 3, p. 269, Jun. 2016, doi:10.1007/S00430-015-0445-7.; C. B. Coyne and H. M. Lazear, “Zika virus — reigniting the TORCH,” Nat. Rev. Microbiol. 2016 1411, vol. 14, no. 11, pp. 707–715, Aug. 2016, doi:10.1038/nrmicro.2016.125.; E. M. Venceslau, J. P. Guida, E. Amaral, J. L. P. Modena, and M. L. Costa, “Characterization of Placental Infection by Zika Virus in Humans: A Review of the Literature,” Rev. Bras. Ginecol. e Obs., vol. 42, no. 9, pp. 577–585, Oct. 2020, doi:10.1055/S-0040-1712126.; I. Filges et al., “Strømme Syndrome Is a Ciliary Disorder Caused by Mutations in CENPF,” Hum. Mutat., vol. 37, no. 4, pp. 359–363, Apr. 2016, doi:10.1002/HUMU.22960.; A. M. Waters et al., “The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes,” J. Med. Genet., vol. 52, no. 3, pp. 147–156, Mar. 2015, doi:10.1136/JMEDGENET-2014-102691/-/DC1.; M. Venere, Y. G. Han, R. Bell, J. S. Song, A. Alvarez-Buylla, and R. Blelloch, “Sox1 marks an activated neural stem/progenitor cell in the hippocampus,” Development,vol. 139, no. 21, pp. 3938–3949, Nov. 2012, doi:10.1242/DEV.081133.; S. J. Arnold et al., “The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone,” Genes Dev., vol. 22, no. 18, pp. 2479–2484, Sep. 2008, doi:10.1101/GAD.475408.; L. Baala et al., “Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis,” Nat. Genet. 2007 394, vol. 39, no. 4, pp. 454–456, Mar. 2007, doi:10.1038/ng1993.; M. Van der Meer, A. Rolls, V. Baumans, B. Olivier, and L. F. M. Van Zutphen, “Use of score sheets for welfare assessment of transgenic mice,” http://dx.doi.org/10.1258/0023677011911859, vol. 35, no. 4, pp. 379–389, Oct. 2001, doi:10.1258/0023677011911859.; D. F. Kohn et al., “Guidelines for the Assessment and Management of Pain in Rodents and Rabbits.”; E. A. Cepeda Prado, “Diferencias en la expresión de marcadores neuronales y no neuronales en cerebros de dos cepas de ratón adulto,” Pontificia Universidad Javeriana, Bogotá, 2003.; K. A. Hamel and M. Cvetanovic, “Cerebellar Regional Dissection for Molecular Analysis,” J. Vis. Exp., vol. 2020, no. 166, pp. 1–13, Dec. 2020, doi:10.3791/61922.; G. M. J. Beaudoin et al., “Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex,” Nat. Protoc. 2012 79, vol. 7, no. 9, pp. 1741–1754, Aug. 2012, doi:10.1038/nprot.2012.099.; D. A. Álvarez-Díaz et al., “An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses,” Infect. Genet. Evol., vol. 93, p. 104967, Sep. 2021, doi:10.1016/J.MEEGID.2021.104967.; F. Hoffmann and La Roche, “Creating Standard Curves with Genomic DNA or Plasmid DNA Templates for Use in Quantitative PCR,” 2003. [Online]. Available: https://assets.thermofisher.com/TFS-Assets/LSG/Application-Notes/cms_042486.pdf.; K. C. Montgomery, “Exploratory behavior and its relation to spontaneous alternation in a series of maze exposures,” J. Comp. Physiol. Psychol., vol. 45, no. 1, pp. 50–57, Feb. 1952, doi:10.1037/H0053570.; R. d’Isa, G. Comi, and L. Leocani, “Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze,” Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–13, Oct. 2021, doi:10.1038/s41598-021-00402-7.; R. Lalonde, “The neurobiological basis of spontaneous alternation,” Neurosci. Biobehav. Rev., vol. 26, no. 1, pp. 91–104, Jan. 2002, doi:10.1016/S0149-7634(01)00041-0.; J. Jurado-Arjona, A. Rodríguez-Matellán, J. Ávila, and F. Hernández, “GSK3β overexpression driven by GFAP promoter improves rotarod performance,” Brain Res., vol. 1712, pp. 47–54, Jun. 2019, doi:10.1016/J.BRAINRES.2019.01.040.; E. D’Angelo, “Physiology of the cerebellum,” Handb. Clin. Neurol., vol. 154, pp. 85–108, Jan. 2018, doi:10.1016/B978-0-444-63956-1.00006-0.; International Mouse Phenotyping Consorcium, “Rotarod Protocol,” Rotarod HMGU_ROT_001. https://www.mousephenotype.org/impress/ProcedureInfo?action=list&procID=168 (accessed Jan. 12, 2024).; M. L. Seibenhener and M. C. Wooten, “Use of the Open Field Maze to Measure Locomotor and Anxiety-like Behavior in Mice,” J. Vis. Exp., no. 96, p. 52434, Feb. 2015, doi:10.3791/52434.; L. R. Watson J, BakerT, Bell S, Gann A, Levine, Biologia Molecular del gen, 5 edición. Editorial Médica Panamericana, 2008.; V. Schultz et al., “Zika Virus Infection Leads to Demyelination and Axonal Injury in Mature CNS Cultures,” Viruses, vol. 13, no. 1, Jan. 2021, doi:10.3390/V13010091.; S. L. Cumberworth et al., “Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected,” Acta Neuropathol. Commun., vol. 5, no. 1, p. 50, Jun. 2017, doi:10.1186/S40478-017-0450-8/FIGURES/2.; J. L. Salzer and B. Zalc, “Myelination,” Curr. Biol., vol. 26, no. 20, pp. R971–R975, Oct. 2016, doi:10.1016/j.cub.2016.07.074.; M. García-Montes and I. Crespo, “La mielinización como un factor modulador de los circuitos de memoria,” Rev. Neurol., vol. 76, no. 3, p. 101, 2023, doi:10.33588/RN.7603.2022325.; M. C. Ford et al., “Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing,” Nat. Commun., vol. 6, Aug. 2015, doi:10.1038/NCOMMS9073.; S. Moore et al., “A role of oligodendrocytes in information processing,” Nat. Commun., vol. 11, no. 1, Dec. 2020, doi:10.1038/S41467-020-19152-7.; M. Mercado et al., “Discordant Clinical Outcomes in a Monozygotic Dichorionic-Diamniotic Twin Pregnancy with Probable Zika Virus Exposure. Case Report,” Trop. Med. Infect. Dis. 2020, Vol. 5, Page 188, vol. 5, no. 4, p. 188, Dec. 2020, doi:10.3390/TROPICALMED5040188.; N. Arora, Y. Sadovsky, T. S. Dermody, and C. B. Coyne, “Microbial Vertical Transmission during Human Pregnancy,” Cell Host Microbe, vol. 21, no. 5, pp. 561–567, 2017, doi:10.1016/j.chom.2017.04.007.; I. K. Sariyer et al., “Suppression of Zika Virus Infection in the Brain by the Antiretroviral Drug Rilpivirine,” Mol. Ther., vol. 27, no. 12, p. 2067, Dec. 2019, doi:10.1016/J.YMTHE.2019.10.006.; G. Hageman and J. Nihom, “Fetuses and infants with Amyoplasia congenita in congenital Zika syndrome: The evidence of a viral cause. A narrative review of 144 cases,” Eur. J. Paediatr. Neurol., vol. 42, pp. 1–14, Jan. 2023, doi:10.1016/J.EJPN.2022.11.002.; D. Degrandi et al., “Extensive Characterization of IFN-Induced GTPases mGBP1 to mGBP10 Involved in Host Defense,” J. Immunol., vol. 179, no. 11, pp. 7729–7740, Dec. 2007, doi:10.4049/JIMMUNOL.179.11.7729.; M. Miyashita, H. Oshiumi, M. Matsumoto, and T. Seya, “DDX60, a DEXD/H Box Helicase, Is a Novel Antiviral Factor Promoting RIG-I-Like Receptor-Mediated Signaling,” Mol. Cell. Biol., vol. 31, no. 18, p. 3802, Sep. 2011, doi:10.1128/MCB.01368-10.; D. Szappanos et al., “The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity,” PLoS Pathog., vol. 14, no. 11, Nov. 2018, doi:10.1371/JOURNAL.PPAT.1007397.; S. Kakuta, S. Shibata, and Y. Iwakura, “Genomic Structure of the Mouse 2’,5’-Oligoadenylate Synthetase Gene Family,” https://home.liebertpub.com/jir, vol. 22, no. 9, pp. 981–993, Jul. 2004, doi:10.1089/10799900260286696.; O. Haller and G. Kochs, “Interferon-Induced Mx Proteins: Dynamin-Like GTPases with Antiviral Activity,” Traffic, vol. 3, no. 10, pp. 710–717, Oct. 2002, doi:10.1034/J.1600-0854.2002.31003.X.; G. A. Taylor, “IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens,” Cell. Microbiol., vol. 