يعرض 1 - 20 نتائج من 280 نتيجة بحث عن '"Powley, Terry L"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المساهمون: National Institutes of Health, National Science Foundation

    المصدر: Advanced Healthcare Materials ; volume 12, issue 19 ; ISSN 2192-2640 2192-2659

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المساهمون: Surgery, School of Medicine

    المصدر: PMC

    مصطلحات موضوعية: Myelin biology, Myelin repair, Peripheral nervous system

    وصف الملف: application/pdf

    Relation: Scientific Reports; Havton LA, Biscola NP, Stern E, et al. Human organ donor-derived vagus nerve biopsies allow for well-preserved ultrastructure and high-resolution mapping of myelinated and unmyelinated fibers. Sci Rep. 2021;11(1):23831. Published 2021 Dec 13. doi:10.1038/s41598-021-03248-1; https://hdl.handle.net/1805/32475

  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المساهمون: U.S. Department of Agriculture, U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Purdue University, National Institute of Food and Agriculture

    المصدر: Molecular Nutrition & Food Research ; volume 62, issue 5 ; ISSN 1613-4125 1613-4133

  13. 13
    Academic Journal

    المساهمون: Zhang, Nanyin, NIH Office of the Director, National Institute of Mental Health

    المصدر: PLOS ONE ; volume 12, issue 12, page e0189518 ; ISSN 1932-6203

  14. 14
    Academic Journal

    وصف الملف: application/pdf

    Relation: Lu, Kun-Han; Liu, Zhongming; Jaffey, Deborah; Wo, John M.; Mosier, Kristine M.; Cao, Jiayue; Wang, Xiaokai; Powley, Terry L. (2022). "Automatic assessment of human gastric motility and emptying from dynamic 3D magnetic resonance imaging." Neurogastroenterology & Motility (1): n/a-n/a.; https://hdl.handle.net/2027.42/171173; Neurogastroenterology & Motility; Sclocco R, Nguyen C, Staley R, et al. Non- uniform gastric wall kinematics revealed by 4D Cine magnetic resonance imaging in humans. Neurogastroenterol Motil. 2021; e14146.; Banerjee S, Dixit S, Fox M, Pal A. Validation of a rapid, semiautomatic image analysis tool for measurement of gastric accommodation and emptying by magnetic resonance imaging. Am J Physiol- Gastrointest Liver Physiol. 2015; 308 ( 8 ): G652 - G663.; Banerjee S, Pal A, Fox M. Volume and position change of the stomach during gastric accommodation and emptying: a detailed three- dimensional morphological analysis based on MRI. Neurogastroenterol Motil. 2020; 32 ( 8 ): e13865.; Bickelhaupt S, Froehlich JM, Cattin R, et al. Software- supported evaluation of gastric motility in MRI: a feasibility study. J Med Imaging Radiat Oncol. 2014; 58 ( 1 ): 11 - 17.; Menys A, Hoad C, Spiller R, et al. Spatio- temporal motility MRI analysis of the stomach and colon. Neurogastroenterol Motil. 2019; 31 ( 5 ): 1 - 9.; Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Nonrigid registration using free- form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999; 18 ( 8 ): 712 - 721.; Myronenko A, Song X. Intensity- based image registration by minimizing residual complexity. IEEE Trans Med Imaging. 2010; 29 ( 11 ): 1882 - 1891.; Lankton S, Tannenbaum A. Localizing region- based active contours. IEEE Trans image Process. 