يعرض 1 - 20 نتائج من 80 نتيجة بحث عن '"Polo Cerón, Dorian"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المصدر: Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 48 Núm. 3 (2019) ; Revista Colombiana de Ciencias Químico-Farmacéuticas; v. 48 n. 3 (2019) ; Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 48 No. 3 (2019) ; 1909-6356 ; 0034-7418

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/rccquifa/article/view/84959/75270; C. Viegas-Junior, E.J. Barreiro, A. Manssour-Fraga, Molecular hybridization: A useful tool in the design of new drug prototypes, Curr. Med. Chem., 14, 1829-1852 (2007). 2. C. Lazar, A. Kluczyk, T. Kiyota, Y. Konishi, Drug evolution concept in drug design: 1. Hybridization method, J. Med. Chem., 47, 6973-6982 (2004). 3. D. Dolles, M. Nimczick, M. Scheiner et al., Aminobenzimidazoles and structural isomers as templates for dual-acting butyrylcholinesterase inhibitors and hCB2R ligands to combat neurodegenerative disorders, ChemMedChem, 11, 1270-1283 (2016). 4. Y.Q. Hu, C. Gao, S. Zhang et al., Quinoline hybrids and their antiplasmodial and antimalarial activities, Eur. J. Med. Chem., 139, 22-47 (2017). 5. H. Bektas, C. Albay, B.B. Sokmen et al., Synthesis, antioxidant, and antibacterial activities of some new 2-(3-fluorobenzyl)-1H-benzimidazole derivatives, J. Heterocycl. Chem., 55, 2400-2407 (2018). 6. K.K. Gnanasekaran, B. Nammalwar, M. Murie, R.A. Bunce, Efficient synthesis of 1,3,4-oxadiazoles promoted by NH4Cl, Tetrahedron Lett., 55, 6776-6778 (2014). 7. M. Madhu-Sekhar, U. Nagarjuna, V. Padmavathi, A. Padmaja, N.V. Reddy, T. Vijaya, Synthesis and antimicrobial activity of pyrimidinyl 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles, Eur. J. Med. Chem., 145, 1-10 (2018). 8. Y. Win, M. Heng, E. Yousif, N. Shalan, Lanthanide complexes of {(5-phenyl-1,3,4-oxadiazol-2-yl)thio}acetic acid: Synthesis, characterization and preliminary in vitro antibacterial screening activity, Int. J. Phys. Sci., 7, 43-47 (2012). 9. J.D. Londoño-Mosquera, A. Aragón-Muriel, D. Polo-Cerón, Synthesis, antibacterial activity and DNA interactions of lanthanide(III) complexes of N(4)-substituted thiosemicarbazones, Univ. Sci., 23, 141-169 (2018). 10. A. Husain, M. Rashid, R. Mishra, S. Parveen, D. S. Shin, D. Kumar, Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: Design and synthesis as anticancer agents, Bioorganic Med. Chem. Lett., 22, 5438-5444 (2012). 11. S. Sdiri, P. Navarro, A. Monterde, J. Benabda, A. Salvador, Effect of postharvest degreening followed by a cold-quarantine treatment on vitamin C, phenolic compounds and antioxidant activity of early-season citrus fruit, Postharvest Biol. Technol., 65, 13-21 (2012). 12. CLSI, “Clinical and Laboratory Standards Institute: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically,” in Clinical and laboratory standards institute, CLSI, Pennsylvania, 2012, 1. 13. M.P. Alexandra, CCCXVII.-The Formation of 2-Subtituted Benzimidazole, J. Chem. Soc., 2393-2399 (1928). 14. A. Ur-Rehman, K. Nafeesa, 1,3,4-OXADIAZOLE: Synthesis of Derivatives with Antioxidant & Enzyme Inhibition Activities, Pharmamedix Indian, Rajasthan, 2014, 18. 15. R.V. Patel, P.K. Patel, P. Kumari, D.P. Rajani, K.H. Chikhalia, Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents, Eur. J. Med. Chem., 53, 41-51 (2012). 16. W.J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coord. Chem. Rev., 7, 81-122 (1971). 