9, no. 5, pp. 1099–1107, May 2007, doi:10.1111/J.1462-5822.2007.00916.X.; A. S. da Costa, T. V. A. Fernandes, M. L. Bello, and T. L. F. de Souza, “Evaluation of potential MHC-I allele-specific epitopes in Zika virus proteins and the effects of mutations on peptide-MHC-I interaction studied using in silico approaches,” Comput. Biol. Chem., vol. 92, p. 107459, Jun. 2021, doi:10.1016/J.COMPBIOLCHEM.2021.107459.; L. J. Hernández-Sarmiento, J. F. Valdés-López, and S. Urcuqui-Inchima, “American-Asian- and African lineages of Zika virus induce differential pro-inflammatory and Interleukin 27-dependent antiviral responses in human monocytes,” Virus Res., vol. 325, p. 199040, Feb. 2023, doi:10.1016/J.VIRUSRES.2023.199040.; V. V. Costa et al., “N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection,” MBio, vol. 8, no. 2, Mar. 2017, doi:10.1128/MBIO.00350-17.; P. Simon, R. Dupuis, and J. Costentin, “Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions,” Behav. Brain Res., vol. 61, no. 1, pp. 59–64, Mar. 1994, doi:10.1016/0166-4328(94)90008-6.; N. S. Canteras, L. B. Resstel, L. J. Bertoglio, A. de Pádua Carobrez, and F. S. Guimarães, “Neuroanatomy of anxiety,” Curr. Top. Behav. Neurosci., vol. 2, pp. 77–96, 2010, doi:10.1007/7854_2009_7/COVER.; H. Kasai, H. Ucar, Y. Morimoto, F. Eto, and H. Okazaki, “Mechanical transmission at spine synapses: Short-term potentiation and working memory,” Curr. Opin. Neurobiol., vol. 80, p. 102706, Jun. 2023, doi:10.1016/J.CONB.2023.102706.; R. D. Terry et al., “Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment,” Ann. Neurol., vol. 30, no. 4, pp. 572–580, Oct. 1991, doi:10.1002/ANA.410300410.; J. Kim and D. A. Hoffman, “Potassium Channels: Newly Found Players in Synaptic Plasticity,” Neuroscientist, vol. 14, no. 3, p. 276, Jun. 2008, doi:10.1177/1073858408315041.; H. Ucar et al., “Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis,” Nat. 2021 6007890, vol. 600, no. 7890, pp. 686–689, Nov. 2021, doi:10.1038/s41586-021-04125-7.; S. B. Chidambaram et al., “Dendritic spines: Revisiting the physiological role,” Prog. Neuro-Psychopharmacology Biol. Psychiatry, vol. 92, pp. 161–193, Jun. 2019, doi:10.1016/J.PNPBP.2019.01.005.; R. Roesler, M. B. Parent, R. T. LaLumiere, and C. K. McIntyre, “Amygdala-hippocampal interactions in synaptic plasticity and memory formation,” Neurobiol. Learn. Mem., vol. 184, Oct. 2021, doi:10.1016/J.NLM.2021.107490.; W. Xin and J. R. Chan, “Myelin plasticity: sculpting circuits in learning and memory,” Nat. Rev. Neurosci., vol. 21, no. 12, pp. 682–694, Dec. 2020, doi:10.1038/S41583-020-00379-8.; J. C. Magee and C. Grienberger, “Synaptic Plasticity Forms and Functions,” https://doi.org/10.1146/annurev-neuro-090919-022842, vol. 43, pp. 95–117, Jul. 2020, doi:10.1146/ANNUREV-NEURO-090919-022842.; L. Rossi et al., “Intellectual Disability and Brain Creatine Deficit: Phenotyping of the Genetic Mouse Model for GAMT Deficiency,” Genes (Basel)., vol. 12, no. 8, Aug. 2021, doi:10.3390/GENES12081201.; A. Vezyroglou et al., “The Phenotypic Continuum of ATP1A3-Related Disorders,” Neurology, vol. 99, no. 14, p. e1511, Oct. 2022, doi:10.1212/WNL.0000000000200927.; A. Brashear, K. J. Sweadner, J. F. Cook, K. J. Swoboda, and L. Ozelius, “ATP1A3-Related Neurologic Disorders,” GeneReviews®, Feb. 2018, Accessed: Jan. 17, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK1115/.; P. J. Menon et al., “Scoping Review on ADCY5‐Related Movement Disorders,” Mov. Disord. Clin. Pract., vol. 10, no. 7, p. 1048, Jul. 2023, doi:10.1002/MDC3.13796.; F. M. Hisama, J. Friedman, W. H. Raskind, and T. D. Bird, “ADCY5 Dyskinesia,” GeneReviews®, Jul. 2020, Accessed: Jan. 17, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK263441/.; A. Ferrini, D. Steel, K. Barwick, and M. A. Kurian, “An Update on the Phenotype, Genotype and Neurobiology of ADCY5-Related Disease,” Mov. Disord., vol. 36, no. 5, pp. 1104–1114, May 2021, doi:10.1002/MDS.28495.; S. Lee et al., “Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis,” Neuron, vol. 91, no. 1, p. 41, Jul. 2016, doi:10.1016/J.NEURON.2016.05.021.; J. Zhang, Y. Shang, S. Kamiya, S. J. Kotowski, K. Nakamura, and E. J. Huang, “Loss of HIPK2 Protects Neurons from Mitochondrial Toxins by Regulating Parkin Protein Turnover,” J. Neurosci., vol. 40, no. 3, p. 557, Jan. 2020, doi:10.1523/JNEUROSCI.2017-19.2019.; M. Garza and A. L. Piquet, “Update in Autoimmune Movement Disorders: Newly Described Antigen Targets in Autoimmune and Paraneoplastic Cerebellar Ataxia,” Front. Neurol., vol. 12, p. 683048, Aug. 2021, doi:10.3389/FNEUR.2021.683048.; S. Mohammadi, M. Dolatshahi, and F. Rahmani, “Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors,” J. Endocrinol. Invest., vol. 44, no. 1, pp. 1–13, Jan. 2021, doi:10.1007/S40618-020-01314-5/METRICS.; X. Qin, J. Chen, and T. Zhou, “22q11.2 deletion syndrome and schizophrenia,” Acta Biochim. Biophys. Sin. (Shanghai)., vol. 52, no. 11, pp. 1181–1190, Nov. 2020, doi:10.1093/ABBS/GMAA113.; A. Nishi and T. Shuto, “Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders,” Expert Opin. Ther. Targets, vol. 21, no. 3, pp. 259–272, Mar. 2017, doi:10.1080/14728222.2017.1279149.; J. A. Girault and A. C. Nairn, “DARPP-32 40 years later,” Adv. Pharmacol., vol. 90, pp. 67–87, Jan. 2021, doi:10.1016/BS.APHA.2020.09.004.; Z. Zhang et al., “Expression and structural analysis of human neuroligin 2 and neuroligin 3 implicated in autism spectrum disorders,” Front. Endocrinol. (Lausanne)., vol. 13, p. 1067529, Nov. 2022, doi:10.3389/FENDO.2022.1067529/FULL.; J. C. Lui and J. Baron, “CNP-related Short and Tall Stature: A Close-knit Family of Growth Disorders,” J. Endocr. Soc., vol. 6, no. 6, pp. 1–2, Jun. 2022, doi:10.1210/JENDSO/BVAC064.; Z. Mi and S. H. Graham, “Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury,” Ageing Res. Rev., vol. 86, p. 101856, Apr. 2023, doi:10.1016/J.ARR.2023.101856.; M. H. Kim, J. M. Gunnersen, and S. S. Tan, “Localized expression of the seizure-related gene SEZ-6 in developing and adult forebrains,” Mech. Dev., vol. 118, no. 1–2, pp. 171–174, Oct. 2002, doi:10.1016/S0925-4773(02)00238-1.; Z. L. Yu et al., “Febrile seizures are associated with mutation of seizure-related (SEZ) 6, a brain-specific gene,” J. Neurosci. Res., vol. 85, no. 1, pp. 166–172, Jan. 2007, doi:10.1002/JNR.21103.; K. M. Munro, A. Nash, M. Pigoni, S. F. Lichtenthaler, and J. M. Gunnersen, “Functions of the Alzheimer’s Disease Protease BACE1 at the Synapse in the Central Nervous System,” J. Mol. Neurosci., vol. 60, no. 3, p. 305, Nov. 2016, doi:10.1007/S12031-016-0800-1.; G. Benítez-King, L. Ortiz-López, S. Morales-Mulia, G. Jiménez-Rubio, G. Ramírez-Rodríguez, and I. Meza, “Phosphorylation-Dephosphorylation Imbalance of Cytoskeletal Associated Proteins in Neurodegenerative Diseases,” Recent Pat. CNS Drug Discov., vol. 1, no. 2, pp. 219–230, 2006, doi:10.2174/157488906777452776.; https://repositorio.unal.edu.co/handle/unal/86491; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  14. 14
    Dissertation/ Thesis

