يعرض 1 - 20 نتائج من 35 نتيجة بحث عن '"Proteínas tirosina quinasas"', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal

    المصدر: MULTIMED; Vol. 22, No. 4 (2018); 853-861 ; 1028-4818

    وصف الملف: application/pdf

    Relation: http://www.revmultimed.sld.cu/index.php/mtm/article/view/934/1374; Bousfiha A, Jeddane L, Al-Herz W, Ailal F, Casanova JL, Chatila T, et al. The 2015 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol [Internet]. 2015 [citado 24 Ene 2017]; 35(8): 727–38. Disponible en: https://link.springer.com/article/10.1007%2Fs10875-015-0198-5.; Nobre FA, Gonzalez IG, Moraes-Pinto MI, Costa-Carvalho BT. Protective levels of varicella-zoster antibody did not effectively prevent chickenpox in an x-linked agammaglobulinemia patient. Rev Inst Med Trop. Sao Paulo [Internet]. 2015 [citado 24 Ene 2017]; 57(5):455-7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660460/.; Immune Deficiency Foundation. Specific Antibody Deficiency. [Internet]. 2016 [citado 22 Jun 2017]. Disponible en: https://primaryimmune.org/about-primaryimmunodeficiencies/specific-disease-types/specific-antibody-deficiency.; Modell V, Knaus M, Modell F, Roifman C, Orange J, Notarangelo LD. Global overview of primary immunodeficiencies: a report from Jeffrey Modell centers worldwide focused on diagnosis, treatment, and discovery. Immunol Res [Internet]. 2014 [citado 24 Ene 2017]; 60(1):132–44. Disponible en: https://link.springer.com/article/10.1007%2Fs12026-0148498-z.; Kanegae MPP, Barreiros LA, Sousa JL, Brito MA, Soares LP, Mazzuchelli JL et al. Triagem neonatal de imunodeficiências graves combinadas por meio de TRECs e KRECs: segundo estudo piloto no Brasil. Rev Paul Pediatr [Internet]. 2017 [citado 16 Mar 2017];35(1):25-32. Disponible en: http://www.scielo.br/pdf/rpp/v35n1/en_1984-0462-rpp-35-01-00025.pdf.; Sánchez M, Marsán V, Macías C, Pino D, Socarrás BB, Arce AA et al. Agammaglobulinemia ligada al x o de bruton. Rev Cubana Hematol Inmunol Hemoter [Internet]. 2014 [citado 16 Mar 2017]; 30(4):395-404. Disponible en: http://scielo.sld.cu/pdf/hih/v30n4/hih11414.pdf.; Urriza Ripa I, Villareal Calvo M, Álvarez García J, Durán Urdaniz G, Ramos Arroyo MA, Herranz Aguirre M. Enfermedad de Bruton de diagnóstico precoz: importancia de una adecuada historia clínica y los antecedentes familiares. Rev Pediatr Aten Primaria[Internet]. 2016[citado 16 Mar 2017]; 18(71): 111-4. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1139-76322016000300013.; Yáñez L, Lama P, Rivacoba C, Zamorano J, Marinovic MA. Inmunodeficiencias primarias en niños gravemente enfermos: a propósito de 3 casos clínicos. Rev Chil Pediatr[Internet]. 2017[citado 16 Mar 2017];88(1):136-141. Disponible en: https://scielo.conicyt.cl/pdf/rcp/v88n1/art10.pdf; Giorgetti OB, Paolini MV, Oleastro MM, Fernández DS. Agammaglobulinemia ligada al cromosoma x en adultos. Evolucion clínica. MEDICINA (Buenos Aires) [Internet]. 2016[citado 16 Mar 2017]; 76(2): 65-70. Disponible en: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0025-76802016000200001.; Routes JM, Verbsky JW. Immunodeficiency Presenting as an Undiagnosed Disease. Pediatric Clin North Am. 2017; 64(1): 27-37. 11. Battersby AC, Cant AJ. Symposium: immunity and infection. Advances in primary immunodeficiencies. Paediatrics and Child Health. 2017; 27(3):116-20.; Costa-Carvalho BT, Grumach AS, Franco JL, Espinosa-Rosales FJ, Leiva LE, King A, et al. Attending to warning signs of primary immunodeficiency diseases across the range of clinical practice. J Clin Immunol [Internet]. 2014 [citado 11 Abr 2016]; 34(1):10–22. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930833/.; Mohammadzadeh I, Moazzami B, Ghaffari J, Aghamohammadi A, Rezaei N. Primary immunodeficiency diseases in Northern Iran. Allergol Immunopathol. 2017; 45(3): 244-50.; http://www.revmultimed.sld.cu/index.php/mtm/article/view/934

  3. 3
    News

    المساهمون: Aguado,E Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain. Aguado,E Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cádiz, Cádiz, Spain. Compeer,EB Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom. Miazek,A Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland., EA was funded by the Consejería de Salud de Andalucía, Junta de Andalucía (Grant PI-0055-2017 to EA), and Fundación Biomédica Cádiz Proyectos INIBICA 2019 (Grant LI19/I14NCO15). EBC was supported by John Fell Fund, and ERC AdG 670930 to Michael Dustin. AM was funded by the Leading Research Groups Support project obtained in 2019 (with the subsidy, increased for the period 2020–2025 in the amount of 2% of the subsidy referred to Art. 387 (3) of the Law of 20 July 2018 on Higher Education and Science, Poland).

    وصف الملف: application/pdf

    Relation: https://www.frontiersin.org/articles/10.3389/fcell.2021.676949/full; Aguado E, Compeer EB, Miazek A. Editorial: Regulatory Mechanisms of Early Intracellular Signaling in T Lymphocytes. Front Cell Dev Biol. 2021 Apr 9;9:676949.; http://hdl.handle.net/10668/4381; PMC8063108

  4. 4
    News

    المؤلفون: Vega, Francisco M.