17. S.C. Dmphen, Preparation, photoluminescent behaviour, antimicrobial and antioxidant properties of new orange light emitting Sm ( III ), 4, 869-876 (2018). 18. A. Husain, M. Rashid, M. Shaharyar, A.A. Siddiqui, R. Mishra, Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: New anticancer agents, Eur. J. Med. Chem., 62, 785-798 (2013). 19. V. M. Patel, N. B. Patel, M. J. Chan-Bacab, G. Rivera, Synthesis, biological evaluation and molecular dynamics studies of 1,2,4-triazole clubbed Mannich bases, Comput. Biol. Chem., 76, 264-274 (2018). 20. A. Aragón-Muriel, D. Polo-Cerón, Synthesis, characterization, thermal behavior, and antifungal activity of La(III) complexes with cinnamates and 4-methoxyphenylacetate, J. Rare Earths, 31, 1106-1113 (2013). 21. A. Aragón-Muriel, Y. Upegui, J.A. Muñoz, S.M. Robledo, D. Polo-Cerón, Synthesis, characterization and biological evaluation of rare earth complexes against tropical diseases leishmaniasis, malaria and trypanosomiasis, Avanc. Quim, 11, 53-61 (2016). 22. G. Tirzitis, G. Bartosz, Determination of antiradical and antioxidant activity: basic principles and new insights- Review, Acta Biochim. Pol., 54, 139-142 (2010). 23. Z.A. Taha, A.M. Ajlouni, W. Al Momani, A.A. Al-Ghzawi, Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc., 81, 570-577 (2011). 24. N. Mihailović, V. Marković, I.Z. Matić et al., Synthesis and antioxidant activity of 1,3,4-oxadiazoles and their diacylhydrazine precursors derived from phenolic acids, RSC Adv., 7, 8550-8560 (2017). 25. M.N. Gueye, M. Dieng, I.E. Thiam et al., Lanthanide ( III ) complexes with tridentate Schiff base ligand, antioxidant activity and X-ray crystal structures of the Nd ( III ) and Sm ( III ) complexes, J. Sabinet African, 70, 8-15 (2017). 26. M. Miceli, E. Roma, P. Rosa et al., Synthesis of Benzofuran-2-one derivatives and evaluation of their antioxidant capacity by comparing DPPH assay and cyclic voltammetry, Molecules, 23, E710 (2018). 27. J.F. Arteaga, M. Ruiz-Montoya, A. Palma, G. Alonso-Garrido, S. Pintado, J.M. Rodríguez-Mellad, Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles, Molecules, 17, 5126-5138 (2012). 28. J. Sochor, J. Dobes, O. Krystofova et al., Electrochemistry as a tool for studying antioxidant properties, Int. J. Electrochem. Sci., 8, 8464-8489 (2013). 29. J.C. Helfrick, L.A. Bottomley, Cyclic square wave voltammetry of single and consecutive reversible electron transfer reactions, Anal. Chem., 81, 9041-9047 (2009). 30. R. Apak, M. Özyürek, K. Güçlü, E. Çapanoʇlu, Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays, J. Agric. Food Chem., 64, 997-1027 (2016). 31. R. Prabhakaran, S.V. Renukadevi, R. Karvembu et al., Structural and biological studies of mononuclear palladium(II) complexes containing N-substituted thiosemicarbazones, Eur. J. Med. Chem., 43, 268-273 (2008). 32. B.G. Tweedy, Plant extracts with metal ions as potential antimicrobial agents, Phytopathology, 55, 910-918 (1964). 33. D. Song, S. Ma, Recent development of benzimidazole-containing antibacterial agents, Chem. Med. Chem., 11, 646-659, (2016). 34. S. Hameed, A. Raichurkar, P. Madhavapeddi et al., Benzimidazoles: Novel mycobacterial gyrase inhibitors from scaffold morphing, ACS Med. Chem. Lett., 5, 820-825 (2014).; https://revistas.unal.edu.co/index.php/rccquifa/article/view/84959