2008; 17 ( 11 ): 2029 - 2039.; Amberg B. Optimal step Nonrigid ICP algorithms for surface registration. CVPR. 2007; 1 - 8.; Hill DLG, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol. 2001; 46 ( 3 ): R1.; Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012; 59 ( 3 ): 2142 - 2154.; Fleiss JL, Levin B, Paik MC. The measurement of interrater agreement. Stat methods rates proportions. 1981; 2 ( 212- 236 ): 22 - 23.; Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 327 ( 8476 ): 307 - 310.; O- Grady G, Du P, Cheng LK, et al. Origin and propagation of human gastric slow- wave activity defined by high- resolution mapping. Am J Physiol Gastrointest Liver Physiol. 2010; 299 ( 3 ): G585 - G592.; Pan D, Schmieder AH, Wickline SA, Lanza GM. Manganese- based MRI contrast agents: past, present and future. Tetrahedron. 2011; 67 ( 44 ): 8431.; Hoad CL, Parker H, Hudders N, et al. Measurement of gastric meal and secretion volumes using magnetic resonance imaging. Phys Med Biol. 2015; 60 ( 3 ): 1367 - 1383.; Zarrini M, Seilanian Toosi F, Davachi B, Nekooei S. Natural oral contrast agents for gastrointestinal magnetic resonance imaging. Rev Clin Med. 2015; 2 ( 4 ): 200 - 204.; Elsayed NM, Alsalem SA, Almugbel SAA, Alsuhaimi MM. Effectiveness of natural oral contrast agents in magnetic resonance imaging of the bowel. Egypt J Radiol Nucl Med. 2015; 46 ( 2 ): 287 - 292.; Kwiatek MA, Menne D, Steingoetter A, et al. Effect of meal volume and calorie load on postprandial gastric function and emptying: studies under physiological conditions by combined fiber- optic pressure measurement and MRI. AJP Gastrointest Liver Physiol. 2009; 297 ( 5 ): G894 - G901.; Marciani L, Gowland PA, Spiller RC, et al. Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am J Physiol Gastrointest Liver Physiol. 2001; 280 ( 6 ): G1227 - G1233.; Zinsmeister AR, Bharucha AE, Camilleri M. Comparison of calculations to estimate gastric emptying half- time of solids in humans. Neurogastroenterol Motil. 2012; 24 ( 12 ): 1142 - 1145.; Menys A, Hamy V, Makanyanga J, et al. Dual registration of abdominal motion for motility assessment in free- breathing data sets acquired using dynamic MRI. Phys Med Biol. 2014; 59 ( 16 ): 4603 - 4619.; Deng Z, Pang J, Yang W, et al. Four- dimensional MRI using three- dimensional radial sampling with respiratory self- gating to characterize temporal phase- resolved respiratory motion in the abdomen. Magn Reson Med. 2016; 75 ( 4 ): 1574 - 1585.; Cho J, Jin Y, Id L, et al. Quantitative MRI evaluation of gastric motility in patients with Parkinson- s disease: correlation of dyspeptic symptoms with volumetry and motility indices. PLoS One. 2019; 14 ( 5 ): 1 - 14.; de Jonge CS, Sprengers AMJ, van Rijn KL, Nederveen AJ, Stoker J. Assessment of fasted and fed gastrointestinal contraction frequencies in healthy subjects using continuously tagged MRI. Neurogastroenterol Motil. 2020; 32 ( 2 ): 1 - 8.; Orthey P, Dadparvar S, Kamat B, Parkman HP, Maurer AH. Using gastric emptying scintigraphy to evaluate antral contractions and duodenal bolus propagation. Am J Physiol Gastrointest Liver Physiol. 