    المساهمون: Vega,FM Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain. Vega,FM Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain

    مصطلحات موضوعية: VRK, Phosphorylation, Acetylation, Molecular structure, Protein kinases, Chromatin, Tyrosine kinase, Neuroblastoma, Fosforilación, Acetilación, Proteínas quinasas, Cromatina, Proteínas tirosina quinasas receptoras, Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans, Medical Subject Headings::Persons::Persons::Age Groups::Child, Medical Subject Headings::Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Biochemical Processes::Phosphorylation, Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Prognosis, Medical Subject Headings::Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Biochemical Processes::Acylation, Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::DNA Packaging::Chromatin Assembly and Disassembly, Medical Subject Headings::Psychiatry and Psychology::Behavior and Behavior Mechanisms::Motivation::Intention, Medical Subject Headings::Phenomena and Processes::Chemical Phenomena::Molecular Structure, Medical Subject Headings::Diseases::Virus Diseases::DNA Virus Infections::Poxviridae Infections::Vaccinia, Medical Subject Headings::Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Molecular Mechanisms of Pharmacological Action::Enzyme Inhibitors::Protein Kinase Inhibitors, Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Signal Transduction, Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Growth Processes::Cell Proliferation, Medical Subject Headings::Anatomy::Cells::Cellular Structures::Intracellular Space::Cell Nucleus::Cell Nucleus Structures::Intranuclear Space::Chromosomes::Chromosome Structures::Chromatin, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::DNA Damage, Medical Subject Headings::Diseases::Congenital, Hereditary

    وصف الملف: application/pdf

    Relation: https://www.mdpi.com/2072-6694/13/7/1628/htm; Vega FM. Non-Canonical Kinases and Substrates in Cancer Progression. Cancers. 2021 Apr 1;13(7):1628.; http://hdl.handle.net/10668/4268; PMC8037056

  5. 5
    Academic Journal
  6. 6
  7. 7

    المساهمون: [Aguado,E] Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain. [Aguado,E] Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cádiz, Cádiz, Spain. [Compeer,EB] Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom. [Miazek,A] Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland., EA was funded by the Consejería de Salud de Andalucía, Junta de Andalucía (Grant PI-0055-2017 to EA), and Fundación Biomédica Cádiz Proyectos INIBICA 2019 (Grant LI19/I14NCO15). EBC was supported by John Fell Fund, and ERC AdG 670930 to Michael Dustin. AM was funded by the Leading Research Groups Support project obtained in 2019 (with the subsidy, increased for the period 2020–2025 in the amount of 2% of the subsidy referred to Art. 387 (3) of the Law of 20 July 2018 on Higher Education and Science, Poland).

    المصدر: Frontiers in Cell and Developmental Biology, Vol 9 (2021)

    مصطلحات موضوعية: tyrosine kinases, Bioenergetics, T-Lymphocytes, Sinapsis inmunológicas, Phenomena and Processes::Immune System Phenomena::Immune System Processes::Transplantation Immunology::Histocompatibility [Medical Subject Headings], membrane dynamics, tyrosine phospatases, transmembrane adaptor proteins, Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Clinical Laboratory Techniques::Immunologic Tests::Lymphocyte Activation [Medical Subject Headings], bioenergetics, Immunological synapse, Membrane dynamics, Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Peptides [Medical Subject Headings], Phosphorylation, Metabolismo energético, Proteínas tirosina quinasas, Phenomena and Processes::Metabolic Phenomena::Metabolism::Phosphorylation [Medical Subject Headings], Anatomy::Cells::Antigen-Presenting Cells [Medical Subject Headings], lcsh:QH301-705.5, Anatomy::Cells::Blood Cells::Leukocytes::Leukocytes, Mononuclear::Lymphocytes::T-Lymphocytes [Medical Subject Headings], Chemistry, T-cell receptor, immune synapse, Cell Biology, Linfocitos T, Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Proteins::Membrane Proteins::Receptors, Cell Surface::Receptors, Immunologic::Receptors, Antigen::Receptors, Antigen, T-Cell::Receptor-CD3 Complex, Antigen, T-Cell [Medical Subject Headings], Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Proteins::Membrane Proteins::Receptors, Cell Surface::Receptors, Immunologic::Receptors, Antigen::Receptors, Antigen, T-Cell [Medical Subject Headings], Cell biology, Anatomy::Cells::Cellular Structures::Intracellular Space::Cytoplasm::Cytoplasmic Structures::Cytoskeleton [Medical Subject Headings], lcsh:Biology (General), Anatomy::Hemic and Immune Systems::Immune System::Immunological Synapses [Medical Subject Headings], Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Amino Acids::Amino Acids, Cyclic::Amino Acids, Aromatic::Tyrosine [Medical Subject Headings], Complejo receptor-CD3 del antígeno de linfocito T, Tyrosine kinase, Fosforilación, Intracellular, TCR, Developmental Biology

    وصف الملف: application/pdf

  8. 8
    Dissertation/ Thesis
  9. 9

    المؤلفون: Sohm, Amanda Gertrud Maria

    المساهمون: Navarrete Rueda, Francisco, Departamentos de la UMH::Farmacología, Pediatría y Química Orgánica