    المساهمون: de Brito Brandão, Pedro Filipe, Calderón Manrique, Dayana, Biotecnología Molecular (CorpoGen), Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000051741, https://www.researchgate.net/profile/Cristian-Estupinan

    وصف الملف: xiv, 60 páginas; application/pdf

    Relation: Agustriana, E., Nuryana, I., Laksmi, F. A., Dewi, K. S., Wijaya, H., Rahmani, N., Yudiargo, D. R., Ismadara, A., Helbert, Hadi, M. I., Purnawan, A., & Cameliawati Djohan, A. (2023). Optimized expression of large fragment DNA polymerase I from Geobacillus stearothermophilus in Escherichia coli expression system. Preparative Biochemistry and Biotechnology, 53(4), 384–393. https://doi.org/10.1080/10826068.2022.2095573; Aidelberg, G., Aronoff, R., Eliseeva, T., Quero, F. J., Vielfaure, H., Codyre, M., Hadasch, K., & Lindner, A. B. (2021). Corona Detective: a simple, scalable, and robust SARS-CoV-2 detection method based on reverse transcription loop-mediated isothermal amplification. Journal of Biomolecular Techniques, 32(3), 89–97. https://doi.org/10.7171/jbt.21-3203-003; Alipoor, S. D., Mortaz, E., Jamaati, H., Tabarsi, P., Bayram, H., Varahram, M., & Adcock, I M. (2021). COVID-19: Molecular and Cellular Response. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.563085; Aschenbrenner, J., & Marx, A. (2017). DNA polymerases and biotechnological applications. Current Opinion in Biotechnology, 48, 187–195. https://doi.org/10.1016/J.COPBIO.2017.04.005; Astatke, M., Grindley, N. D. F., & Joyce, C. M. (1995). Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). Journal of Biological Chemistry, 270(4), 1945–1954. https://doi.org/10.1074/jbc.270.4.1945; Bebenek, K. K. T. A. (2004). FUNCTIONS OF DNA POLYMERASES.; Bentaleb, E. M., Abid, M., El Messaoudi, M. D., Lakssir, B., Ressami, E. M., Amzazi, S., Sefrioui, H., & Ait Benhassou, H. (2016). Development and evaluation of an in-house single step loop-mediated isothermal amplification (SS-LAMP) assay for the detection of Mycobacterium tuberculosis complex in sputum samples from Moroccan patients. BMC Infectious Diseases, 16(1), 517. https://doi.org/10.1186/s12879-016-1864-9; Beyerstedt, S., Casaro, E. B., & Rangel, É. B. (2021). COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases, 40(5), 905. https://doi.org/10.1007/S10096-020-04138-6; Bio-Rad Laboratories. (2012). General Protocol for Western Blotting.; Bruck, I., Goodman, M. F., & O’Donnell, M. (2003). The Essential C Family DnaE Polymerase Is Error-prone and Efficient at Lesion Bypass. Journal of Biological Chemistry, 278(45), 44361–44368. https://doi.org/10.1074/jbc.M308307200; Buger, N. J. (1994). The Bradford Method for Protein Quantitation; Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 1–9. https://doi.org/10.1186/1471-2105-10-421/FIGURES/4; Chim, N., Jackson, L. N., Trinh, A. M., & Chaput, J. C. (2018). Crystal structures of DNA polymerase I capture novel intermediates in the DNA synthesis pathway. ELife, 7. https://doi.org/10.7554/ELIFE.40444; Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K. W., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M. L., Mulders, D. G. J. C., Haagmans, B. L., Van Der Veer, B., Van Den Brink, S., Wijsman, L., Goderski, G., Romette, J. L., Ellis, J., Zambon, M., … Drosten, C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 25(3), 1. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045; De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666. https://doi.org/10.1093/BIOINFORMATICS/BTY149; De Coster, W., & Rademakers, R. (2023). NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics, 39(5). https://doi.org/10.1093/BIOINFORMATICS/BTAD311; Delarue, M., Poch, O., Tordo, N., Moras, D., & Argos, P. (1990). An attempt to unify the structure of polymerases. Protein Engineering, 3(6), 461–467. https://doi.org/10.1093/PROTEIN/3.6.461; Doublié, S., & Ellenberger, T. (1998). The mechanism of action of T7 DNA polymerase. Current Opinion in Structural Biology, 8(6), 704–712. https://doi.org/10.1016/S0959-440X(98)80089-4; Dunn, M. R., & Chaput, J. C. (2016). Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase. Chembiochem : A European Journal of Chemical Biology, 17(19), 1804–1808. https://doi.org/10.1002/CBIC.201600338; Fijalkowska, J., Schaaper, R. M., Jonczyk, P., Banach-Orlowska, M., Fijalkowska, I. J., Schaaper, R. M., & Jonczyk, P. (2005). DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Molecular Microbiology, 58(1), 61–70. https://doi.org/10.1111/J.1365-2958.2005.04805.X; Garcia-Diaz, M., & Bebenek, K. (2007). Multiple functions of DNA polymerases. Critical Reviews in Plant Sciences, 26(2), 105. https://doi.org/10.1080/07352680701252817; Graziewicz, M. A., Longley, M. J., & Copeland, W. C. (2006). DNA polymerase γ in mitochondrial DNA replication and repair. Chemical Reviews, 106(2), 383–405. https://doi.org/10.1021/CR040463D/ASSET/CR040463D.FP.PNG_V03; Greenough, L., Menin, J. F., Desai, N. S., Kelman, Z., & Gardner, A. F. (2014). Characterization of Family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles, 18(4), 653. https://doi.org/10.1007/S00792-014-0646-9; Güixens-Gallardo, P., Hocek, M., & Perlíková, P. (2016). Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorganic & Medicinal Chemistry Letters, 26(2), 288–291. https://doi.org/10.1016/J.BMCL.2015.12.034; Haendeler, J., Dröse, S., Büchner, N., Jakob, S., Altschmied, J., Goy, C., Spyridopoulos, I., Zeiher, A. M., Brandt, U., & Dimmeler, S. (2009). Mitochondrial Telomerase Reverse Transcriptase Binds to and Protects Mitochondrial DNA and Function From Damage. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(6), 929–935. https://doi.org/10.1161/ATVBAHA.109.185546; Hall, T. (1999). BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT. https://doi.org/10.14601/PHYTOPATHOL_MEDITERR-14998U1.29; Hamilton, N. H., & Furey, T. S. (2023). ROCCO : A Robust Method for Detection of Open Chromatin via Convex Optimization. Bioinformatics. https://doi.org/10.1093/BIOINFORMATICS/BTAD725; Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89(22), 10915. https://doi.org/10.1073/PNAS.89.22.10915; Hu, B., Ge, X., Wang, L. F., & Shi, Z. (2015). Bat origin of human coronaviruses Coronaviruses: Emerging and re-emerging pathogens in humans and animals Susanna Lau Positive-strand RNA viruses. Virology Journal, 12(1), 1–10. https://doi.org/10.1186/S12985-015-0422-1/FIGURES/1; Huber, L. B., Betz, K., & Marx, A. (2023). Reverse Transcriptases: From Discovery and Applications to Xenobiology. ChemBioChem, 24(5), e202200521. https://doi.org/10.1002/CBIC.202200521; Hurtado, L., Díaz, D., Escorcia, K., Flórez, L., Bello, Y., Díaz, Y., Navarro, E., Pacheco, L. C., Galán, N., Maestre, R., Acosta, A., & Pacheco, L. A. (2022). Validación clínica de la prueba RT-LAMP para el diagnóstico rápido del SARS-CoV-2. Biomédica, 42(Suppl 2), 59. https://doi.org/10.7705/BIOMEDICA.6523; INS. (2024). Coronavirus Colombia. Instituto Nacional de Salud. https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx; Jackson, L. N., Chim, N., Shi, C., & Chaput, J. C. (2019). Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase. Nucleic Acids Research, 47(13), 6973. https://doi.org/10.1093/NAR/GKZ513; Jana, M., Ghosh, A., Santra, A., Kar, R. K., Misra, A. K., & Bhunia, A. (2017). Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited. Journal of Colloid and Interface Science, 498, 395–404. https://doi.org/10.1016/J.JCIS.2017.03.060; Jeck, W. R., Iafrate, A. J., & Nardi, V. (2021). Nanopore Flongle Sequencing as a Rapid, Single-Specimen Clinical Test for Fusion Detection. The Journal of Molecular Diagnostics, 23(5), 630–636. https://doi.org/10.1016/J.JMOLDX.2021.02.001; Jones, M. D., & Foulkes, N. S. (1989). Reverse transcription of mRNA by Thermus aquaticus DNA polymerase. Nucleic Acids Research, 17(20), 8387–8388. https://doi.org/10.1093/NAR/17.20.8387; Kabir, M. S., Clements, M. O., & Kimmitt, P. T. (2015). RT-Bst: An integrated approach for reverse transcription and enrichment of cDNA from viral RNA. British Journal of Biomedical Science, 72(1), 1–6. https://doi.org/10.1080/09674845.2015.11666788; Karam, J. D., & Konigsberg, W. H. (2000). DNA polymerase of the T4-related bacteriophages. Progress in Nucleic Acid Research and Molecular Biology, 64. https://doi.org/10.1016/S0079-6603(00)64002-3; Kashir, J., & Yaqinuddin, A. (2020). Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Medical Hypotheses, 141, 109786. https://doi.org/10.1016/J.MEHY.2020.109786; Kelleher, C., Teixeira, M. T., Förstemann, K., & Lingner, J. (2002). Telomerase: Biochemical considerations for enzyme and substrate. Trends in Biochemical Sciences, 27(11), 572–579. https://doi.org/10.1016/S0968-0004(02)02206-5; Kiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997a). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure, 5(1), 95–108. https://doi.org/10.1016/S0969-2126(97)00169-X; Kiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997b). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure, 5(1), 95–108. https://doi.org/10.1016/S0969-2126(97)00169-X; Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T. P. L., & Pevzner, P. A. (2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods 2020 17:11, 17(11), 1103–1110. https://doi.org/10.1038/s41592-020-00971-x; Kornberg, A. (1960). Biologic synthesis of deoxyribonucleic acid. Science, 131(3412), 1503–1508. https://doi.org/10.1126/SCIENCE.131.3412.1503/ASSET/970D30A2-F8D7-4244-BA29-796FBAD48625/ASSETS/SCIENCE.131.3412.1503.FP.PNG; Kornberg A y Baker T. (1992). DNA replication. Freeman.; Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D: Biological Crystallography, 60(12 I), 2256–2268. https://doi.org/10.1107/S0907444904026460; Kwok, H., Briggs, K., & Tabard-Cossa, V. (2014). Nanopore Fabrication by Controlled Dielectric Breakdown. PLOS ONE, 9(3), e92880. https://doi.org/10.1371/JOURNAL.PONE.0092880; Lee, J. Y., Kong, M., Oh, J., Lim, J. S., Chung, S. H., Kim, J. M., Kim, J. S., Kim, K. H., Yoo, J. C., & Kwak, W. (2021). Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Scientific Reports 2021 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-00178-w; Leger, A., & Leonardi, T. (2019). pycoQC, interactive quality control for Oxford Nanopore Sequencing. Journal of Open Source Software, 4(34), 1236. https://doi.org/10.21105/joss.01236; Li, J. J., Xiong, C., Liu, Y., Liang, J. S., & Zhou, X. W. (2016). Loop-mediated isothermal amplification (LAMP): Emergence as an alternative technology for herbal medicine identification. Frontiers in Plant Science, 7(DECEMBER2016), 214697. https://doi.org/10.3389/FPLS.2016.01956/BIBTEX; Ling, H., Boudsocq, F., Woodgate, R., & Yang, W. (2001). Crystal structure of a Y-family DNA polymerase in action: A mechanism for error-prone and lesion-bypass replication. Cell, 107(1), 91–102. https://doi.org/10.1016/S0092-8674(01)00515-3; Marangoni, A. G. (2003). Enzyme kinetics : a modern approach. Wiley-Interscience.; Marra, M. A., Jones, S. J. M., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S. N., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M., McDonald, H., Montgomery, S. B., … Roper, R. L. (2003). The genome sequence of the SARS-associated coronavirus. Science, 300(5624), 1399–1404. https://doi.org/10.1126/SCIENCE.1085953/SUPPL_FILE/MARRA.SOM.PDF; Martin, S. K., & Wood, R. D. (2019). DNA polymerase ζ in DNA replication and repair. Nucleic Acids Research, 47(16), 8348–8361. https://doi.org/10.1093/NAR/GKZ705; Mayanagi, K., Oki, K., Miyazaki, N., Ishino, S., Yamagami, T., Morikawa, K., Iwasaki, K., Kohda, D., Shirai, T., & Ishino, Y. (2020). Two conformations of DNA polymerase D-PCNA-DNA, an archaeal replisome complex, revealed by cryo-electron microscopy. BMC Biology, 18(1). https://doi.org/10.1186/S12915-020-00889-Y; McGuffie, M. J., & Barrick, J. E. (2021). pLannotate: engineered plasmid annotation. Nucleic Acids Research, 49(W1), W516–W522. https://doi.org/10.1093/NAR/GKAB374; Minciencias. (2021). resolucion_0665-2021 (2).; Mo, J. Y., & Schaaper, R. M. (1996). Fidelity and error specificity of the α catalytic subunit of Escherichia coli DNA polymerase III. Journal of Biological Chemistry, 271(31), 18947–18953. https://doi.org/10.1074/jbc.271.31.18947; Molero, J. M., Arranz-Izquierdo, J., Gutiérrez-Pérez, M. I., & Redondo Sánchez, J. M. (2021). Aspectos básicos de la COVID-19 para el manejo desde atención primaria. Atencion Primaria, 53(6), 101966. https://doi.org/10.1016/J.APRIM.2020.12.007; Morales, F. D., Coronado-Jimenez, L., Gonzalez-Moya, V., Mercedes-Zambrano, M., Sandoval-Herrera, J., & Arturo-Calvache, J. E. (2022). CHEMICAL ENGINEERING TRANSACTIONS Effect of agitation on Taq DNA polymerase production by Escherichia coli in bioreactor. www.cetjournal.it; Nagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16(3), 223–229. https://doi.org/10.1006/mcpr.2002.0415; Neagu, M., Constantin, C., & Surcel, M. (2021). Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines. International Journal of Environmental Research and Public Health, 18(24). https://doi.org/10.3390/IJERPH182413173; Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000a). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63. https://doi.org/10.1093/NAR/28.12.E63; Ohmori, H., Friedberg, E. C., Fuchs, R. P. P., Goodman, M. F., Hanaoka, F., Hinkle, D., Kunkel, T. A., Lawrence, C. W., Livneh, Z., Nohmi, T., Prakash, L., Prakash, S., Todo, T., Walker, G. C., Wang, Z., & Woodgate, R. (2001). The Y-family of DNA Polymerases. Molecular Cell, 8(1), 7–8. https://doi.org/10.1016/S1097-2765(01)00278-7; Oliveira, B. B., Veigas, B., & Baptista, P. V. (2021). Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard.” Frontiers in Sensors, 2, 752600. https://doi.org/10.3389/FSENS.2021.752600; O’Reilly, M., Teichmann, S. A., & Rhodes, D. (1999). Telomerases. Current Opinion in Structural Biology, 9(1), 56–65. https://doi.org/10.1016/S0959-440X(99)80008; Oscorbin, I., & Filipenko, M. (2023). Bst polymerase — a humble relative of Taq polymerase. Computational and Structural Biotechnology Journal, 21, 4519–4535. https://doi.org/10.1016/J.CSBJ.2023.09.008; Palacios, M., Santos, E., Velázquez Cervantes, M. A., & León Juárez, M. (2021). COVID-19, una emergencia de salud pública mundial. Revista Clinica Espanola, 221(1), 55. https://doi.org/10.1016/J.RCE.2020.03.001; Phang, S.-M., Teo, C.-Y., Lo, E., Wong, V., & Wong, T. (1995). Cloning and complete sequence of the DNA polymerase-encoding gene (BstpolI) and characterisation of the Klenow-like fragment from Bacillus stearothermophilus (DNA sequencing; genomic library; homologies; recombinant). In Gene (Vol. 163, Issue 65).; Prakash, S., Johnson, R. E., & Prakash, L. (2005). EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function. Https://Doi.Org/10.1146/Annurev.Biochem.74.082803.133250, 74, 317–353. https://doi.org/10.1146/ANNUREV.BIOCHEM.74.082803.133250; QIAGEN. (2010). Quick-StartProtocol Sample & Assay Technologies QIAprep ® Spin Miniprep Kit. www.qiagen.com/contact.; Rabe, B. A., & Cepko, C. (2020). SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24450–24458. https://doi.org/10.1073/PNAS.2011221117/-/DCSUPPLEMENTAL; Ramírez, M., Angulo, M. V., Colciencias, G., Fernando, D., Losada, H., Monroy, S. E., & Subdirectora, V. (2019). Misión internacional de sabios para el avance de la Ciencia, la Tecnología y la Innovación. Pacto por la Ciencia, la Tecnología y la Innovación: Un sistema para construir el conocimiento del futuro Presidencia de la República Iván Duque Márquez Vicepresidencia de la República; Rastgoo, N., Sadeghizadeh, M., Bambaei, B., & Hosseinkhani, S. (2009). Restoring 3′-5′ exonuclease activity of thermophilic Geobacillus DNA polymerase I using site-directed mutagenesis in active site. Journal of Biotechnology, 144(4), 245–252. https://doi.org/10.1016/j.jbiotec.2009.09.006; Rivera, M., Cazaux, S., Cerda, A., Medina, A. A., Núñez, I., Matute, T., Brown, A., Gasulla, J., Federici, F., & Ramirez-Sarmiento, C. A. (2020). Recombinant protein expression and purification of codon-optimized Bst-LF polymerase Reclone.org (The Reagent Collaboration Network). https://doi.org/10.17504/PROTOCOLS.IO.BKSRKW; Robert Novy and Barbara Morri. (2003). Glucose supression. InNovations , 13; Saldanha, R., Chen, B., Wank, H., Matsuura, M., Edwards, J., & Lambowitz, A. M. (1999). RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry, 38(28), 9069–9083. https://doi.org/10.1021/bi982799l; Schrödinger, L. , & D. W. (2020). PyMOL %7C pymol.org. https://pymol.org/2/#page-top; Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381. https://doi.org/10.1093/NAR/GKG52; Sellmann, E., Schroder, K. L., Knoblich, I. M., & Westermann, P. (1992). Purification and characterization of DNA polymerases from Bacillus species. Journal of Bacteriology, 174(13), 4350. https://doi.org/10.1128/JB.174.13.4350-4355.1992; Shanbhag, V., Sachdev, S., Flores, J. A., Modak, M. J., & Singh, K. (2018). Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 7(1). https://doi.org/10.3390/BIOLOGY7010005; Shcherbakova, P. V., Pavlov, Y. I., Chilkova, O., Rogozin, I. B., Johansson, E., & Kunkel, T. A. (2003). Unique Error Signature of the Four-subunit Yeast DNA Polymerase ε. Journal of Biological Chemistry, 278(44), 43770–43780. https://doi.org/10.1074/jbc.M306893200; Shi, C., Shen, X., Niu, S., & Ma, C. (2015). Innate Reverse Transcriptase Activity of DNA Polymerase for Isothermal RNA Direct Detection. Journal of the American Chemical Society, 137(43), 13804–13806. https://doi.org/10.1021/jacs.5b08144; Singh, K., Srivastava, A., Patel, S. S., & Modak, M. J. (2007). Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA. Journal of Biological Chemistry, 282(14), 10594–10604. https://doi.org/10.1074/jbc.M611242200; Sluis-Cremer, N. (2021). Retroviral reverse transcriptase: Structure, function and inhibition. The Enzymes, 50, 179–194. https://doi.org/10.1016/BS.ENZ.2021.06.00; Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24(6), 490. https://doi.org/10.1016/J.TIM.2016.03.003; Tanner, N. A., & Evans, T. C. (2013). Loop-mediated isothermal amplification for detection of nucleic acids. Current Protocols in Molecular Biology, SUPPL.105. https://doi.org/10.1002/0471142727.mb1514s105; Tsai, C. H., Chen, J., & Szostak, J. W. (2007). Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14598–14603. https://doi.org/10.1073/PNAS.0704211104; Uchiyama, Y., Takeuchi, R., Kodera, H., & Sakaguchi, K. (2009). Distribution and roles of X-family DNA polymerases in eukaryotes. Biochimie, 91(2), 165–170. https://doi.org/10.1016/J.BIOCHI.2008.07.005; Vandenberg, O., Martiny, D., Rochas, O., van Belkum, A., & Kozlakidis, Z. (2020). Considerations for diagnostic COVID-19 tests. Nature Reviews Microbiology 2020 19:3, 19(3), 171–183. https://doi.org/10.1038/s41579-020-00461-z; Wang, Y., Ngor, A. K., Nikoomanzar, A., & Chaput, J. C. (2018). Evolution of a General RNA-Cleaving FANA Enzyme. Nature Communications, 9(1). https://doi.org/10.1038/S41467-018-07611-1; Wardle, J., Burgers, P. M. J., Cann, I. K. O., Darley, K., Heslop, P., Johansson, E., Lin, L. J., McGlynn, P., Sanvoisin, J., Stith, C. M., & Connolly, B. A. (2008). Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya. Nucleic Acids Research, 36(3), 705–711. https://doi.org/10.1093/NAR/GKM1023; Worldometer. (2024). COVID Live - Coronavirus Statistics - Worldometer. https://www.worldometers.info/coronavirus/; Yamtich, J., & Sweasy, J. B. (2010). DNA Polymerase Family X: Function, Structure, and Cellular Roles. Biochimica et Biophysica Acta, 1804(5), 1136. https://doi.org/10.1016/J.BBAPAP.2009.07.008; Zhao, C., & Pyle, A. M. (2016). Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nature Structural & Molecular Biology, 23(6), 558. https://doi.org/10.1038/NSMB.3224; Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). Brief Report: A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727. https://doi.org/10.1056/NEJMOA2001017; https://repositorio.unal.edu.co/handle/unal/86461; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  15. 15
    Dissertation/ Thesis