  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المصدر: Revista de Investigación; Vol. 10 No. 2 (2017); 23-48 ; Revista de Investigación; Vol. 10 Núm. 2 (2017); 23-48 ; 2590-6062 ; 2011-639X

    مصطلحات موضوعية: cinamato, lantánidos, actividad catalítica, canfeno, β-pineno

    وصف الملف: application/pdf

    Relation: https://revistas.uamerica.edu.co/index.php/rinv/article/view/79/74; Aragón-Muriel, A., Camprubi, M., Gonzalez, E., Salinas, A., Rodriguez, A., Gomez, S., y Polo- Cerón, D. (2014). Dual investigation of lanthanide complexes with cinnamate and phen- ylacetate ligands: study of the cytotoxic properties and the catalytic oxidation of styrene. Polyhedron, 80, 117-128.; Aragón-Muriel, A., y Polo-Cerón, D. (2013). Synthesis, characterization, thermal behavior, and antifungal activity of La(III) complexes with cinnamates and 4-methoxyphenylacetate. Journal of Rare Earths, 31(11), 1106-1113.; Aragón-Muriel, A., Upegui, Y., Muñoz, J., Robledo, S., y Polo-Cerón, D. (2016). Synthesis, characterization and biological evaluation of rare earth complexes against tropical diseases Leishmaniasis, malaria and trypanosomiasis. Avances en Química, 11(2), 53-61.; Belanger, J. (1998). Perillyl alcohol: applications in oncology. Alternative Medicine Review, 3(6), 448-457.; Blaz, E., y Pielichowski, J. (2006). Polymer-Supported Cobalt (II) Catalysts for the Oxidation of Alkenes. Molecules, 11(1), 115-120.; Caovilla, M., Caovilla, A., Pergher, S., Esmelindro, M., Fernandes, C., Dariva, C., Bernardo-Gus- mao, K., Oestreicher, E., y Antunes, O. (2008). Catalytic oxidation of limonene, α-pinene and β-pinene by the complex [Fem(BPMP)Cl( μ-O)FeinCl3] biomimetic to MMO enzyme. Catalysis Today, 133-135, 695-698.; Carvalho, M., Fernandes, N., Fertonani, F. y Ionashiro, M. (2003). A thermal behaviour study of solid-state cinnamates of the latter trivalent lanthanides and yttrium(III). Thermochimica Acta, 398(1), 93-99.; Casuscelli, S., Eimer, G., Canepa, A., Heredia, A., Poncio, C., Crivello, M., Perez, C., Aguilar, A., y Herrero, E. (2008). Ti-MCM-41 as catalyst for a-pinene oxidation. Study of the effect of Ti content and H2O2 addition on activity and selectivity. Catalysis Today, 133-135, 678-683; Cejka, J., Corma, A., y Zones, S. (Eds). (2010). Zeolites and Catalysis: Synthesis, Reactions and Applications. Alemania: John Wiley & Sons.; Corma, A., Renz, M., y Susarte, M. (2009). Transformation of biomass products into fine chemicals catalyzed by solid Lewis- and Bransted-acids. Topics in Catalysis, 52(9), 1182-1189.; da Silva, M., Vieira, L., Oliveira, A., y Ribeiro, M. (2013). Novel effect of palladium catalysts on chemoselective oxidation of β-pinene by hydrogen peroxide. Monatshefte für Chemie- Chemical Monthly, 144(3), 321-326.; de Oliveira, A., Lopes, M., da Silva, M. (2009). Palladium-Catalysed Oxidation of Bicycle Monoterpenes by Hydrogen Peroxide in Acetonitrile Solutions: A Metal Reoxidant-Free and Environmentally Benign Oxidative Process. Catalysis Letters, 130, 424-431.; Deacon, G., Huber, F., y Phillips R. (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordination Chemistry Reviews, 33(3), 227-250.; Kalinowska, M., Lewandowski, W., Swislocka, R., y Regulska, E. (2010). The FT-IR, FT-Raman, 1H and 13C NMR study on molecular structure of sodium(I), calcium(II), lanthanum(III) and thorium(IV) cinnamates. Journal of Spectroscopy, 24(3-4), 277-281.; Mercandante, A., Ionashiro, M., de Oliveira, L., Ribeiro, C., y Moscardini, L. (1993). Preparation and thermal decomposition of solid state lanthanide(III) and yttrium(III) chelates of ethylenediaminetetraacetic acid. Thermochimica Acta, 216, 267-277.; Nalone, L., Cardoso, T., Guimarães, R., do Ó Pessoa, C., Odorico, M., Marques, B., Gomes, L., Andrade, A., y Pergentino, D. (2015). Evaluation of the cytotoxicity of structurally correlated p-menthane derivatives. Molecules, 20(7), 13264-13280.; Pakdel, H., Sarron, S., y Roy, C. (2001). α-Terpineol from hydration of crude sulfate turpentine oil. Journal of Agricultural and Food Chemistry, 49(9), 4337-4341.; Patel, A. (Ed.). (2013). Environmentally benign catalysts: for clean organic reactions. India: Springer Science & Business Media.; Silva, M., Robles-Dutenhefner, P., Menini, L., y Gusevskaya, E. (2003). Cobalt catalyzed autoxi- dation of monoterpenes in acetic acid and acetonitrile solutions. Journal of Molecular Catalysis A: Chemical, 201(1), 71-77.; Stolle, A. (2013). Synthesis of Nopinone from P-Pinene-A Journey Revisiting Methods for Oxidative Cleavage of C=C Bonds in Terpenoid Chemistry. European Journal of Organic Chemistry, 2013(12), 2265—2278.; Suh, Y., Kim, N., Ahn, W., y Rhee, H. K. (2003) One-pot synthesis of campholenic aldehyde from a-pinene over Ti-HMS catalyst II: effects of reaction conditions. Journal of Molecular Catalysis A: Chemical, 198(1), 309-316.; https://revistas.uamerica.edu.co/index.php/rinv/article/view/79

  11. 11
  12. 12
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    Alternate Title: Study of Novel Metal Complexes Derived From a Flexible Polydentate Ligand for Biological and Biomedical Applications.