    المصدر: REDIUMH. Depósito Digital de la UMH
    instname

    وصف الملف: application/pdf

  10. 10
  11. 11
    Dissertation/ Thesis

    المؤلفون: Castro Badilla, Juan José

    المساهمون: Umaña Pérez, Yadi Adriana, Grupo de Investigación en Hormonas

    وصف الملف: xvii, 74 páginas; application/pdf

    Relation: 1. Apps R, Sharkey A, Gardner L, Male V, Trotter M, Miller N, et al. Genome-wide expression profile of first trimester villous and extravillous human trophoblast cells. Placenta. 2011;32: 33–43. doi:10.1016/j.placenta.2010.10.010; 2. Heidari Z, Sheibak N. Trophoblast Giant Cells, the Prime Suspects of Deficient Placentation Associated With Pregnancy Complications. Gene Cell Tissue. 2016;3: e38516. doi:10.17795/gct-38516; 3. Lunghi L, Ferretti ME, Medici S, Biondi C, Vesce F. Control of human trophoblast function. Reprod Biol Endocrinol RBE. 2007;5: 6. doi:10.1186/1477-7827-5-6; 4. Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knofler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol. 2018;9: 2597. doi:10.3389/fimmu.2018.02597; 5. Khan MA, Manna S, Malhotra N, Sengupta J, Ghosh D. Expressional regulation of genes linked to immunity & programmed development in human early placental villi. Indian J Med Res. 2014;139: 125–140; 6. Mutter WP, Karumanchi SA. Molecular mechanisms of preeclampsia. Microvasc Res. 2008;75: 1–8. doi:10.1016/j.mvr.2007.04.009; 7. Pennington KA, Schlitt JM, Jackson DL, Schulz LC, Schust DJ. Preeclampsia: multiple approaches for a multifactorial disease. Dis Model Mech. 2012;5: 9–18. doi:10.1242/dmm.008516; 8. Monchek R, Wiedaseck S. Gestational trophoblastic disease: an overview. J Midwifery Womens Health. 2012;57: 255–259. doi:10.1111/j.1542-2011.2012.00177.x; 9. Fisher SJ. Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol. 2015;213: S115-122. doi:10.1016/j.ajog.2015.08.042; 11. Cortés C, Ching R, Rodríguez A, León H, Capasso S, Lozano F, et al. La mola hidatidiforme: un indicador de la situación sociodemográfica en salud sexual y reproductiva. Inf Quinc Epidemiol Nac. 2003;12: 193–208.; 12. Gratton RJ, Asano H, Han VKM. The regional expression of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) in the placentae of women with pre-eclampsia. Placenta. 2002;23: 303–310. doi:10.1053/plac.2001.0780; 13. Gurel D, Ozer E, Altunyurt S, Guclu S, Demir N. Expression of IGR-IR and VEGF and trophoblastic proliferative activity in placentas from pregnancies complicated by IUGR. Pathol Res Pract. 2003;199: 803–809. doi:10.1078/0344-0338-00499; 14. Livingstone C. IGF2 and cancer. Endocr Relat Cancer. 2013;20: R321-339. doi:10.1530/ERC-13-0231; 15. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer. 2012;12: 159–169. doi:10.1038/nrc3215; 16. Gary-Bobo M, Nirdé P, Jeanjean A, Morère A, Garcia M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem. 2007;14: 2945–2953. doi:10.2174/092986707782794005; 17. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol. 2003;4: 202–212. doi:10.1038/nrm1050; 18. Leksa V, Ilkova A, Vicikova K, Stockinger H. Unravelling novel functions of the endosomal transporter mannose. Immunol Lett. 2017;190: 194–200. doi:10.1016/j.imlet.2017.08.011; 19. Zaina S, Squire S. The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces organ size by IGF-II-mediated and IGF-II-independent mechanisms. J Biol Chem. 1998;273: 28610–28616. doi:10.1074/jbc.273.44.28610; 20. Leksa V, Loewe R, Binder B, Schiller HB, Eckerstorfer P, Forster F, et al. Soluble M6P/IGF2R released by TACE controls angiogenesis via blocking plasminogen activation. Circ Res. 2011;108: 676–685. doi:10.1161/CIRCRESAHA.110.234732; 21. Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget. 2017;8: 1814–1844. doi:10.18632/oncotarget.12123; 22. McKinnon T, Chakraborty C, Gleeson LM, Chidiac P, Lala PK. Stimulation of human extravillous trophoblast migration by IGF-II is mediated by IGF type 2 receptor involving inhibitory G protein(s) and phosphorylation of MAPK. J Clin Endocrinol Metab. 2001;86: 3665–3674. doi:10.1210/jcem.86.8.7711; 23. Harris LK, Crocker IP, Baker PN, Aplin JD, Westwood M. IGF2 actions on trophoblast in human placenta are regulated by the insulin-like growth factor 2 receptor, which can function as both a signaling and clearance receptor. Biol Reprod. 2011;84: 440–446. doi:10.1095/biolreprod.110.088195; 24. Harris LK, Pantham P, Yong HEJ, Pratt A, Borg AJ, Crocker I, et al. The role of insulinlike growth factor 2 receptor-mediated homeobox gene expression in human placental apoptosis, and its implications in idiopathic fetal growth restriction. Mol Hum Reprod. 2019;25: 572–585. doi:10.1093/molehr/gaz047; 25. Kaku K, Osada H, Seki K, Sekiya S. Insulin-like growth factor 2 (IGF2) and IGF2 receptor gene variants are associated with fetal growth. Acta Paediatr Oslo Nor 1992. 2007;96: 363–367. doi:10.1111/j.1651-2227.2006.00120.x; 26. Holtan SG, Creedon DJ, Haluska P, Markovic SN. Cancer and pregnancy: parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin Proc. 2009;84: 985–1000. doi:10.1016/S0025-6196(11)60669-1; 27. Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, Khoo N, et al. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res. 1993;206: 204–211. doi:10.1006/excr.1993.1139; 28. American Type Culture Collection. HTR-8/SVneo (ATCC® CRL-3271TM). [cited 18 Jan 2020]. Available: https://www.atcc.org/Products/All/CRL-3271.aspx#; 29. Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol. 2014;387: 131–141. doi:10.1016/j.ydbio.2014.01.015; 30. Sakano K, Enjoh T, Numata F, Fujiwara H, Marumoto Y, Higashihashi N, et al. The design, expression, and characterization of human insulin-like growth factor II (IGF-II) mutants specific for either the IGF-II/cation-independent mannose. J Biol Chem. 1991;266: 20626–20635; 31. GroPep. GroPep Bioreagents IGF Analogues. In: Human [Leu27]IGF-II [Internet]. [cited 6 May 2020]. Available: https://gropep.com/product_families/igfanalogues/products/human-leu27-igf-ii--7; 32. Forbes BE, Hartfield PJ, McNeil KA, Surinya KH, Milner SJ, Cosgrove LJ, et al. Characteristics of binding of insulin-like growth factor (IGF)-I and IGF-II analogues to the type 1 IGF receptor determined by BIAcore analysis. Eur J Biochem. 2002;269: 961–968. doi:10.1046/j.0014-2956.2001.02735.x; 33. Oh Y, Müller HL, Zhang H, Ling N, Rosenfeld RG. Synthesis and characterization of IGF-II analogs: applications in the evaluation of IGF receptor function and IGFindependent actions of IGFBPs. Adv Exp Med Biol. 1993;343: 41–54. doi:10.1007/978- 1-4615-2988-0_5; 34. Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal development. Reprod Camb Engl. 2017;153: R97–R108. doi:10.1530/REP-16-0495; 35. Scott CD, Kiess W. Soluble M6P/IGFIIR in the circulation. Best Pract Res Clin Endocrinol Metab. 2015;29: 723–733. doi:10.1016/j.beem.2015.08.001; 36. Jeyaratnaganthan N, Hojlund K, Kroustrup JP, Larsen JF, Bjerre M, Levin K, et al. Circulating levels of insulin-like growth factor-II/mannose-6-phosphate receptor in obesity and type 2 diabetes. Growth Horm IGF Res Off J Growth Horm Res Soc Int IGF Res Soc. 2010;20: 185–191. doi:10.1016/j.ghir.2009.12.005; 37. Molfino A, Amabile MI, Monti M, Arcieri S, Rossi Fanelli F, Muscaritoli M. The Role of Docosahexaenoic Acid (DHA) in the Control of Obesity and Metabolic Derangements in Breast Cancer. Int J Mol Sci. 2016;17: 505. doi:10.3390/ijms17040505; 38. Staun-Ram E, Shalev E. Human trophoblast function during the implantation process. Reprod Biol Endocrinol RBE. 2005;3: 56. doi:10.1186/1477-7827-3-56; 39. Bischof P, Irminger-Finger I. The human cytotrophoblastic cell, a mononuclear chameleon. Int J Biochem Cell Biol. 2005;37: 1–16. doi:10.1016/j.biocel.2004.05.014; 40. Moffett A, Loke C, McLaren A, editors. Biology and Pathology of Trophoblast. Cambridge: Cambridge University Press; 2006. doi:10.1017/CBO9780511545207; 41. Hanssens S, Salzet M, Vinatier D. Aspectos inmunológicos de la gestación. EMC - Ginecol-Obstet. 2013;49: 1–21. doi:10.1016/S1283-081X(13)64079-5; 42. American Cancer Society. What Is Gestational Trophoblastic Disease? Available: https://www.cancer.org/cancer/gestational-trophoblastic-disease/about/what-isgtd.html; 43. Alfredo López Cousillas JME. Enfermedad Trofoblástica Gestacional. Aspectos Clínicos y Morfológicos. Rev Esp Patol. 2002;35: 187–200.; 44. Shaaban AM, Rezvani M, Haroun RR, Kennedy AM, Elsayes KM, Olpin JD, et al. Gestational Trophoblastic Disease: Clinical and Imaging Features. RadioGraphics. 2017;37: 681–700. doi:10.1148/rg.2017160140; 45. Le Bret T, Tranbaloc P, Benbunan J-L, Salet-Lizée D, Villet R. [Endometrial choriocarcinoma in peri-menopausal women]. J Gynecol Obstet Biol Reprod (Paris). 2005;34: 85–89. doi:10.1016/s0368-2315(05)82674-2; 46. Sierra-Bergua B, Sánchez-Marteles M, Cabrerizo-García JL, Sanjoaquin-Conde I. Choriocarcinoma with pulmonary and cerebral metastases. Singapore Med J. 2008;49: e286-288; 47. Caniggia I, Winter J, Lye SJ, Post M. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000;21 Suppl A: S25-30. doi:10.1053/plac.1999.0522; 48. Nathanielsz PW. Animal models that elucidate basic principles of the developmental origins of adult diseases. ILAR J. 2006;47: 73–82. doi:10.1093/ilar.47.1.73; 49. Nardozza LMM, Caetano ACR, Zamarian ACP, Mazzola JB, Silva CP, Marçal VMG, et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295: 1061– 1077. doi:10.1007/s00404-017-4341-9; 50. Barker DJP. Fetal programming of coronary heart disease. Trends Endocrinol Metab TEM. 2002;13: 364–368. doi:10.1016/s1043-2760(02)00689-6; 51. Sánchez-Gómez M. Entendiendo el papel del sistema de factores de crecimiento similares a la insulin (IGF) en la regulacion funcional del trofoblasto humano. Rev Acad Colomb Cienc Exactas Fis Nat. 2014;38: 118+; 52. Diaz LE, Chuan Y-C, Lewitt M, Fernandez-Perez L, Carrasco-Rodriguez S, SanchezGomez M, et al. IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Mol Hum Reprod. 2007;13: 567–576. doi:10.1093/molehr/gam039; 53. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993;75: 73–82; 54. Kumar N, Leverence J, Bick D, Sampath V. Ontogeny of growth-regulating genes in the placenta. Placenta. 2012;33: 94–99. doi:10.1016/j.placenta.2011.11.018; 55. Hamilton GS, Lysiak JJ, Han VK, Lala PK. Autocrine-paracrine regulation of human trophoblast invasiveness by insulin-like growth factor (IGF)-II and IGF-binding protein (IGFBP)-1. Exp Cell Res. 1998;244: 147–156. doi:10.1006/excr.1998.4195; 56. Chen H, Li Y, Shi J, Song W. Role and mechanism of insulin-like growth factor 2 on the proliferation of human trophoblasts in vitro. J Obstet Gynaecol Res. 2016;42: 44–51. doi:10.1111/jog.12853; 57. Clemmons DR, Busby WH, Arai T, Nam TJ, Clarke JB, Jones JI, et al. Role of insulinlike growth factor binding proteins in the control of IGF actions. Prog Growth Factor Res. 1995;6: 357–366. doi:10.1016/0955-2235(95)00013-5; 58. Baxter RC. Changes in the IGF-IGFBP axis in critical illness. Best Pract Res Clin Endocrinol Metab. 