-
1Academic Journal
المؤلفون: Prabu, K.1, 1, Prasanna, N2
المصدر: Research Journal of Humanities and Social Sciences 10(2):577-583. 2019
-
2Academic Journal
المؤلفون: Prabu, K.1, Tamilarasan, K.2
المصدر: Asian Journal of Research in Social Sciences and Humanities 7(4):254-266. 2017
-
3Academic Journal
المؤلفون: Prabu, K.1, Tamilarasan, K.2
المصدر: Asian Journal of Research in Social Sciences and Humanities 7(4):267-279. 2017
-
4Academic Journal
المؤلفون: Prabu, K., Sudhakar, P.
المصدر: Indonesian Journal of Electrical Engineering and Computer Science; Vol 33, No 3: March 2024; 1915-1923 ; 2502-4760 ; 2502-4752 ; 10.11591/ijeecs.v33.i3
مصطلحات موضوعية: Computer Science, Wireless Networks, Network Security, AutoEncoder, Cloud security, DBSCAN, Particle swarm optimization, Principal component analysis, Unsupervised learning
وصف الملف: application/pdf
Relation: https://ijeecs.iaescore.com/index.php/IJEECS/article/view/36002/18077; https://ijeecs.iaescore.com/index.php/IJEECS/article/view/36002
-
5Academic Journal
المؤلفون: Akhter, Nargis, Raj, A. Arockia Bazil, Prabu, K.
المصدر: Imaging Science Journal; Sep2024, Vol. 72 Issue 6, p706-722, 17p
مصطلحات موضوعية: RADAR signal processing, CONTINUOUS wave radar, UNITS of measurement, FIELD research, PHOTONICS
-
6Book
المؤلفون: Sheeja Kumari, V., Manikandan, T., Selva Kumar, A., Ponmaniraj, S., Prabu, K.
المصدر: Digital Twin Technology and Applications ; page 187-210 ; ISBN 9781003469612
-
7Book
المصدر: Digital Twin Technology and Applications ; page 33-80 ; ISBN 9781003469612
-
8Academic Journal
المؤلفون: Ali, F., Loganathan, K., Eswaramoorthi, S., Prabu, K., Zaib, A., Chaudhary, Dinesh Kumar
المساهمون: Saeed, Anwar
المصدر: Journal of Nanomaterials ; volume 2022, issue 1 ; ISSN 1687-4110 1687-4129
-
9Academic Journal
المؤلفون: Kannan, A.Rajesh, Manivannan, P., Loganathan, K., Prabu, K., Gyeltshen, Sonam
المساهمون: Rahim, M. T.
المصدر: Journal of Mathematics ; volume 2022, issue 1 ; ISSN 2314-4629 2314-4785
-
10Academic Journal
المؤلفون: Asaigeethan, P., Vaithiyalingam, K., Loganathan, K., Prabu, K., Abbas, Mohamed, Mishra, Nirmith Kumar
المصدر: Alexandria Engineering Journal; Aug2024, Vol. 101, p318-329, 12p
مصطلحات موضوعية: ORDINARY differential equations, PARTIAL differential equations, ZINC ferrites, NANOPARTICLES, FUZZY numbers
-
11Academic Journal
المؤلفون: Suganesh, R., Venkatesh, G., Prabu, K. M., Ranjith, R., Periyasami, Govindasami, Bheema, Rajesh Kumar
المصدر: Journal of Materials Science: Materials in Electronics; Aug2024, Vol. 35 Issue 22, p1-11, 11p
-
12Academic Journal
المؤلفون: Akila, K., Thambidurai, S., Suresh, N., Prabu, K. M.
المصدر: Ionics; Jun2024, Vol. 30 Issue 6, p3637-3649, 13p
-
13Academic Journal
المؤلفون: Muralidharan, B., Prabu, K., Rajamurugan, G.
المصدر: Journal of Micromanufacturing ; volume 5, issue 2, page 144-148 ; ISSN 2516-5984 2516-5992
-
14Book
المؤلفون: Prabu, K., Irudayaraj, S., Chandrasekar, P.