    المؤلفون: Londoño-Mosquera, Juan-David1, Polo-Cerón, Dorian2 dorian.polo@correounivalle.edu.co

    المصدر: Ciencia en Desarrollo. jul-dic2022, Vol. 13 Issue 2, p131-157. 27p.

  15. 15
  16. 16
    Electronic Resource

    Additional Titles: Síntesis, caracterización y evaluación farmacológica de nuevos complejos metálicos derivados de híbridos heteroaromáticos (benzimidazol/oxadiazol)

    المصدر: Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 48 Núm. 3 (2019); Revista Colombiana de Ciencias Químico-Farmacéuticas; v. 48 n. 3 (2019); Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 48 No. 3 (2019); 1909-6356; 0034-7418

    URL: https://revistas.unal.edu.co/index.php/rccquifa/article/view/84959/75270
    https://revistas.unal.edu.co/index.php/rccquifa/article/view/84959/75270
    *ref*/C. Viegas-Junior, E.J. Barreiro, A. Manssour-Fraga, Molecular hybridization: A useful tool in the design of new drug prototypes, Curr. Med. Chem., 14, 1829-1852 (2007). 2. C. Lazar, A. Kluczyk, T. Kiyota, Y. Konishi, Drug evolution concept in drug design: 1. Hybridization method, J. Med. Chem., 47, 6973-6982 (2004). 3. D. Dolles, M. Nimczick, M. Scheiner et al., Aminobenzimidazoles and structural isomers as templates for dual-acting butyrylcholinesterase inhibitors and hCB2R ligands to combat neurodegenerative disorders, ChemMedChem, 11, 1270-1283 (2016). 4. Y.Q. Hu, C. Gao, S. Zhang et al., Quinoline hybrids and their antiplasmodial and antimalarial activities, Eur. J. Med. Chem., 139, 22-47 (2017). 5. H. Bektas, C. Albay, B.B. Sokmen et al., Synthesis, antioxidant, and antibacterial activities of some new 2-(3-fluorobenzyl)-1H-benzimidazole derivatives, J. Heterocycl. Chem., 55, 2400-2407 (2018). 6. K.K. Gnanasekaran, B. Nammalwar, M. Murie, R.A. Bunce, Efficient synthesis of 1,3,4-oxadiazoles promoted by NH4Cl, Tetrahedron Lett., 55, 6776-6778 (2014). 7. M. Madhu-Sekhar, U. Nagarjuna, V. Padmavathi, A. Padmaja, N.V. Reddy, T. Vijaya, Synthesis and antimicrobial activity of pyrimidinyl 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles, Eur. J. Med. Chem., 145, 1-10 (2018). 8. Y. Win, M. Heng, E. Yousif, N. Shalan, Lanthanide complexes of {(5-phenyl-1,3,4-oxadiazol-2-yl)thio}acetic acid: Synthesis, characterization and preliminary in vitro antibacterial screening activity, Int. J. Phys. Sci., 7, 43-47 (2012). 9. J.D. Londoño-Mosquera, A. Aragón-Muriel, D. Polo-Cerón, Synthesis, antibacterial activity and DNA interactions of lanthanide(III) complexes of N(4)-substituted thiosemicarbazones, Univ. Sci., 23, 141-169 (2018). 10. A. Husain, M. Rashid, R. Mishra, S. Parveen, D. S. Shin, D. Kumar, Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: Design and synthesis as anticancer agents, Bioorganic Med. Chem. Lett., 22, 5438-5444 (2012). 1

  17. 17
  18. 18
  19. 19
    Academic Journal
  20. 20
    Academic Journal

    Alternate Title: Synthesis, characterization and pharmacological evaluation of new metal complexes derived from heteroaromatic hybrids (benzimidazole/oxadiazole). (English)

    المصدر: Revista Colombiana de Ciencias Químico-Farmacéuticas; 2019, Vol. 48 Issue 3, p557-588, 32p