2001;15: 421–434. doi:10.1053/beem.2001.0161; 59. Massoner P, Ladurner-Rennau M, Eder IE, Klocker H. Insulin-like growth factors and insulin control a multifunctional signalling network of significant importance in cancer. Br J Cancer. 2010;103: 1479–1484. doi:10.1038/sj.bjc.6605932; 60. Forbes K, Westwood M, Baker PN, Aplin JD. Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am J Physiol Cell Physiol. 2008;294: C1313-1322. doi:10.1152/ajpcell.00035.2008; 61. Pombo M, Audí L, Bueno M, Calzada R, Cassorla F, Diéguez C, et al. Tratado de Endocrinología Pediátrica. 4o edición. España: McGRAW-HILL; 2009.; 62. O’Dell SD, Day INM. Molecules in focus Insulin-like growth factor II (IGF-II). Int J Biochem Cell Biol. 1998;30: 767–771. doi:10.1016/S1357-2725(98)00048-X; 63. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92: 1472–1489. doi:10.1093/jnci/92.18.1472; 64. Vu TH, Hoffman AR. Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature. 1994;371: 714–717. doi:10.1038/371714a0; 65. Harrela M, Koistinen H, Kaprio J, Lehtovirta M, Tuomilehto J, Eriksson J, et al. Genetic and environmental components of interindividual variation in circulating levels of IGFI, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest. 1996;98: 2612–2615. doi:10.1172/JCI119081; 66. Bergman D, Bergman D, Halje M, Nordin M, Engström W. Insulin-Like Growth Factor 2 in Development and Disease: A Mini-Review. Gerontology. 2013;59: 240–249. doi:10.1159/000343995; 67. Chao W, D’Amore PA. IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 2008;19: 111–120. doi:10.1016/j.cytogfr.2008.01.005; 68. Krauss G. Biochemistry of Signal Transduction and Regulation. 5th edition. Germany: Wiley-VHC; 2014.; 69. Iniguez G, Castro JJ, Garcia M, Kakarieka E, Johnson MC, Cassorla F, et al. IGF-IR signal transduction protein content and its activation by IGF-I in human placentas: relationship with gestational age and birth weight. PloS One. 2014;9: e102252. doi:10.1371/journal.pone.0102252; 70. Iñiguez G, Cassorla F. Expresión y contenido placentario de los componentes del eje somatotrófico en niños con alteraciones del crecimiento fetal. Rev Esp Endocrinol Pediatr. 2012;3 Suppl(1): 33–37. doi:10.3266/RevEspEndocrinolPediatr.pre2012.Apr.96; 71. Brown J, Delaine C, Zaccheo OJ, Siebold C, Gilbert RJ, van Boxel G, et al. Structure and functional analysis of the IGF-II/IGF2R interaction. EMBO J. 2008;27: 265–276. doi:10.1038/sj.emboj.7601938; 72. El-Shewy HM, Luttrell LM. Insulin-like growth factor-2/mannose-6 phosphate receptors. Vitam Horm. 2009;80: 667–697. doi:10.1016/S0083-6729(08)00624-9; 73. Fang J, Furesz TC, Lurent RS, Smith CH, Fant ME. Spatial polarization of insulin-like growth factor receptors on the human syncytiotrophoblast. Pediatr Res. 1997;41: 258– 265. doi:10.1203/00006450-199702000-00017; 74. Gary-Bobo M, Nirdé P, Jeanjean A, Morère A, Garcia M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem. 2007;14: 2945–2953. doi:10.2174/092986707782794005; 75. Ou J-M, Lian W-S, Qiu M-K, Dai Y-X, Dong Q, Shen J, et al. Knockdown of IGF2R suppresses proliferation and induces apoptosis in hemangioma cells in vitro and in vivo. Int J Oncol. 2014;45: 1241–1249. doi:10.3892/ijo.2014.2512; 76. Weiner JA, Chen A, Davis BH. E-box-binding repressor is down-regulated in hepatic stellate cells during up-regulation of mannose 6-phosphate/insulin-like growth factor-II receptor expression in early hepatic fibrogenesis. J Biol Chem. 1998;273: 15913– 15919. doi:10.1074/jbc.273.26.15913; 77. Chen W-K, Kuo W-W, Hsieh DJ-Y, Chang H-N, Pai P-Y, Lin K-H, et al. CREB Negatively Regulates IGF2R Gene Expression and Downstream Pathways to Inhibit Hypoxia-Induced H9c2 Cardiomyoblast Cell Death. Int J Mol Sci. 2015;16: 27921– 27930. doi:10.3390/ijms161126067; 78. Hinrichs S, Heger J, Schreckenberg R, Wenzel S, Euler G, Arens C, et al. Controlling cardiomyocyte length: the role of renin and PPAR-{gamma}. Cardiovasc Res. 2011;89: 344–352. doi:10.1093/cvr/cvq313; 79. Bohnsack RN, Warejcka DJ, Wang L, Gillespie SR, Bernstein AM, Twining SS, et al. Expression of insulin-like growth factor 2 receptor in corneal keratocytes during differentiation and in response to wound healing. Invest Ophthalmol Vis Sci. 2014;55: 7697–7708. doi:10.1167/iovs.14-15179; 80. Instituto Weizmann de Ciencias. GeneCards HUMAN GENE DATABASE. [cited 5 Apr 2020]. Available: https://www.genecards.org/cgi-bin/carddisp.pl?gene=IGF2R; 81. El-Shewy HM, Johnson KR, Lee M-H, Jaffa AA, Obeid LM, Luttrell LM. Insulin-like growth factors mediate heterotrimeric G protein-dependent ERK1/2 activation by transactivating sphingosine 1-phosphate receptors. J Biol Chem. 2006;281: 31399– 31407. doi:10.1074/jbc.M605339200; 82. Okamoto T, Katada T, Murayama Y, Ui M, Ogata E, Nishimoto I. A simple structure encodes G protein-activating function of the IGF-II/mannose. Cell. 1990;62: 709–717. doi:10.1016/0092-8674(90)90116-v; 83. Okamoto T, Nishimoto I. Analysis of stimulation-G protein subunit coupling by using active insulin-like growth factor II receptor peptide. Proc Natl Acad Sci U S A. 1991;88: 8020–8023. doi:10.1073/pnas.88.18.8020; 84. Higashijima T, Uzu S, Nakajima T, Ross EM. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating. J Biol Chem. 1988;263: 6491–6494.; 85. Shields S-K, Nicola C, Chakraborty C. Rho Guanosine 5′-Triphosphatases Differentially Regulate Insulin-Like Growth Factor I (IGF-I) Receptor-Dependent and -Independent Actions of IGF-II on Human Trophoblast Migration. Endocrinology. 2007;148: 4906– 4917. doi:10.1210/en.2007-0476; 86. Chu C-H, Tzang B-S, Chen L-M, Liu C-J, Tsai F-J, Tsai C-H, et al. Activation of insulinlike growth factor II receptor induces mitochondrial-dependent apoptosis through G(alpha)q and downstream calcineurin signaling in myocardial cells. Endocrinology. 2009;150: 2723–2731. doi:10.1210/en.2008-0975; 87. Anitei M, Chenna R, Czupalla C, Esner M, Christ S, Lenhard S, et al. A high-throughput siRNA screen identifies genes that regulate mannose 6-phosphate receptor trafficking. England; 2014. doi:10.1242/jcs.159608; 88. Amritraj A, Hawkes C, Phinney AL, Mount HT, Scott CD, Westaway D, et al. Altered levels and distribution of IGF-II/M6P receptor and lysosomal enzymes in mutant APP and APP + PS1 transgenic mouse brains. Neurobiol Aging. 2009;30: 54–70. doi:10.1016/j.neurobiolaging.2007.05.004; 89. Wang Y, Buggia-Prévot V, Zavorka ME, Bleackley RC, MacDonald RG, Thinakaran G, et al. Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability. Mol Cell Biol. 2015;35: 2368–2384. doi:10.1128/MCB.01338-14; 90. Turner PR, O’Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol. 2003;70: 1–32. doi:10.1016/s0301-0082(03)00089-3; 91. Dahms SO, Hoefgen S, Roeser D, Schlott B, Gührs K-H, Than ME. Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. Proc Natl Acad Sci U S A. 2010;107: 5381–5386. doi:10.1073/pnas.0911326107; 92. Zheng H, Koo EH. The amyloid precursor protein: beyond amyloid. Mol Neurodegener. 2006;1: 5. doi:10.1186/1750-1326-1-5; 93. Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003;26: 565–597. doi:10.1146/annurev.neuro.26.041002.131334; 94. Porayette P, Gallego MJ, Kaltcheva MM, Meethal SV, Atwood CS. Amyloid-beta precursor protein expression and modulation in human embryonic stem cells: a novel role for human chorionic gonadotropin. Biochem Biophys Res Commun. 2007;364: 522–527. doi:10.1016/j.bbrc.2007.10.021; 95. Gao H, Sathishkumar KR, Yallampalli U, Balakrishnan M, Li X, Wu G, et al. Maternal protein restriction regulates IGF2 system in placental labyrinth. Front Biosci Elite Ed. 2012;4: 1434–1450. doi:10.2741/472; 96. Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Physiol. 2017;595: 5057–5093. doi:10.1113/JP273330; 97. Harris LK, Westwood M. Biology and significance of signalling pathways activated by IGF-II. Growth Factors Chur Switz. 2012;30: 1–12. doi:10.3109/08977194.2011.640325; 98. Charnock JC, Dilworth MR, Aplin JD, Sibley CP, Westwood M, Crocker IP. The impact of a human IGF-II analog ([Leu27]IGF-II) on fetal growth in a mouse model of fetal growth restriction. Am J Physiol Endocrinol Metab. 2016;310: E24-31. doi:10.1152/ajpendo.00379.2015; 99. Sferruzzi-Perri AN, Owens JA, Standen P, Roberts CT. Maternal insulin-like growth factor-II promotes placental functional development via the type 2 IGF receptor in the guinea pig. Placenta. 2008;29: 347–355. doi:10.1016/j.placenta.2008.01.009; 100. Costello M, Baxter RC, Scott CD. Regulation of soluble insulin-like growth factor II/mannose 6-phosphate receptor in human serum: measurement by enzyme-linked immunosorbent assay. J Clin Endocrinol Metab. 1999;84: 611–617. doi:10.1210/jcem.84.2.5488; 101. Ong K, Kratzsch J, Kiess W, Costello M, Scott C, Dunger D. Size at birth and cord blood levels of insulin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-1 (IGFBP-1), IGFBP-3, and the soluble. J Clin Endocrinol Metab. 2000;85: 4266–4269. doi:10.1210/jcem.85.11.6998; 102. Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de Situación Nutricional ENSIN. In: Nutrición [Internet]. [cited 17 May 2020]. Available: https://www.icbf.gov.co/bienestar/nutricion/encuesta-nacional-situacion-nutricional; 103. Blancas-Flores G, Almanza-P JC, López-Roa RI, Alarcón-Aguilar FJ, García-Macedo, Rebeca, Cruz M. La obesidad como un proceso inflamatorio. Bol Med Hosp Infant Mex. 2010;67: 88–97.; 104. Poston L, Caleyachetty R, Cnattingius S, Corvalan C, Uauy R, Herring S, et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016;4: 1025–1036. doi:10.1016/S2213-8587(16)30217-0; 105. Chanprasertyothin S, Jongjaroenprasert W, Ongphiphadhanakul B. The association of soluble IGF2R and IGF2R gene polymorphism with type 2 diabetes. J Diabetes Res. 2015;2015: 216383. doi:10.1155/2015/216383; 106. Caviedes L, Iñiguez G, Hidalgo P, Castro JJ, Castaño E, Llanos M, et al. Relationship between folate transporters expression in human placentas at term and birth weights. Placenta. 2016;38: 24–28. doi:10.1016/j.placenta.2015.12.007; 107. Lazar I. Jr., Horvath-Lazar E., Lazar I. GelAnalyzer 19.1. Available: http://www.gelanalyzer.com/index.html; 108. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001;25: 402–408. doi:10.1006/meth.2001.1262; 109. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55: 611–622. doi:10.1373/clinchem.2008.112797; 110. Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3: 1125–1131. doi:10.1038/nprot.2008.75; 111. Armant DR. Blastocysts don’t go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev Biol. 2005;280: 260–280. doi:10.1016/j.ydbio.2005.02.009; 112. Anette Lindhard, Ursula Bentin-Ley, Vibeke Ravn, Henrik Islin, Thomas Hviid, Sven Rex, et al. Biochemical evaluation of endometrial function at the time of implantation. MODERN TRENDS. 2002;78: 221–233. doi:https://doi.org/10.1016/S0015- 0282(02)03240-5; 113. Carter AM, Enders AC, Pijnenborg R. The role of invasive trophoblast in implantation and placentation of primates. Philos Trans R Soc Lond B Biol Sci. 2015;370: 20140070. doi:10.1098/rstb.2014.0070; 114. Lala PK, Hamilton GS. Growth factors, proteases and protease inhibitors in the maternal-fetal dialogue. Placenta. 1996;17: 545–555. doi:10.1016/s0143- 4004(96)80071-3; 115. Umaña Pérez A., Novoa Herrán S., Castro JJ., Correa Sánchez A., Guevara V., López González D., et al. Role of the Insulin-like growth factor axis and the Transforming growth factor-β in the regulation of the placenta and the pathogenesis of Gestational Trophoblastic Diseases. Med Res Arch. En Prensa.; 116. Barolo S, Posakony JW. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev. 2002;16: 1167– 1181. doi:10.1101/gad.976502; 117. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer. 2002;2: 489–501. doi:10.1038/nrc839; 118. Crespo P, Xu N, Simonds WF, Gutkind JS. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature. 1994;369: 418–420. doi:10.1038/369418a0; 119. Krauss G. Intracellular Messenger Substances: “Second Messengers.” 5th edition. Biochemistry of Signal Transduction and Regulation. 5th edition. Germany; 2014. pp. 369–416.; 120. Strauss JF 3rd, Kido S, Sayegh R, Sakuragi N, Gafvels ME. The cAMP signalling system and human trophoblast function. Placenta. 1992;13: 389–403. doi:10.1016/0143-4004(92)90047-w; 121. Biondi C, Ferretti ME, Lunghi L, Medici S, Cervellati F, Pavan B, et al. cAMP efflux from human trophoblast cell lines: a role for multidrug resistance protein (MRP)1 transporter. Mol Hum Reprod. 2010;16: 481–491. doi:10.1093/molehr/gaq023; 122. Darashchonak N, Koepsell B, Bogdanova N, von Versen-Hoynck F. Adenosine A2B receptors induce proliferation, invasion and activation of cAMP response element binding protein (CREB) in trophoblast cells. BMC Pregnancy Childbirth. 2014;14: 2. doi:10.1186/1471-2393-14-2; 123. Harris LK, Jones CJP, Aplin JD. Adhesion molecules in human trophoblast - a review. II. extravillous trophoblast. Placenta. 2009;30: 299–304. doi:10.1016/j.placenta.2008.12.003; 124. Jackson EK, Dubey RK. Role of the extracellular cAMP-adenosine pathway in renal physiology. Am J Physiol Renal Physiol. 2001;281: F597-612. doi:10.1152/ajprenal.2001.281.4.F597; 125. Miyamoto S, Teramoto H, Gutkind JS, Yamada KM. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol. 1996;135: 1633–1642. doi:10.1083/jcb.135.6.1633; 126. Kabir-Salmani M, Shiokawa S, Akimoto Y, Hasan-Nejad H, Sakai K, Nagamatsu S, et al. Characterization of morphological and cytoskeletal changes in trophoblast cells induced by insulin-like growth factor-I. J Clin Endocrinol Metab. 2002;87: 5751–5759. doi:10.1210/jc.2002-020550; 127. Irving JA, Lala PK. Functional role of cell surface integrins on human trophoblast cell migration: regulation by TGF-beta, IGF-II, and IGFBP-1. Exp Cell Res. 1995;217: 419– 427. doi:10.1006/excr.1995.1105; 128. Hills FA, Elder MG, Chard T, Sullivan MHF. Regulation of human villous trophoblast by insulin-like growth factors and insulin-like growth factor-binding protein-1. J Endocrinol. 2004;183: 487–496. doi:10.1677/joe.1.05867; 129. Burrows TD, King A, Loke YW. Trophoblast migration during human placental implantation. Hum Reprod Update. 1996;2: 307–321. doi:10.1093/humupd/2.4.307; 130. Gleeson LM, Chakraborty C, McKinnon T, Lala PK. Insulin-like growth factor-binding protein 1 stimulates human trophoblast migration by signaling through alpha 5 beta 1 integrin via mitogen-activated protein Kinase pathway. J Clin Endocrinol Metab. 2001;86: 2484–2493. doi:10.1210/jcem.86.6.7532; 131. Li T, Wei S, Fan C, Tang D, Luo D. Nesfatin-1 Promotes Proliferation, Migration and Invasion of HTR-8/SVneo Trophoblast Cells and Inhibits Oxidative Stress via Activation of PI3K/AKT/mTOR and AKT/GSK3β Pathway. Reprod Sci Thousand Oaks Calif. 2021;28: 550–561. doi:10.1007/s43032-020-00324-1; 132. Staun-Ram E, Goldman S, Gabarin D, Shalev E. Expression and importance of matrix metalloproteinase 2 and 9 (MMP-2 and -9) in human trophoblast invasion. Reprod Biol Endocrinol RBE. 2004;2: 59. doi:10.1186/1477-7827-2-59; 133. Han VK, Carter AM. Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placenta of man and laboratory animals. Placenta. 2000;21: 289–305. doi:10.1053/plac.1999.0498; 134. Sánchez-Gómez M, Novoa-Herran SS. EL IGF-II ESTIMULA LA ACTIVIDAD DE MMP-9 Y MMP-2 EN UN MODELO DE TROFOBLASTO HUMANO. Acta Biológica Colomb. 