    المساهمون: Cortés Correa, Farid B., Fenómenos de superficie - Michael Polanyi

    وصف الملف: 103 páginas; application/pdf

    Relation: LaReferencia; Shafiee, S. and E. Topal, When will fossil fuel reserves be diminished? Energy policy, 2009. 37(1): p. 181-189.; Hirsch, R.L., R. Bezdek, and R. Wendling, Peaking of World Oil Production and Its Mitigation. Driving Climate Change: Cutting Carbon from Transportation, 2010: p. 9.; Williams, B., Heavy hydrocarbons playing key role in peak-oil debate, future energy supply. Oil & Gas Journal, 2003. 101(29): p. 20-27.; Chew, K.J., The future of oil: unconventional fossil fuels. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014. 372(2006): p. 20120324.; Hinkle, A., et al., Correlating the chemical and physical properties of a set of heavy oils from around the world. Fuel, 2008. 87(13): p. 3065-3070.; Meyer, R.F. and E.D. Attanasi, Heavy oil and natural bitumen-strategic petroleum resources. World, 2003. 434: p. 650-7.; Jaspers, H.F., et al. Performance Review of Polymer Flooding in a Major Brown Oil Field of Sultanate of Oman. in SPE Enhanced Oil Recovery Conference. 2013. Society of Petroleum Engineers.; Rana, M.S., et al., A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 2007. 86(9): p. 1216-1231.; Savage, P.E., M.T. Klein, and S.G. Kukes, Asphaltene reaction pathways. 1. Thermolysis. Industrial & Engineering Chemistry Process Design and Development, 1985. 24(4): p. 1169-1174.; Maity, S., J. Ancheyta, and G. Marroquín, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: a review. Energy & Fuels, 2010. 24(5): p. 2809-2816.; Das, S.K., Vapex: An efficient process for the recovery of heavy oil and bitumen. SPE journal, 1998. 3(03): p. 232-237.; Cook, E.L. and A.W. Talash, In situ combustion process. 1969, Google Patents.; Gateau, P., et al., Heavy oil dilution. Oil & gas science and technology, 2004. 59(5): p. 503-509.; Pebdani, F.N. and W.R. Shu, Heavy oil recovery process using cyclic carbon dioxide steam stimulation. 1986, Google Patents.; Cyr, T., R. Coates, and M. Polikar, Steam-assisted gravity drainage heavy oil recovery process. 2001, Google Patents.; Italo Bahamon, J., et al. Successful Implementation of Hydraulic Fracturing Techniques in High Permeability Heavy Oil Wells in the Llanos Basin-Colombia. in SPE Latin American and Caribbean Petroleum Engineering Conference. 2015. Society of Petroleum Engineers.; Zabala, R., C. Franco, and F. Cortés. Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil: a field test. in SPE Improved Oil Recovery Conference. 2016. Society of Petroleum Engineers.; Franco, C.A., et al., Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy & Fuels, 2013. 27(12): p. 7336-7347.; Le, D.H., et al., Removal of fracturing gel: A laboratory and modeling investigation accounting for viscous fingering channels. Journal of Petroleum Science and Engineering, 2012. 88: p. 145-155.; Uren, L.C., Petroleum production engineering. 1934: McGraw-Hill Book Company.; Weaver, J.D., N.C. Schultheiss, and F. Liang. Fracturing Fluid Conductivity Damage and Recovery Efficiency. in SPE European Formation Damage Conference & Exhibition. 2013. Society of Petroleum Engineers.; Quintero, L., et al. Cases history studies of production enhancement in cased hole wells using microemulsion fluids. in 8th European Formation Damage Conference. 2009. Society of Petroleum Engineers.; Zelenev, A.S., et al. Microemulsion-assisted fluid recovery and improved permeability to gas in shale formations. in SPE International Symposium and Exhibiton on Formation Damage Control. 2010. Society of Petroleum Engineers.; Penny, G.S., T.A. Dobkins, and J.T. Pursley. Field study of completion fluids to enhance gas production in the Barnett Shale. in SPE Gas Technology Symposium. 2006. Society of Petroleum Engineers.; Chen, Z., et al. Formation damage induced by fracture fluids in coalbed methane reservoirs. in SPE Asia Pacific Oil & Gas Conference and Exhibition. 2006. Society of Petroleum Engineers.; Huang, T., J.B. Crews, and G. Agrawal. Nanoparticle pseudocrosslinked micellar fluids: Optimal solution for fluid-loss control with internal breaking. in SPE International Symposium and Exhibiton on Formation Damage Control. 2010. Society of Petroleum Engineers.; Hawkins, G. Laboratory Study of Proppant-Pack Permeability Reduction Caused by Fracturing Fluids Concentrated During Closure. in SPE Annual Technical Conference and Exhibition. 1988. Society of Petroleum Engineers.; Bostrom, N., et al. The time-dependent permeability damage caused by fracture fluid. in SPE International Symposium and Exhibition on Formation Damage Control. 2014. Society of Petroleum Engineers.; Huang, T. and J.B. Crews, Nanotechnology applications in viscoelastic surfactant stimulation fluids. SPE Production & Operations, 2008. 23(04): p. 512-517.; Worlow, D. and S. Holditch. Rheologic Measurements of a Crosslinked Fracture Fluid Under Conditions Expected During a Fracture Treatment. in Low Permeability Reservoirs Symposium. 1989. Society of Petroleum Engineers.; Husein, M., et al. Application of In-House Prepared Nanoparticles as Filtration Control Additive to Reduce Formation Damage. in SPE International Symposium and Exhibition on Formation Damage Control. 2014. Society of Petroleum Engineers.; Christian, C.F., et al. Production Enhancement of Cased-Hole Wells Using Mesophase Fluids. in SPE Saudia Arabia Section Technical Symposium. 2009. Society of Petroleum Engineers.; Montgomery, C., Fracturing fluid components. Effective and Sustainable Hydraulic Fracturing. InTech Publishing. Available at: http://www. intechopen. com/books/effective-and-sustainablehydraulic-fracturing (Accessed February 2014), 2013: p. 25-45.; Paktinat, J., et al., Field case studies: Damage preventions through leakoff control of fracturing fluids in marginal/low-pressure gas reservoirs. SPE Production & Operations, 2007. 22(03): p. 357-367.; Dos Santos, J.A.C., R.C.B. De Melo, and G.F. Di Lullo, Case-History Evaluation of RPMs on Conformance Fracturing Applications. Society of Petroleum Engineers.; Diaz, G., et al., Fracture Conformance Treatments Using RPM: Efficiency and Durability Evaluation. Society of Petroleum Engineers.; Castano, R., et al., Relative Permeability Modifier and Scale Inhibitor Combination in Fracturing Process at San Francisco Field in Colombia, South America. Society of Petroleum Engineers.; Leal, J.A., et al., Unconventional RPM Applications in Hydraulic Fracturing. Society of Petroleum Engineers.; Bennetzen, M.V. and K. Mogensen. Novel applications of nanoparticles for future enhanced oil recovery. in International petroleum technology conference. 2014. International Petroleum Technology Conference.; Martín-Palma, R.J. and A. Lakhtakia. Nanotechnology: A Crash Course. 2010. SPIE Bellingham, WA.; Taborda, E.A., et al., Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel, 2016. 184: p. 222-232.; Al-Maamari, R.S. and J.S. Buckley, Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production. SPE Reservoir Evaluation & Engineering, 2003. 6(04): p. 210-214.; Giraldo, J., et al., Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 2013. 27(7): p. 3659-3665.; Franco, C.A., et al., Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy & Fuels, 2013. 27(6): p. 2899-2907.; Betancur, S., et al., Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs. Industrial & Engineering Chemistry Research, 2016. 55(21): p. 6122-6132.; Zhang, H., A. Nikolov, and D. Wasan, Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy & Fuels, 2014. 28(5): p. 3002-3009.; Lafitte, V., et al. Nanomaterials in fracturing applications. in SPE International Oilfield Nanotechnology Conference and Exhibition. 2012. Society of Petroleum Engineers.; Liang, F., et al., Reduced Polymer Loading, High Temperature Fracturing Fluids using Nano-crosslinkers. Society of Petroleum Engineers.; Guzmán, J.D., et al., Effect of nanoparticle inclusion in fracturing fluids applied to tight gas-condensate reservoirs: Reduction of Methanol loading and the associated formation damage. Journal of Natural Gas Science and Engineering, 2017. 40: p. 347-355.; Al-Muntasheri, G.A. A critical review of hydraulic fracturing fluids over the last decade. in SPE Western North American and Rocky Mountain Joint Meeting. 