المصدر: Recent Trends in Computational Intelligence and Its Application ; page 392-401 ; ISBN 9781003388913
-
15Conference
المؤلفون: Mitra, Anindita, Kumar, Abhishek, Prabu, K
المصدر: 2023 IEEE 21st Student Conference on Research and Development (SCOReD)
-
16Conference
المصدر: AIP Conference Proceedings ; INTERNATIONAL CONFERENCE ON INNOVATIONS IN ROBOTICS, INTELLIGENT AUTOMATION AND CONTROL ; volume 2914, page 030001 ; ISSN 0094-243X
-
17Academic Journal
المؤلفون: Elanchezhian, E., Nirmalkumar, R., Balamurugan, M., Mohana, K., Prabu, K. M, Viloria, Amelec
المصدر: Journal of Thermal Analysis and Calorimetry volume ; https://link.springer.com/article/10.1007/s10973-020-09847-w
مصطلحات موضوعية: Bioconvection, Gyrotactic microorganisms, Oldroyd-B nanofluid, Stratification, inclined magnetic field
وصف الملف: application/pdf
Relation: 1. Reddy GJ, Kumar M, Anwar Beg O. Effect of temperature dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate. Phys A. 2018;510:426–45.; 2. Dash GC, Ojha KL. Viscoelastic hydromagnetic flow between two porous parallel plates in the presence of sinusoidal pressure gradient. Alex Eng J. 2018;57:3463–71; 3. Hayat T, Kiyani MZ, Ahmad I, Khan MI, Alsaedi A. Stagnation point flow of viscoelastic nanomaterial over a stretched surface. Results Phys. 2018;9:518–26.; 4. Bhatnagar RK, Gupta G, Rajagopal KR. Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. Int J Non-Linear Mech. 1995;30:391–405.; 5. Sajid M, Abbas Z, Javed T, Ali N. Boundary layer flow of an Oldroyd-B fluid in the region of a stagnation point over a stretching sheet. Can J Phys. 2010;88:635–40.; 6. Shehzad SA, Alsaedi A, Hayat T, Alhuthali MS. Three-dimensional flow of an Oldroyd-B fluid with variable thermal conductivity and heat generation/absorption. PloS One. 2013;8:e78240.; 7. Abbasbandy S, Hayat T, Alsaedi A, Rashidi MM. Numerical and analytical solutions for Falkner–Skan flow of MHD Oldroyd-B fluid. Int J Numer Methods Heat Fluid Flow. 2014;24:390–401.; 8. Xu H, Cui J. Mixed convection flow in a channel with slip in a porous medium saturated with a nanofluid containing both nanoparticles and microorganisms. Int J Heat Mass Transf. 2018;125:1043–53.; 9. Hayat T, Aziz A, Muhammad T, Alsaedi A. An optimal analysis for Darcy–Forchheimer 3D flow of nanofluid with convective condition and homogeneous–heterogeneous reactions. Phys Lett A. 2018;382:2846–55.; 11. Khan M, Irfan M, Khan WA. Impact of nonlinear thermal radiation and gyrotactic microorganisms on the Magneto-Burgers nanofluid. Int J Mech Sci. 2017;130:375–82.; 12. Alsaedi A, Khan MI, Farooq M, Gull N, Hayat T. Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms. Adv Powder Technol. 2017;28:288–98.; 13. Abdelmalek Z, Khan SU, Waqas H, et al. A mathematical model for bioconvection flow of Williamson nanofluid over a stretching cylinder featuring variable thermal conductivity, activation energy and second-order slip. J Therm Anal Calorim. 2020.; 14. Tham L, Nazar R, Pop I. Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms. Int J Heat Mass Transf. 2013;62:647–60.; 15. Aziz A, Khan WA, Pop I. Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. Int J Therm Sci. 2012;56:48–57.; 16. Xu H, Pop I. Fully developed mixed convection flow in a horizontal channel filled by a nanofluid containing both nanoparticles and gyrotactic microorganisms. Eur J Mech B Fluids. 2014;46:37–45.; 17. Abdelmalek Z, Khan SU, Awais M, et al. Analysis of generalized micropolar nanofluid with swimming of microorganisms over an accelerated surface with activation energy. J Therm Anal Calorim. 2020.; 18. Kuznetsov AV. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int Commun Heat Mass Transf. 2010;37:1421–5.; 19. Kuznetsov AV. Nanofluid biothermal convection: simultaneous effects of gyrotactic and oxytactic micro-organisms. Fluid Dyn Res. 2011;43:055505.; 20. Muhammad T, Alamri SZ, Waqas H, et al. Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J Therm Anal Calorim. 2020.; 21. Khan WA, Uddin MJ, Ismail AIM. Free convection of non-Newtonian nanofluids in porous media with gyrotactic microorganisms. Transp Porous Med. 2013;97:241–52.; 22. Tausif MS, Das K, Kundu PK. Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles. J Mol Liq. 2016;220:518–26; 23. Bhatti MM, Michaelides EE. Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J Therm Anal Calorim. 2020.; 24. Siddiqa S, Sulaiman M, Hossain MA, Islam S, Gorla RSR. Gyrotactic bioconvection flow of a nanofluid past a vertical wavy surface. Int J Therm Sci. 2016;108:244–50.; 25. Mutuku WN, Makinde OD. Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Comput Fluid. 2014;95:88–97.; 26. Makinde OD, Animasaun IL. Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int J Therm Sci. 2016;109:159–71.; 27. Raees A, Raees-ul-Haq M, Xu H, Sun Q. Three-dimensional stagnation flow of a nanofluid containing both nanoparticles and microorganisms on a moving surface with anisotropic slip. Appl Math Model. 2016;40:4136–50.; 28. Akbar NS, Khan ZH. Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface. J Magn Magn Mater. 2016;410:72–80.; 29. Wang N, Maleki A, Alhuyi Nazari M, Tlili I, Safdari Shadloo M. Thermal conductivity modeling of nanofluids contain MgO particles by employing different approaches. Symmetry. 2020;12:206.; 30. Ahmadi MH, Ahmadi MA, Maleki A, Pourfayaz F, Bidi M, Açıkkalp E. Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas. Renew Sustain Energy Rev. 2017;78:80–92.; 31. Hayat T, Qayyum S, Khan MI, Alsaedi A. Current progresses about probable error and statistical declaration for radiative two-phase flow using AgH2O and CuH2O nanomaterials. Int J Hydrog Energy. 2017.; 32. Ramezanizadeh M, Nazari MA, Ahmadi MH, Lorenzini G, Pop I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim. 2019.; 33. Hayat T, Khan MI, Waqas M, Alsaedi A, Farooq M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Comput Methods Appl Mech Eng. 2016.; 34. Maleki A, Elahi M, Assad ME, Nazari MA, Shadloo MS, Nabipour N. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J Therm Anal Calorim. 2020.; 35. Irandoost Shahrestani M, Maleki A, Safdari Shadloo M, Tlili I. Numerical investigation of forced convective heat transfer and performance evaluation criterion of Al2O3/water nanofluid flow inside an axisymmetric microchannel. Symmetry. 2020;12:120.; 36. Ramezanizadeh M, Ahmadi MA, Ahmadi MH, Nazari MA. Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. J Therm Anal Calorim. 2018.; 37. Khan SU, Rauf A, Shehzad SA, Abbas Z, Javed T. Study of bioconvection flow in Oldroyd-B nanofluid with motile organisms and effective Prandtl approach. Phys A. 2019;527:121179.; 38. Komeilibirjandi A, Raffiee AH, Maleki A, Nazari MA, Shadloo MS. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2019.; 39. Liao S, Tan Y. A general approach to obtain series solutions of nonlinear differential equations. Stud Appl Math. 2007;119(4):297–354.; 41. Freidoonimehr N, Rahimi AB. Brownian motion effect on heat transfer of a three-dimensional nanofluid flow over a stretched sheet with velocity slip. J Therm Anal Calorim. 2019.; 42. Loganathan K, Mohana K, Mohanraj M, Sakthivel P, Rajan S. Impact of 3rd-grade nanofluid flow across a convective surface in the presence of inclined Lorentz force: an approach to entropy optimization. J Therm Anal Calorim. 2020.; 43. Loganathan K, Sivasankaran S, Bhuvaneshwari M, Rajan S. Second-order slip, cross-diffusion and chemical reaction effects on magneto-convection of Oldroyd-B liquid using Cattaneo–Christov heat flux with convective heating. J Therm Anal Calorim. 2019;136:401–9.; 44. Sadeghy K, Hajibeygi H, Taghavi SM. Stagnation-point flow of upper-convected Maxwell fluids. Int J Non-Linear Mech. 2006;41:1242.; 45. Mukhopadhyay S. Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink. Chin Phys Lett. 2012;29:054703.; 46. Abbasi FM, Mustafa M, Shehzad SA, Alhuthali MS, Hayat T. Analytical study of Cattaneo–Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin Phys B. 2016;25:014701.; 47. Fang T, Zhang J, Yao S. Slip MHD viscous flow over a stretching sheet an exact solution. Commun Nonlinear Sci Numer Simul. 2009;14:3731–7.; https://hdl.handle.net/11323/7797; https://doi.org/10.1007/s10973-020-09847-w; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
18Academic Journal
المؤلفون: Sudar, Latifa Z. S., Imbenay, Joash L., Budi, Indra, Ramadiah, Amanah, Putra, Prabu K., Santoso, Aris B.
المصدر: Revue d'Intelligence Artificielle; Feb2024, Vol. 38 Issue 1, p63-72, 10p
مصطلحات موضوعية: NATURAL language processing, SENTIMENT analysis, CONTENT analysis, PUBLIC opinion, SUPPORT vector machines, BUILT environment, TEAR gas
مصطلحات جغرافية: INDONESIA
الشركة/الكيان: X Corp.
-
19Academic Journal
المؤلفون: Arulmurugan, M, Prabu, K, Rajamurugan, G, Selvakumar, AS
المصدر: Journal of Industrial Textiles ; volume 50, issue 7, page 1040-1064 ; ISSN 1528-0837 1530-8057
-
20Academic Journal
المؤلفون: R, Senthil Kumar, Prabu, K, Rajamurugan, G, Ponnusamy, P
المصدر: Journal of Composite Materials ; volume 53, issue 28-30, page 4369-4384 ; ISSN 0021-9983 1530-793X