2011;16: 121–132; 135. Espino Y Sosa S, Flores-Pliego A, Espejel-Nuñez A, Medina-Bastidas D, VadilloOrtega F, Zaga-Clavellina V, et al. New Insights into the Role of Matrix Metalloproteinases in Preeclampsia. Int J Mol Sci. 2017;18. doi:10.3390/ijms18071448; 136. Chang M-H, Kuo W-W, Chen R-J, Lu M-C, Tsai F-J, Kuo W-H, et al. IGF-II/mannose 6-phosphate receptor activation induces metalloproteinase-9 matrix activity and increases plasminogen activator expression in H9c2 cardiomyoblast cells. J Mol Endocrinol. 2008;41: 65–74. doi:10.1677/JME-08-0051; 137. Pinzón M, Diaz L, Ortiz B, Umaña A, De Rodriguez S, Sanchez de Gomez M. LA ACTIVACIÓN DE LA VÍA DE SEÑALIZACIÓN PI3K/AKT POR EL FACTOR DE CRECIMIENTO SIMILAR A LA INSULINA TIPO II ESTIMULA LA EXPRESIÓN DEL mARN DE LA METALOPROTEINASA 9 EN CÉLULAS DE CORIOCARCINOMA. Rev Colomb Quím Vol 38 Núm 3 2009. 2009. Available: https://revistas.unal.edu.co/index.php/rcolquim/article/view/13490; 138. de Alboran IM, O’Hagan RC, Gartner F, Malynn B, Davidson L, Rickert R, et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity. 2001;14: 45–55.; 139. Rivera VM, Greenberg ME. Growth factor-induced gene expression: the ups and downs of c-fos regulation. New Biol. 1990;2: 751–758; 140. Kalisch-Smith JI, Simmons DG, Dickinson H, Moritz KM. Review: Sexual dimorphism in the formation, function and adaptation of the placenta. Placenta. 2017;54: 10–16. doi:10.1016/j.placenta.2016.12.008; 141. Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans. 2017;45: 1105–1115. doi:10.1042/BST20160474; 142. Dennis PA, Rifkin DB. Cellular activation of latent transforming growth factor beta requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc Natl Acad Sci U S A. 1991;88: 580–584. doi:10.1073/pnas.88.2.580; 143. Saben J, Lindsey F, Zhong Y, Thakali K, Badger TM, Andres A, et al. Maternal obesity is associated with a lipotoxic placental environment. Placenta. 2014;35: 171–177. doi:10.1016/j.placenta.2014.01.003; 144. Challier JC, Basu S, Bintein T, Minium J, Hotmire K, Catalano PM, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29: 274–281. doi:10.1016/j.placenta.2007.12.010; 145. Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal development. Reprod Camb Engl. 2017;153: R97–R108. doi:10.1530/REP-16-0495; 146. Zhu MJ, Du M, Nathanielsz PW, Ford SP. Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta. 2010;31: 387–391. doi:10.1016/j.placenta.2010.02.002; 147. Zulet MA, Puchau B, Navarro C, Martí A, Martínez JA. Biomarcadores del estado inflamatorio: nexo de unión con la obesidad y complicaciones asociadas. Nutr Hosp. 2007;22: 511–527.; 148. Samad F, Yamamoto K, Pandey M, Loskutoff DJ. Elevated expression of transforming growth factor-beta in adipose tissue from obese mice. Mol Med Camb Mass. 1997;3: 37–48.; 149. Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W, et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 2011;14: 67–79. doi:10.1016/j.cmet.2011.04.013; 150. Zunke F, Rose-John S. The shedding protease ADAM17: Physiology and pathophysiology. Biochim Biophys Acta Mol Cell Res. 2017;1864: 2059–2070. doi:10.1016/j.bbamcr.2017.07.001; 151. Liu C, Xu P, Lamouille S, Xu J, Derynck R. TACE-mediated ectodomain shedding of the type I TGF-beta receptor downregulates TGF-beta signaling. Mol Cell. 2009;35: 26–36. doi:10.1016/j.molcel.2009.06.018; 152. Vicikova K, Petrovcikova E, Manka P, Drach J, Stockinger H, Leksa V. Serum and urinary levels of CD222 in cancer: origin and diagnostic value. Neoplasma. 2018;65: 762–768. doi:10.4149/neo_2018_171203N792; 153. Liping Xuan, Jun Ma, Mei Yu, Zhenxing Yang, Yongmin Huang, Caiyun Guo, et al. Insulin-like growth factor 2 promotes adipocyte proliferation, differentiation and lipid deposition in obese type 2 diabetes. J Transl Sci. 2019;6. doi:10.15761/JTS.1000362; 154. Alfares MN, Perks CM, Hamilton-Shield JP, Holly JMP. Insulin-like growth factor-II in adipocyte regulation: depot-specific actions suggest a potential role limiting excess visceral adiposity. Am J Physiol Endocrinol Metab. 2018;315: E1098–E1107. doi:10.1152/ajpendo.00409.2017; 155. Grimm MOW, Kuchenbecker J, Grösgen S, Burg VK, Hundsdörfer B, Rothhaar TL, et al. Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. J Biol Chem. 2011;286: 14028–14039. doi:10.1074/jbc.M110.182329; 156. Fowden AL. The insulin-like growth factors and feto-placental growth. Placenta. 2003;24: 803–812. doi:10.1016/s0143-4004(03)00080-8; 157. Morrison JL, Duffield JA, Muhlhausler BS, Gentili S, McMillen IC. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity. Pediatr Nephrol Berl Ger. 2010;25: 669–677. doi:10.1007/s00467-009-1407-3; 158. Catalano PM. Obesity and pregnancy--the propagation of a viscous cycle? J Clin Endocrinol Metab. 2003;88: 3505–3506. doi:10.1210/jc.2003-031046; 159. O’Reilly JR, Reynolds RM. The risk of maternal obesity to the long-term health of the offspring. Clin Endocrinol (Oxf). 2013;78: 9–16. doi:10.1111/cen.12055; 160. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004;117: 4619–4628. doi:10.1242/jcs.01481; 161. Sevetson BR, Kong X, Lawrence JC. Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci. 1993;90: 10305. doi:10.1073/pnas.90.21.10305; https://repositorio.unal.edu.co/handle/unal/80608; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  12. 12
    Academic Journal
  13. 13
  14. 14
    Academic Journal
  15. 15
  16. 16
  17. 17
    Academic Journal
  18. 18
    Dissertation/ Thesis
  19. 19
  20. 20