يعرض 1 - 20 نتائج من 159 نتيجة بحث عن '"Polo, Luz"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Dissertation/ Thesis
  4. 4
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المصدر: Rohde , S , van Puyvelde , J , Veen , K M , Schweiger , M , Biermann , D , Amodeo , A , Martens , T , Damman , K , Gollmann-Tepekoylü , C , Hulman , M , Iacovoni , A , Krämer , U S , Loforte , A , Napoleone , C P , Nemec , P , Netuka , I , Ozbaran , M , Polo , L , Pya , Y , Ramjankhan , F , Sandica , E , Sliwka , J , Stiller , B , Kadner , A ....

  13. 13
    Academic Journal

    المصدر: Memorias; lV Encuentro Interzonal de Investigación ; 149-203 ; 2590-4779

    وصف الملف: application/pdf

  14. 14
    Academic Journal
  15. 15
    Academic Journal

    المؤلفون: Polo, Luz K., Chow, Fungyi

    المصدر: Scientia Marina; Vol. 84 No. 1 (2020); 59-70 ; Scientia Marina; Vol. 84 Núm. 1 (2020); 59-70 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2020.84n1

    وصف الملف: text/html; application/pdf; application/xml

    Relation: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844/2667; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844/2651; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844/2668; Abdala-Diaz R.T., Cabello-Pasini A., Pérez-Rodríguez E., et al. 2006. Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar. Biol. 148: 459-465. https://doi.org/10.1007/s00227-005-0102-6; Abirami R.G., Kowsalya S. 2017. Quantification and correlation study on derived phenols and antioxidant activity of seaweeds from Gulf of Mannar. J. Herbs, Spices Med. Plants 23: 9-17. https://doi.org/10.1080/10496475.2016.1240132; Al-Azzawie H.F., Alhamdani M.S.S. 2006. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 78: 1371-1377. https://doi.org/10.1016/j.lfs.2005.07.029 PMid:16236331; Altamirano M., Flores-Moya A., Figueroa F.L. 2003. Effects of UV radiation and temperature on growth of germlings of three species of Fucus (Phaeophyceae). Aquat. Bot. 75: 9-20. https://doi.org/10.1016/S0304-3770(02)00149-3; Amado Filho G.M., Andrade L.R., Karez C.S., et al. 1999. Brown algae species as biomonitors of Zn and Cd at Sepetiba Bay, Rio de Janeiro, Brazil. Mar. Environ. Res. 48: 213-224. https://doi.org/10.1016/S0141-1136(99)00042-2; Aro E.M., Virgin I., Andersson B. 1993. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. BBA - Bioenerg. 1143: 113-134. https://doi.org/10.1016/0005-2728(93)90134-2; Ayres-Ostrock L.M., Plastino E.M. 2014. Effects of short-term exposure to ultraviolet-B radiation on photosynthesis and pigment content of red (wild types), greenish-brown, and green strains of Gracilaria birdiae (Gracilariales, Rhodophyta). J. Appl. Phycol. 26: 867-879. https://doi.org/10.1007/s10811-013-0131-3; Bais A.F., McKenzie R.L., Bernhard G., et al. 2015. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 14: 19-52. https://doi.org/10.1039/C4PP90032D PMid:25380284; Barufi J., Korbee N., Oliveira M., et al. 2011. Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation. J. Appl. Phycol. 23: 457-466. https://doi.org/10.1007/s10811-010-9603-x; Behrenfeld M.J., Lean D.R.S., Lee H. 1995. Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton. J. Phycol. 31: 25-36. https://doi.org/10.1111/j.0022-3646.1995.00025.x; Berglin M., Delage L., Potin P., et al. 2004. Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus. Biomacromolecules 5: 2376-2383. https://doi.org/10.1021/bm0496864 PMid:15530054; Bischof K., Hanelt D., Tüg H., et al. 1998. Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol. 20: 388-395. https://doi.org/10.1007/s003000050319; Bischof K., Hanelt D., Wiencke C. 2000a. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211: 555-562. https://doi.org/10.1007/s004250000313 PMid:11030555; Bischof K., Kräbs G., Hanelt D., et al. 2000b. Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: A competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline? Helgol. Mar. Res. 54: 47-52. https://doi.org/10.1007/s101520050035; Björn L.O. 2007. Stratospheric ozone, ultraviolet radiation, and cryptogams. Biol. Conserv. 135: 326-333. https://doi.org/10.1016/j.biocon.2006.10.006; Bornman J.F., Teramura A.H. 1993. Effects of enhanced UV-B radiation on terrestrial plants. In: Young A.R., Bjorn L.O., et al. (eds) Environmental UV Photobiology. Plenum Press, New York, pp, 427-471. https://doi.org/10.1007/978-1-4899-2406-3_14; Bouzon Z.L., Chow F., Zitta C.S., et al. 2012. Effects of natural radiation, photosynthetically active radiation and artificial ultraviolet radiation-b on the chloroplast organization and metabolism of Porphyra acanthophora var. brasiliensis (Rhodophyta, Bangiales). Microsc. Microanal. 18: 1467-1479. https://doi.org/10.1017/S1431927612013359 PMid:23153514; Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3; Buma A.G.J., Walter Helbling E., Karin De Boer M., et al. 2001. Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation. J. Photochem. Photobiol. B Biol. 62: 9-18. https://doi.org/10.1016/S1011-1344(01)00156-7; Celis-Plá P.S.M., Korbee N., Gómez-Garreta A., et al. 2014. Patrones estacionales de fotoaclimatación en el alga intermareal, Cystoseira tamariscifolia (Ochrophyta). Sci. Mar. 78: 377-388. https://doi.org/10.3989/scimar.04053.05A; Celis-Plá P.S.M., Brown M.T., Santillán-Sarmiento A., et al. 2018. Ecophysiological and metabolic responses to interactive exposure to nutrients and copper excess in the brown macroalga Cystoseira tamariscifolia. Mar. Pollut. Bull. 128: 214-222. https://doi.org/10.1016/j.marpolbul.2018.01.005 PMid:29571366; Chakraborty K., Joseph D. 2016. Antioxidant potential and phenolic compounds of brown seaweeds Turbinaria conoides and Turbinaria ornata (Class: Phaeophyceae). J. Aquat. Food. Prod. Technol. 25: 1249-1265. https://doi.org/10.1080/10498850.2015.1054540; Chow F., De Oliveira M.C. 2008. Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta): Influence of different nitrogen sources. J. Appl. Phycol. 20: 775-782. https://doi.org/10.1007/s10811-008-9310-z; Cruces E., Huovinen P., Gómez I. 2013. Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae. Mar. Biol. 160: 1-13. https://doi.org/10.1007/s00227-012-2049-8; Cullen J., Neale P. 1994. Ultraviolet radiation, ozone depletation, and marine photosynthesis. Photosynth. Res. 39: 303-320. https://doi.org/10.1007/BF00014589 PMid:24311127; D'Orazio N., Gemello E., Gammone M.A., et al. 2012. Fucoxantin: A treasure from the sea. Mar. Drugs 10: 604-616. https://doi.org/10.3390/md10030604 PMid:22611357 PMCid:PMC3347018; Dahms H.U., Dobretsov S., Lee J.S. 2011. Effects of UV radiation on marine ectotherms in polar regions. Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 153: 363-371. https://doi.org/10.1016/j.cbpc.2011.01.004 PMid:21300175; Diffey B.L. 2002. Sources and measurement of ultraviolet radiation. Methods 28: 4-13. https://doi.org/10.1016/S1046-2023(02)00204-9; Döhler G. 1997. Impact of UV radiation of different wavebands on pigments and assimilation of 15N-ammonium and 15N-nitrate by natural phytoplankton and ice algae in Antarctica. J. Plant. Physiol. 151: 550-555. https://doi.org/10.1016/S0176-1617(97)80229-5; Döhler G., Hagmeier E., David C. 1995. Effects of solar and artificial UV irradiation on pigments and assimilation of 15N ammonium and 15N nitrate by macroalgae. J. Photochem. Photobiol. B Biol. 30: 179-187. https://doi.org/10.1016/1011-1344(95)07189-9; Edwards P. 1970. Illustre ated guide of seaweeds and sea grasses in vicinity of Porto Arkansas, Texas. Contrib. Mar. Sci. 15: 1-228.; Falkowski P., LaRoche J. 1990. Acclimation to spectral irradiance in algae. J. Phycol. 