2014. Society of Petroleum Engineers.; Harris, P.C., Fracturing-fluid additives. Journal of petroleum technology, 1988. 40(10): p. 1,277-1,279.; Barnes, H.A., J.F. Hutton, and K. Walters, An introduction to rheology. Vol. 3. 1989: Elsevier.; Barnes, H.A., A handbook of elementary rheology. 2000.; Montgomery, C. Fracturing fluids. in ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. 2013. International Society for Rock Mechanics and Rock Engineering.; Kirkwood, J.G., F.P. Buff, and M.S. Green, The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. The Journal of Chemical Physics, 1949. 17(10): p. 988-994.; Ewell, R.H. and H. Eyring, Theory of the Viscosity of Liquids as a Function of Temperature and Pressure. The Journal of Chemical Physics, 1937. 5(9): p. 726-736.; Fox, T., et al., Rheology, Vol. 1. Academic Press, New York, 1956: p. 431-523.; Rha, C., Theories and principles of viscosity, in Theory, determination and control of physical properties of food materials. 1975, Springer. p. 7-24.; Sorbie, K., P. Clifford, and E. Jones, The rheology of pseudoplastic fluids in porous media using network modeling. Journal of Colloid and Interface Science, 1989. 130(2): p. 508-534.; Api, R., Recommended Practice on Measuring the Viscous Properties of a Crosslinked Water-based Fracturing Fluid”. 1998, May.; Kuhlbusch, T.A., et al., Nanoparticle exposure at nanotechnology workplaces: a review. Particle and fibre toxicology, 2011. 8(1): p. 22.; Poole Jr, C.P. and F.J. Owens, Introduction to nanotechnology. 2003: John Wiley & Sons.; Sanchez, F. and K. Sobolev, Nanotechnology in concrete–a review. Construction and building materials, 2010. 24(11): p. 2060-2071.; Amanullah, M. and A.M. Al-Tahini. Nano-technology-its significance in smart fluid development for oil and gas field application. in SPE Saudi Arabia Section Technical Symposium. 2009. Society of Petroleum Engineers.; Nabhani, N., M. Emami, and A.T. Moghadam. Application of nanotechnology and nanomaterials in oil and gas industry. in AIP Conference Proceedings. 2011. American Institute of Physics.; Esmaeili, A. Applications of nanotechnology in oil and gas industry. in AIP conference proceedings. 2011. American Institute of Physics.; Peng, B., et al., Applications of nanotechnology in oil and gas industry: Progress and perspective. The Canadian Journal of Chemical Engineering, 2018. 96(1): p. 91-100.; Hirasaki, G., Wettability: fundamentals and surface forces. SPE Formation Evaluation, 1991. 6(02): p. 217-226.; Castro, S., Análisis petrofísicos básicos y especiales. 2009: Universidad Nacional de Colombia Sede Medellín.; Abdallah, W., et al., Fundamentals of wettability. Technology, 1986. 38(1125-1144): p. 268.; Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551.; Maghzi, A., et al., Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation. Experimental Thermal and Fluid Science, 2012. 40: p. 168-176.; Nazari Moghaddam, R., et al., Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy & Fuels, 2015. 29(4): p. 2111-2119.; Al-Anssari, S., et al., Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel, 2017. 206: p. 34-42.; Dehghan Monfared, A., et al., Potential application of silica nanoparticles for wettability alteration of oil–wet calcite: A mechanistic study. Energy & Fuels, 2016. 30(5): p. 3947-3961.; Cortés, F.B., et al., Adsorption-desorption of nc 7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration. CT&F-Ciencia, Tecnología y Futuro, 2016. 6(4): p. 89-106.; Li, R., et al., Experimental investigation of silica-based nanofluid enhanced oil recovery: the effect of wettability alteration. Energy & Fuels, 2017. 31(1): p. 188-197.; Ghannam, M.T., et al., Rheological properties of heavy & light crude oil mixtures for improving flowability. Journal of Petroleum Science and Engineering, 2012. 81: p. 122-128.; Ali, L.H., K.A. Al-Ghannam, and J.M. Al-Rawi, Chemical structure of asphaltenes in heavy crude oils investigated by nmr. Fuel, 1990. 69(4): p. 519-521.; Alboudwarej, H., et al., La importancia del petróleo pesado. Oilfield review, 2006. 18(2): p. 38-58.; Martínez-Palou, R., et al., Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of petroleum science and engineering, 2011. 75(3-4): p. 274-282.; Schmidt, R., Thermal enhanced oil recovery current status and future needs. Chemical Engineering Progress;(USA), 1990. 86(1).; Hong, K., Recent advances in steamflood technology. 1989.; Hart, A., A review of technologies for transporting heavy crude oil and bitumen via pipelines. Journal of Petroleum Exploration and Production Technology, 2014. 4(3): p. 327-336.; Sheng, J., Modern chemical enhanced oil recovery: theory and practice. 2010: Gulf Professional Publishing.; Caudle, B. and A. Dyes, Improving miscible displacement by gas-water injection. 1958.; Sheng, J., Enhanced oil recovery field case studies. 2013: Gulf Professional Publishing.; Schramm, L.L., E.N. Stasiuk, and D.G. Marangoni, 2 Surfactants and their applications. Annual Reports Section" C"(Physical Chemistry), 2003. 99: p. 3-48.; Mai, A. and A. Kantzas, Heavy oil waterflooding: effects of flow rate and oil viscosity. Journal of Canadian Petroleum Technology, 2009. 48(03): p. 42-51.; Jiang, Q., Recovery of heavy oil and bitumen using vapex process in homogeneous and heterogenous reservoirs. 1997: University of Calgary.; Montes, D., et al., Development of nanofluids for perdurability in viscosity reduction of extra-heavy oils. Energies, 2019. 12(6): p. 1068.; Montes, D., et al., Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil. ACS omega, 2020. 5(10): p. 5085-5097.; Taborda, E.A., V. Alvarado, and F.B. Cortés, Effect of SiO2-based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market. Energy Conversion and Management, 2017. 148: p. 30-42.; Medina, O.E., et al., Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies, 2019. 12(24): p. 4671.; Shokrlu, Y.H. and T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications. Journal of Petroleum Science and Engineering, 2014. 119: p. 210-220.; Wei, L., J.-H. Zhu, and J.-H. Qi, Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis. Journal of Fuel Chemistry and Technology, 2007. 35(2): p. 176-180.; Montes, D., F.B. Cortés, and C.A. Franco, Reduction of heavy oil viscosity through ultrasound cavitation assisted by NiO nanocrystals-functionalized SiO2 nanoparticles. Dyna, 2018. 85(207): p. 153-160.; Taborda, E.A., et al., Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy & Fuels, 2017. 31(2): p. 1329-1338.; Civan, F., Reservoir formation damage: fundamentals, modeling, assessment, and mitigation. 2015: Gulf Professional Publishing.; MANUEL, G.E.J., NOMBRE DE TESIS: DAÑO A LA FORMACIÓN EN POZOS PETROLEROS. 2014, Universidad Nacional Autónoma de México.; Civan, F., Overview of formation damage. Reservoir Formation Damage, 2016: p. 1-6.; Civan, F. Formation damage mechanisms and their phenomenological modeling-an overview. in European formation damage conference. 2007. Society of Petroleum Engineers.; Economides, M.J. and K.G. Nolte, Reservoir stimulation. Vol. 2. 1989: Prentice Hall Englewood Cliffs, NJ.; Li, L., et al. Vital role of nanotechnology and nanomaterials in the field of oilfield chemistry. in IPTC 2013: International Petroleum Technology Conference. 2013. European Association of Geoscientists & Engineers.; Betancur, S., C.A. Franco, and F.B. Cortés, Magnetite-silica nanoparticles with a core-shell structure for inhibiting the formation damage caused by the precipitation/deposition of asphaltene. Journal of Magnetohydrodynamics and Plasma Research, 2016. 21(3): p. 289-322.; Lopez, D., et al., Cardanol/SiO2 Nanocomposites for Inhibition of Formation Damage by Asphaltene Precipitation/Deposition in Light Crude Oil Reservoirs. Part I: Novel Nanocomposite Design Based on SiO2–Cardanol Interactions. Energy & Fuels, 2020. 34(6): p. 7048-7057.; Belcher, C.K., et al. Maximizing production life with the use of nanotechnology to prevent fines migration. in International Oil and Gas Conference and Exhibition in China. 2010. Society of Petroleum Engineers.; Mansour, M., et al., Using nanotechnology to prevent fines migration while production. Petroleum, 2020.; Mady, M.F. and M.A. Kelland, Review of nanotechnology impacts on oilfield scale management. ACS Applied Nano Materials, 2020. 3(8): p. 7343-7364.; López, D., et al., Well injectivity loss during chemical gas stimulation process in gas-condensate tight reservoirs. Fuel, 2021. 