2020; 318 ( 1 ): G203 - G209.; Patcharatrakul T, Gonlachanvit S. Technique of functional and motility test: How to perform antroduodenal manometry. J Neurogastroenterol Motil. 2013; 19 ( 3 ): 395 - 404.; Wolpert N, Rebollo I, Tallon- Baudry C. Electrogastrography for psychophysiological research: practical considerations, analysis pipeline, and normative data in a large sample. Psychophysiology. 2020; 57 ( 9 ): e13599.; Modat M, McClelland J, Ourselin S. Lung registration using the NiftyReg package. Med image Anal Clin Gd Chall. 2010; 33 - 42.; Duthie G, Gardner A. Physiology of the Gastrointestinal Tract. John Wiley Sons; 2006.; Tack J, Bisschops R, Sarnelli G. Pathophysiology and treatment of functional dyspepsia. Gastroenterology. 2004; 127 ( 4 ): 1239 - 1255.; Camilleri M, Chedid V, Ford AC, et al. Gastroparesis. Nat Rev Dis Prim. 2018; 4 ( 1 ): 1 - 19.; Tack J, Arts J, Caenepeel P, De Wulf D, Bisschops R. Pathophysiology, diagnosis and management of postoperative dumping syndrome. Nat Rev Gastroenterol Hepatol. 2009; 6 ( 10 ): 583.; Hyman PE, Napolitano JA, Diego A, et al. Antroduodenal manometry in the evaluation of chronic functional gastrointestinal symptoms. Pediatrics. 1990; 86 ( 1 ): 39 - 44.; Azpiroz F, Malagelada J- R. Gastric tone measured by an electronic barostat in health arid postsurgical gastroparesis. Gastroenterology. 1987; 92 ( 4 ): 934 - 943.; Maes BD, Geypens BJ, Ghoos YF, Hiele MI, Rutgeerts PJ. 13C- octanoic acid breath test for gastric emptying rate of solids. Gastroenterology. 1998; 114 ( 4 ): 856 - 857.; Abell TL, Camilleri M, Donohoe K, et al. Consensus recommendations for gastric emptying scintigraphy: a joint report of the American neurogastroenterology and motility society and the society of nuclear medicine. J Nucl Med Technol. 2008; 36 ( 1 ): 44 - 54.; Schwizer W, Steingoetter A, Fox M. Magnetic resonance imaging for the assessment of gastrointestinal function. Scand J Gastroenterol. 2006; 41 ( 11 ): 1245 - 1260.; De Zwart IM, De Roos A. MRI for the evaluation of gastric physiology. Eur Radiol. 2010; 20 ( 11 ): 2609 - 2616.; Marciani L. Assessment of gastrointestinal motor functions by MRI: a comprehensive review. Neurogastroenterol Motil. 2011; 23 ( 5 ): 399 - 407.; de Jonge CS, Smout AJPM, Nederveen AJ, Stoker J. Evaluation of gastrointestinal motility with MRI: Advances, challenges and opportunities. Neurogastroenterol Motil. 2018; 30 ( 1 ): e13257.; Hamilton J, Franson D, Seiberlich N. Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc. 2017; 101: 71 - 95.; Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004; 23: S208 - S219.; Almutairi HM, Khanji MY, Boubertakh R, Miquel ME, Petersen SE. A comparison of cardiac motion analysis software packages: application to left ventricular deformation analysis in healthy subjects. J Cardiovasc Magn Reson. 2016; 18 ( 422 ); 47.; Bharucha AE, Karwoski RA, Fidler J, et al. Comparison of manual and semiautomated techniques for analyzing gastric volumes with MRI in humans. AJP Gastrointest Liver Physiol. 2014; 307 ( 5 ): G582 - G587.