283: p. 118931.; Filgueiras, P.R., et al., Determination of API gravity, kinematic viscosity and water content in petroleum by ATR-FTIR spectroscopy and multivariate calibration. Fuel, 2014. 116: p. 123-130.; Institute, E., IP 469: Determination of Saturated, Aromatic and Polar Compounds in Petroleum Products by Thin Layer Chromatography and Flame Ionization Detection. 2006, Energy Institute Publications United Kingdom.; Austrich, A., E. Buenrostro-Gonzalez, and C. Lira-Galeana, ASTM D-5307 and ASTM D-7169 SIMDIS standards: a comparison and correlation of methods. Petroleum Science and Technology, 2015. 33(6): p. 657-663.; Nassar, N.N., A. Hassan, and P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. Journal of colloid and interface science, 2011. 360(1): p. 233-238.; Hosseinpour, N., et al., Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir, 2013. 29(46): p. 14135-14146.; Xu, R., Particle characterization: light scattering methods. Vol. 13. 2001: Springer Science & Business Media.; López, D., et al., Metal oxide nanoparticles supported on macro-mesoporous aluminosilicates for catalytic steam gasification of heavy oil fractions for on-site upgrading. Catalysts, 2017. 7(11): p. 319.; Waseda, Y., E. Matsubara, and K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems. 2011: Springer Science & Business Media.; Franco-Aguirre, M., et al., Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018. 51: p. 53-64.; Clogston, J.D. and A.K. Patri, Zeta potential measurement, in Characterization of nanoparticles intended for drug delivery. 2011, Springer. p. 63-70.; Jan, API Recommended Practices for Standard Procedures for Evaluation of Hydraulic Fracturing Fluids , API RP 39, in Dallas. 1983.; Roskes, B., SketchUp 2015 Hands-On: LayOut. 2015.; Guzmán, J.D., et al., Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energy & Fuels, 2016. 30(3): p. 2052-2059.; Fink, J., Hydraulic Fracturing Chemicals and Fluids Technology. 2013: Gulf Professional Publishing.; Franco-Aguirre, M., et al., Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018.; Tao, T. and A. Watson, Accuracy of JBN estimates of relative permeability: part 1-error analysis. Society of Petroleum Engineers Journal, 1984. 24(02): p. 209-214.; Tao, T. and A. Watson, Accuracy of JBN estimates of relative permeability: part 2-algorithms. Society of Petroleum Engineers Journal, 1984. 24(02): p. 215-223.; Sigmund, P. and F. McCaffery, An improved unsteady-state procedure for determining the relative-permeability characteristics of heterogeneous porous media (includes associated papers 8028 and 8777). Society of petroleum engineers journal, 1979. 19(01): p. 15-28.; Mortazavi-Manesh, S. and J.M. Shaw, Thixotropic rheological behavior of Maya crude oil. Energy & fuels, 2014. 28(2): p. 972-979.; Nik, W.W., et al., Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Industrial Crops and Products, 2005. 22(3): p. 249-255.; Simanzhenkov, V. and R. Idem, Crude oil chemistry. 2003: Crc Press.; Musić, S., N. Filipović-Vinceković, and L. Sekovanić, Precipitation of amorphous SiO2 particles and their properties. Brazilian journal of chemical engineering, 2011. 28(1): p. 89-94.; Mehlhorn, H., Nanoparticles–Definitions, in Nanoparticles in the Fight Against Parasites. 2016, Springer. p. 1-14.; Isernia, L.F., FTIR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite. Materials Research, 2013. 16(4): p. 792-802.; Topsoe, N. and H. Topsoe, FTIR studies of Mo/Al2O3-based catalysts: II. Evidence for the presence of SH groups and their role in acidity and activity. Journal of catalysis, 1993. 139(2): p. 641-651.; Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons.; Salopek, B., D. Krasic, and S. Filipovic, Measurement and application of zeta-potential. Rudarsko-geolosko-naftni zbornik, 1992. 4(1): p. 147.; Sposito, G., On points of zero charge. Environmental science & technology, 1998. 32(19): p. 2815-2819.; Ballard, M., R. Buscall, and F. Waite, The theory of shear-thickening polymer solutions. Polymer, 1988. 29(7): p. 1287-1293.; Cortés, F.B., et al., Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel. Energy & Fuels, 2012. 26(3): p. 1725-1730.; Adams, J.J., Asphaltene adsorption, a literature review. Energy & Fuels, 2014. 28(5): p. 2831-2856.; Moghadam, A.M. and M.B. Salehi, Enhancing hydrocarbon productivity via wettability alteration: a review on the application of nanoparticles. Reviews in Chemical Engineering, 2019. 35(4): p. 531-563.; Al-Zahrani, S.M., A generalized rheological model for shear thinning fluids. Journal of Petroleum Science and Engineering, 1997. 17(3): p. 211-215.; Song, K.-W., Y.-S. Kim, and G.-S. Chang, Rheology of concentrated xanthan gum solutions: Steady shear flow behavior. Fibers and Polymers, 2006. 7(2): p. 129-138.; Laguna, M.T.R., M.P. Tarazona, and E. Saiz, The use of molecular dynamics for the study of solution properties of guar gum. The Journal of chemical physics, 2003. 119(2): p. 1148-1156.; Montoya, T., et al., A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the “Chemical Theory”. Energy & Fuels, 2014. 28(8): p. 4963-4975.; Thommes, M., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015. 87(9-10): p. 1051-1069.; Giraldo, L.J., et al., Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration. Journal of Petroleum Science and Engineering, 2019. 174: p. 40-48.; Li, S. and O. Torsæter. The impact of nanoparticles adsorption and transport on wettability alteration of intermediate wet berea sandstone. in SPE Middle East Unconventional Resources Conference and Exhibition. 2015. OnePetro.; Almubarak, T., et al., Insights on potential formation damage mechanisms associated with the use of gel breakers in hydraulic fracturing. Polymers, 2020. 12(11): p. 2722.; Al-Hajri, S., et al., Perspective Review of Polymers as Additives in Water-Based Fracturing Fluids. ACS omega, 2022. 7(9): p. 7431-7443.; Zheng, X., et al., Effect of proppant distribution pattern on fracture conductivity and permeability in channel fracturing. Journal of Petroleum Science and Engineering, 2017. 149: p. 98-106.; Byrne, M.T. and C.A. Mcphee. The extinction of skin. in SPE International Conference and Exhibition on Formation Damage Control. 2012. SPE.; Yudin, I.K. and M.A. Anisimov, Dynamic light scattering monitoring of asphaltene aggregation in crude oils and hydrocarbon solutions, in Asphaltenes, Heavy Oils, and Petroleomics. 2007, Springer. p. 439-468.; Nassar, N.N., et al., Development of a population balance model to describe the influence of shear and nanoparticles on the aggregation and fragmentation of asphaltene aggregates. Industrial & Engineering Chemistry Research, 2015. 54(33): p. 8201-8211.; Canh, S.T., et al., Organic and inorganic formation damage and remediation. Petrovietnam Journal, 2017. 6: p. 39-44.; Budd, N., et al. The Remediation of Oilfield Asphaltenic Deposits: Near-Well-Bore Application. in SPE International Conference and Exhibition on Formation Damage Control. 2018. SPE.; Mehana, M. and M.O. Bashir, Diagnostic fracture injection test (DFIT). Petroleum Today, 2015. 11: p. 26.; Earlougher Jr, R.C., R. Kersch, and H. Ramey Jr, Wellbore effects in injection well testing. Journal of Petroleum Technology, 1973. 25(11): p. 1244-1250.; Gringarten, A., H. Ramey Jr, and R. Raghavan, Applied pressure analysis for fractured wells. Journal of Petroleum Technology, 1975. 27(07): p. 887-892.; Yew, C.H. and X. Weng, Mechanics of hydraulic fracturing. 2014: Gulf Professional Publishing.; Cleary, J.M., Hydraulic fracture theory. Vol. 251. 1958: Division of the Illinois State Geological Survey.; Barree, R.D., V.L. Barree, and D. Craig. Holistic fracture diagnostics. in SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 2007. SPE.; Cheremisinoff, N.P. and A. Davletshin, Hydraulic fracturing operations: handbook of environmental management practices. 2015: John Wiley & Sons.; Martinez, A., C. Wright, and T. Wright. Field Application of Real-Time Hydraulic Fracturing Analysis. in SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 1993. SPE.; Montgomery, C.T. and M.B. Smith, Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology, 2010. 62(12): p. 26-40.; https://repositorio.unal.edu.co/handle/unal/86422; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  16. 16
    Report

    المؤلفون: Méndez Callejas, Gina Marcela

    المساهمون: Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada - GIBGA

    Time: 2021-2-1/2021-6-30

    وصف الملف: 7 páginas : fotografias, gráficas; application/pdf

    Relation: https://repository.udca.edu.co/handle/11158/6025; Universidad de Ciencias Aplicadas y Ambientales; UDCA

  17. 17
  18. 18
    Book

    المؤلفون: Rodríguez-Arturo, Yuber

    المساهمون: Lopera Castro, Sergio Hernando, Pabón Gelves, Elizabeth, Yacimientos de Hidrocarburos

    وصف الملف: application/pdf

    Relation: V. K. Baskaran, K. C. Dani, K. P. Kumar, and A. M. Urkude, “Implementation of Enhanced oil Recovery Techniques in India : New Challenges and Technologies,” SPE EOR Conf. Oil Gas, no. SPE-169680-MS, pp. 1–16, 2014.; J. C. Echeverry, “Recobro Mejorado: El camino para la transformación de la industría del petróleo,” Bogotá, 2015.; J. J. Sheng, “Surfactant Flooding,” in Modern Chemical Enhanced Oil Recovery, 1a Edición., 2011, pp. 239–335.; M. Pordel Shahri, S. R. Shadizadeh, and M. Jamialahmadi, “Applicability test of new surfactant produced from Zizyphus Spina-Christi leaves for enhanced oil recovery in carbonate reservoirs,” J. Japan Pet. Inst., vol. 55, no. 1, pp. 27–32, 2012.; A. B. Chhetri, K. C. Watts, M. S. Rahman, and M. R. Islam, “Soapnut Extract as a Natural Surfactant for Enhanced Oil Recovery,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 31, no. 20, pp. 1893–1903, 2009; H. C. Huang, S. C. Liao, F. R. Chang, Y. H. Kuo, and Y. C. Wu, “Molluscicidal saponins from Sapindus mukorossi, inhibitory agents of golden apple snails, Pomacea canaliculata,” J. Agric. Food Chem., vol. 51, no. 17, pp. 4916–4919, 2003; A. Lebron-Paler, “Solution and Interfacial Characterization of Rhamnolipid Biosurfactant from Pseudomonas aeruginosa ATCC 9027,” Universidad de Arizona, 2008.; M. Chakraborty, C. Bhattacharya, and S. Datta, Emulsion liquid membranes: Definitions and classification, theories, module design, applications, new directions and perspectives, 1st ed. Elsevier B.V., 2010.; M. Amirpour, S. R. Shadizadeh, H. Esfandyari, and S. Ahmadi, “Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement,” Petroleum, vol. 1, no. 4, pp. 289– 299, 2015.; A. M. Alamooti and F. K. Malekabadi, “An Introduction to Enhanced Oil Recovery,” in Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs, A. B. T.-F. of E. O. and G. R. from C. and U. R. Bahadori, Ed. Gulf Professional Publishing, 2018, pp. 1–40.; F. Ameli, A. Alashkar, and A. Hemmati-sarapardeh, “Thermal Recovery Processes,” in Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs, Elsevier Inc., 2018, pp. 139–186.; H. Perozo, A. Mendoza, J. Teixeira, A. Alvarez, J. Márquez, and P. Ortega, “The In situ Combustion Pilot Project in Bare field , Orinoco Oil Belt , Venezuela,” SPE Enhanc. Oil Recover. Conf., no. July, pp. 1–15, 2011.; S. Ghedan, “Global Laboratory Experience of CO2-EOR Flooding,” Soc. Pet. Eng., vol. 1, no. October, pp. 19–21, 2009.; S. Behzadi and B. Towler, “A new EOR method,” SPE Annu. Tech. Conf. Exhib., no. October, pp. 4–7, 2009.; I. Lakatos, J. Lakatos-Szabó, and Z. Bedo, “Application of Nonionic Tenside Homologues in IOR / EOR and Oilfield Chemistry : Fundamental and Engineering Aspects,” Soc. Pet. Eng., 2003.; A. A. Olajire, “Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges,” Energy, vol. 77, pp. 963–982, 2014.; M. S. Kamal, I. A. Hussein, and A. S. Sultan, “Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications,” Energy and Fuels, vol. 31, no. 8, pp. 7701–7720, 2017.; M. A. Hegazy, A. Y. El-Etre, M. El-Shafaie, and K. M. Berry, “Novel cationic surfactants for corrosion inhibition of carbon steel pipelines in oil and gas wells applications,” J. Mol. Liq., vol. 214, pp. 347–356, 2015.; A. Badakhshan and P. Bakes, “The Influence of temperature and surfactant concentration on Interfacial Tension of Saline Water and Hydrocarbon Systems in Relation to Enhanced Oil Recovery by Chemical Flooding,” SPE, 1990.; S. Banerjee, R. Kumar, a. Mandal, and T. K. Naiya, “Use of a Novel Natural Surfactant for Improving Flowability of Indian Heavy Crude Oil,” Pet. Sci. Technol., vol. 33, no. 7, pp. 819–826, 2015; S. S. Shadizadeh and R. Kharrat, “Experimental investigation of matricaria chamomilla extract effect on oil-water interfacial tension: Usable for chemical enhanced oil recovery,” Pet. Sci. Technol., vol. 33, no. 8, pp. 901–907, 2015.; J. A. Buitrago Sánchez and L. J. Herrera Silva, “Estudio silvicultural de la especie Sapindus Saponaria L.(jaboncillo) como base para su aprovechamiento silvoindustrial,” Colomb. For., vol. 11, no. 1, pp. 71–82, 2008.; M. Wójciak-Kosior, I. Sowa, R. Kocjan, and R. Nowak, “Effect of different extraction techniques on quantification of oleanolic and ursolic acid in Lamii albi flos,” Ind. Crops Prod., vol. 44, pp. 373–377, 2013.; J. Giraldo, P. Benjumea, S. Lopera, F. B. Cortés, and M. A. Ruiz, “Wettability alteration of sandstone cores by alumina-based nanofluids,” Energy and Fuels, vol. 27, no. 7, pp. 3659–3665, 2013; F. A. de Freitas, D. Keils, E. R. Lachter, C. E. B. Maia, M. I. Pais da Silva, and R. S. Veiga Nascimento, “Synthesis and evaluation of the potential of nonionic surfactants/mesoporous silica systems as nanocarriers for surfactant controlled release in enhanced oil recovery,” Fuel, vol. 241, no. December 2018, pp. 1184–1194, 2019.; L. J. Giraldo, J. Gallego, J. P. Villegas, C. A. Franco, and F. B. Cortés, “Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration,” J. Pet. Sci. Eng., vol. 174, no. October 2018, pp. 40–48, 2019.; https://repositorio.unal.edu.co/handle/unal/75566

  19. 19
    Academic Journal

    المؤلفون: Sánchez Pino, Astrid Elena

    مصطلحات موضوعية: 540 - Química y ciencias afines, Equilibrio químico

    وصف الملف: 1 video (You tube) 6:33 minutos; video/mp4; text/html

    Relation: https://repositorio.unal.edu.co/handle/unal/85729; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.una.edu.co

  20. 20
    Academic Journal

    وصف الملف: 1 recursos en línea; text/html

    Relation: HUHEEY, J.E., KEITER, E.A., KEITER, R.L., “Inorganic Chemistry: Principles of Structure and Reactivity”, Fourth. Edition. Harper – Collins, 1993.; RODGERS, G.E., “Química Inorgánica, Introducción a la Química de Coordinación, del estado sólido y descriptiva” McGraw – Hill, 1995.; MIESSLER, G.L, TARR, D.A, “Inorganic Chemistry” Prentice Hall International, Inc., 1991.; PORTERFIELD, W.W., “ Inorganic Chemistry, A unified Approach”, 2nd Edition, Academic Press, 1992.; BASOLO & JOHNSON., “Coordination Chemistry”, 2nd Edition, Science Reviews, 1986.; BUTLER, I.S., HARROD, J.F., “Química Inorgánica, Principios y Aplicaciones”, Addison – Wesley, 1992.; JOLLY, W.L., “Modern Inorganic Chemistry”, 2nd Edition, McGraw – Hill, 1991.; SHRIVER,. ATKINS., “Inorganic Chemistry”, Third Edition, Oxford Univ. Press, 1999.; ENRIQUE J. BARAN., “Química Bioinorgánica”, 1995.; ZVI SZAFRAN, RONALD M. PIKE, AND MONO M. SINGH., “Microscale Inorganic Chemistry: A Comprehensive Laboratory Experience”, 2008.; GREGORY S. GIROLAMI, THOMAS B. RAUCHFUSS, AND ROBERT J. ANGELICI., “Synthesis and Technique in Inorganic Chemistry: A Laboratory Manual”, 1999.; ROSEMARY A. MARUSAK, KATE DOAN, AND SCOTT D. CUMMINGS., “Integrated Approach to Coordination Chemistry: An Inorganic Laboratory Guide”, 2007.; COTTON, F.A., WILKINSON, G., MURILLO, C., BOCHMANN, M., “Advanced Inorganic Chemistry”, sixth Edition, Wiley Interscience, 1999.; BERSUKER, I.B., “Electronic, Structure and Properties dor Transition Metal Compounds”, Wiley Interscience, 1995.; https://repositorio.unal.edu.co/handle/unal/84746; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.una.edu.co