  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المساهمون: National Center for Complementary and Integrative Health, NIH Office of the Director, National Institute of Diabetes and Digestive and Kidney Diseases

    المصدر: Journal of Neural Engineering ; volume 18, issue 5, page 056066 ; ISSN 1741-2560 1741-2552

  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal

    وصف الملف: application/pdf

    Relation: Lu, Kun‐han; Cao, Jiayue; Phillips, Robert; Powley, Terry L.; Liu, Zhongming (2020). "Acute effects of vagus nerve stimulation parameters on gastric motility assessed with magnetic resonance imaging." Neurogastroenterology & Motility 32(7): n/a-n/a.; https://hdl.handle.net/2027.42/155957; Neurogastroenterology & Motility; Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci Basic Clin. 2000; 85 ( 1- 3 ): 1 - 17.; Veach HO. Studies on the innervation of smooth muscle. I. Vagus effects on the lower end of the esophagus, cardia and stomach of the cat, and the stomach and lung of the turtle in relation to Wedensky inhibition. Am J Physiol. 1925; 71 ( 2 ): 229 - 264.; Aihara Y, Nakamura H, Sato A, Relations AS. Between various fiber groups of vagal and spanchnic nerves and gastric motility in rats. Neurosci Lett. 1978; 10: 281 - 286.; Martinson J, Muren A. Excitatory and inhibitory effects of vagus stimulation on gastric motility in the cat. Acta Physiol Scand. 1963; 57 ( 4 ): 309 - 316.; Wasilczuk KM, Qing KY, Irazoqui PP, et al. B fibers are the best predictors of cardiac activity during Vagus nerve stimulation. Bioelectron Med. 2018; 4 ( 1 ): 1 - 11.; Gabella G, Pease HL. Number of axons in the abdominal vagus of the rat. Brain Res. 1973; 58 ( 2 ): 465 - 469.; Bockx I, Verdrengh K, Vander Elst I, et al. High- frequency vagus nerve stimulation improves portal hypertension in cirrhotic rats. Gut. 2012; 61 ( 4 ): 604 - 612.; Baccari MC, Calamai F, Staderini G. The influence of the vagally induced rebound contractions on the non- adrenergic, non- cholinergic (NANC) inhibitory motility of the rabbit stomach and the role of prostaglandins. J Auton Nerv Syst. 1992; 37 ( 2 ): 125 - 135.; Malbert CH, Mathis C, Laplace JP. Vagal control of pyloric resistance. Am J Physiol Liver Physiol. 1995; 269 ( 4 ): G558 - G569.; Allescher H- D, Daniel EE, Dent J, Fox JET, Kostolanska F. Extrinsic and intrinsic neural control of pyloric. J Physiol. 1988; 401: 17 - 38.; Powley TL, Hudson CN, Mcadams JL, Baronowsky EA, Phillips RJ. Vagal intramuscular arrays: the specialized mechanoreceptor arbors that innervate the smooth muscle layers of the stomach examined in the rat. J Comp Neurol. 2016; 524 ( 4 ): 713 - 737.; Powley TL, Baronowsky EA, Gilbert JM, et al. Vagal afferent innervation of the lower esophageal sphincter. Auton Neurosci Basic Clin. 2013; 177 ( 2 ): 129 - 142.; Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol. 2006; 68 ( 1 ): 279 - 305.; Andrews PLR, Grundy D, Scratcherd T. Reflex excitation of antral motility induced by gastric distension in the ferret. J Physiol. 1980; 298: 79 - 84.; Ishiguchi T, Nakajima M, Sone H, Tada H, Kumagai AK, Takahashi T. Gastric distension- induced pyloric relaxation: central nervous system regulation and effects of acute hyperglycaemia in the rat. J Physiol. 2004; 533 ( 3 ): 801 - 813.; Shafik A. Effect of duodenal distension on the pyloric sphincter and antrum and the gastric corpus: duodenopyloric reflex. World J Surg. 1998; 22 ( 10 ): 1061 - 1064.; Treacy PJ, Jamieson GG, Dent J. The effect of duodenal distension upon antro- pyloric motility and liquid gastric emptying in pigs. ANZ J Surg. 2008; 66 ( 1 ): 37 - 40.; Deloof S, Bennis M, Rousseau JP. Inhibition of antral and pyloric electrical activity by vagal afferent stimulation in the rabbit. J Auton Nerv Syst. 1987; 19 ( 1 ): 13 - 20.; Deloof S, Croix D, Tramu G. The role of vasoactive intestinal polypeptide in the inhibition of antral and pyloric electrical activity in rabbits. J Auton Nerv Syst. 1988; 22 ( 2 ): 167 - 173.; Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y. Rat brains also have a default mode network. Proc Natl Acad Sci. 2012; 109 ( 10 ): 3979 - 3984.; Gertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative- analgesic agent. Baylor Univ Med Center Proc. 1999; 75246: 13 - 21.; Ailiani AC, Neuberger T, Brasseur JG, et al. Quantifying the effects of inactin vs Isoflurane anesthesia on gastrointestinal motility in rats using dynamic magnetic resonance imaging and spatio- temporal maps. Neurogastroenterol Motil. 2014; 26 ( 10 ): 1477 - 1486.; Torjman MC, Joseph JI, Munsick C, Morishita M, Grunwald Z. Effects of Isoflurane on gastrointestinal motility after brief exposure in rats. Int J Pharm. 2005; 294 ( 1- 2 ): 65 - 71.; Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014; 4 ( 4 ): 1339 - 1368.; Travagli RA, Anselmi L. Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol. 2016; 13 ( 7 ): 389 - 401.; Berthoud HR, Carlson NR, Powley TL. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol Integr Comp Physiol. 1991; 260 ( 1 ): R200 - R207.; Powley TL, Phillips RJ. Morphology and topography of vagal afferents innervating the GI tract. Am J Physiol Liver Physiol. 2002; 283 ( 6 ): G1217 - G1225.; Horn CC, Ardell JL, Fisher LE. Electroceutical targeting of the autonomic nervous system. Physiology. 2019; 34 ( 2 ): 150 - 162.; Stakenborg N, Wolthuis AM, Gomez- Pinilla PJ, et al. Abdominal vagus nerve stimulation as a new therapeutic approach to prevent postoperative ileus. Neurogastroenterol Motil. 2017; 29 ( 9 ): 1 - 11.; Frøkjær JB, Bergmann S, Brock C, et al. Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol Motil. 2016; 28 ( 4 ): 592 - 598.; Prechtl JC, Powley TL. The fiber composition of the abdominal vagus of the rat. Anat Embryol (Berl). 1990; 181 ( 2 ): 101 - 115.; Berthoud HR, Powley TL. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol. 1992; 319 ( 2 ): 261 - 276.; Martinson J. The effect of graded stimulation of efferent vagal nerve fibres on gastric motility. Acta Physiol Scand. 1964; 62 ( 3 ): 256 - 262.; Jansson G, Martinson J. Some quantitative considerations on vagally induced relaxation of the gastric smooth muscle in the cat. Acta Physiol Scand. 1965; 63 ( 3 ): 351 - 357.; Andrews PL, Scratcherd T. The gastric motility patterns induced by direct and reflex excitation of the vagus nerves in the anaesthetized ferret. J Physiol. 1980; 302 ( 1 ): 363 - 378.; Berthoud HR, Hennig G, Campbell M, Volaufova J, Costa M. Video- based spatio- temporal maps for analysis of gastric motility in vitro: effects of vagal stimulation in guinea- pigs. Neurogastroenterol Motil. 2002; 14 ( 6 ): 677 - 688.; Brindley GS, Craggs MD. A technique for anodally blocking large nerve fibres through chronically implanted electrodes. J Neurol Neurosurg Psychiatry. 1980; 43 ( 12 ): 1083 - 1090.; Lu K- H, Cao J, Oleson S, Powley TL, Liu Z. Contrast enhanced magnetic resonance imaging of gastric emptying and motility in rats. IEEE Trans Biomed Eng. 2017; 64 ( 11 ): 1 - 1.; Lu K- H, Cao J, Oleson S, et al. Vagus nerve stimulation promotes gastric emptying by increasing pyloric opening measured with magnetic resonance imaging. Neurogastroenterol Motil. 2018; 30 ( 10 ): e13380.; Grundy D, Scratcherd T. Effect of stimulation of the vagus nerve in bursts on gastric acid secretion and motility in the anaesthetized ferret. J Physiol. 1982; 333: 451 - 461.; Takahashi T, Owyang C. Vagal control of nitric oxide and vasoactive intestinal polypeptide release in the regulation of gastric relaxation in rat. J Physiol. 1995; 484 ( 2 ): 481 - 492.