27: 8-14. https://doi.org/10.1111/j.0022-3646.1991.00008.x; Figueroa F.L., Domínguez-González B., Korbee N. 2014. Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups. Mar. Environ. Res. 97: 30-38. https://doi.org/10.1016/j.marenvres.2014.01.009 PMid:24556033; Gao K., Xu J. 2008. Effects of solar UV radiation on diurnal photosynthetic performance and growth of Gracilaria lemaneiformis (Rhodophyta). Eur. J. Phycol. 43: 297-307. https://doi.org/10.1080/09670260801986837; Goes J.I., Handa N., Taguchi S., et al. 1994. Effect of UV-B radiation on the fatty-acid composition of the marine-phytoplankton Tetraselmis sp.: relationship to cellular pigments. Mar. Ecol. Prog. Ser. 114: 259-274. https://doi.org/10.3354/meps114259; Gorostiaga J.M., Díez I. 1996. Changes in the sublittoral benthic marine macroalgae in the polluted area of Abra de Bilbao and proximal coast (Northern Spain). Mar. Ecol. Prog. Ser. 130: 157-167. https://doi.org/10.3354/meps130157; Häder D.-P., Kumar H.D., Smith R.C., et al. 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 6: 267-285. https://doi.org/10.1039/B700020K PMid:17344962; Heo S.J., Jeon Y.J. 2009. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J. Photochem. Photobiol. B Biol. 95: 101-107. https://doi.org/10.1016/j.jphotobiol.2008.11.011 PMid:19264501; Hermes-Lima M., Storey K. 1998. Role of antioxidant defenses in the tolerance of severe dehydration by anurans. The case of the leopard frog Rana pipiens. Mol. Cell. Biochem. 189: 79-89. https://doi.org/10.1023/A:1006868208476 PMid:9879657; Holzinger A., Lütz C. 2006. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37: 190-207. https://doi.org/10.1016/j.micron.2005.10.015 PMid:16376552; Holzinger A., di Piazza L., Lütz C., et al. 2011. Sporogenic and vegetative tissues of Saccharina latissima (Laminariales, Phaeophyceae) exhibit distinctive sensitivity to experimentally enhanced ultraviolet radiation: Photosynthetically active radiation ratio. Phycol. Res. 59: 221-235. https://doi.org/10.1111/j.1440-1835.2011.00620.x; Jeffrey S.W. 1963. Purification and Properties of Chlorophyll c from Sargassum flavicans. Biochem. J. 86: 313-318. https://doi.org/10.1042/bj0860313 PMid:13964566 PMCid:PMC1201755; Karentz D. 1994. Ultraviolet tolerance mechanisms in Antarctic marine organisms. Antarct. Res. Ser. 62: 93-110. https://doi.org/10.1029/AR062p0093; Khotimchenko S.V., Yakovleva I.M. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66: 73-79. https://doi.org/10.1016/j.phytochem.2004.10.024 PMid:15649513; Korbee N., Huovinen P., Figueroa F.L., et al. 2005. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar. Biol. 146: 645-654. https://doi.org/10.1007/s00227-004-1484-6; Kumar A., Tyagi M.B., Jha P.N. 2004. Evidences showing ultraviolet-B radiation-induced damage of DNA in cyanobacteria and its detection by PCR assay. Biochem. Biophys. Res. Commun. 318: 1025-1030. https://doi.org/10.1016/j.bbrc.2004.04.129 PMid:15147976; Labuckas D.O., Maestri D.M., Perelló M., et al. 2008. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food. Chem. 107: 607-612. https://doi.org/10.1016/j.foodchem.2007.08.051; Lee T.M., Shiu C.T. 2009. Implications of mycosporine-like amino acid and antioxidant defenses in UV-B radiation tolerance for the algae species Ptercladiella capillacea and Gelidium amansii. Mar. Environ. Res. 67: 8-16. https://doi.org/10.1016/j.marenvres.2008.09.006 PMid:19036429; Li Y.X., Wijesekara I., Li Y., et al. 2011. Phlorotannins as bioactive agents from brown algae. Process. Biochem. 46: 2219-2224. https://doi.org/10.1016/j.procbio.2011.09.015; Li Y., Fu X., Duan D. et al. 2017. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme (Harvey) Setchell. Mar. Drugs. 15: 1-15. https://doi.org/10.3390/md15020049 PMid:28230766 PMCid:PMC5334629; Liang Y., Beardall J., Heraud P. 2006. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J. Photochem. Photobiol. B Biol. 82: 161-172. https://doi.org/10.1016/j.jphotobiol.2005.11.002 PMid:16388965; Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In: Packer L., Douce R. (eds), Plant Cell Membranes. Methods Enzymol. 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1; Lichtenthaler H.K., Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food. Anal. Chem. 1: F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01; Lippert H., Iken K., Rachor E., et al. 2001. Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol. 24: 512-522. https://doi.org/10.1007/s003000100250; Madronich S., McKenzie R.L., Björn L.O., et al. 1998. Changes in biologically active ultraviolet radiation reaching the Earth's surface. J. Photochem. Photobiol. B Biol. 46: 5-19.; Makarov M. 1999. Influence of ultraviolet radiation on the growth of the dominant macroalgae of the Barents Sea. Chemosph - Glob. Chang. Sci. 1: 461-467. https://doi.org/10.1016/S1465-9972(99)00034-3; Michler T., Aguilera J., Hanelt D., et al. 2002. Long-term effects of ultraviolet radiation on growth and photosynthetic performance of polar and cold-temperate macroalgae. Mar. Biol. 140: 1117-1127. https://doi.org/10.1007/s00227-002-0791-z; Moreira D.C., Oliveira M.F., Liz-Guimarães L., et al. 2017. Current trends and research challenges regarding "preparation for oxidative stress". Front. Physiol. 8: 1-8. https://doi.org/10.3389/fphys.2017.00702 PMid:28993737 PMCid:PMC5622305; Navarro N.P., Figueroa F.L., Korbee N., et al. 2016. Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation. J. Phycol. 52: 451-462. https://doi.org/10.1111/jpy.12407 PMid:26990026; Panche A.N., Diwan A.D., Chandra S.R. 2016. Flavonoids: An overview. J. Nutr. Sci. 5: 1-15. https://doi.org/10.1017/jns.2016.41 PMid:28620474 PMCid:PMC5465813; Paula E.J., Eston V.R. 1987. Are there other Sargassum species potentially as invasive as S. muticum? Bot. Mar. 30: 405-410. https://doi.org/10.1515/botm.1987.30.5.405; Penniman C., Mathieson C., Penniman C.E. 1986. Reproductive phenology and growth of Gracilaria tikvahiae McLachlan (Gigartinales, Rhodophyta) in the Great Bay Estuary, New Hampshire. Bot. Mar. 29: 147-154. https://doi.org/10.1515/botm.1986.29.2.147; Pereira D.T., Simioni C., Ouriques L.C., et al. 2017. Comparative study of the effects of salinity and UV radiation on metabolism and morphology of the red macroalga Acanthophora spicifera (Rhodophyta, Ceramiales). Photosynthetica 56: 799-810. https://doi.org/10.1007/s11099-017-0731-2; Polo L.K., Felix M., Kreusch M. et al. 2014a. Photoacclimation responses of the brown macroalga Sargassum cymosum to the combined influence of UV radiation and salinity: Cytochemical and ultrastructural organization and photosynthetic performance. Photochem. Photobiol. 90: 560-573. https://doi.org/10.1111/php.12224 PMid:24329523; Polo L.K., Felix M., Kreusch M., et al. 2014b. Metabolic profile of the brown macroalga Sargassum cymosum (Phaeophyceae, Fucales) under laboratory UV radiation and salinity conditions. J. Appl. Phycol. 27: 887-899. https://doi.org/10.1007/s10811-014-0381-8; Ritchie R.J. 2008. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46: 115-126. https://doi.org/10.1007/s11099-008-0019-7; Roleda M.Y., Hanelt D., Kräbs G., et al. 2004. Morphology, growth, photosynthesis and pigments in Laminaria ochroleuca (Laminariales, Phaeophyta) under ultraviolet radiation. Phycologia 43: 603-613. https://doi.org/10.2216/i0031-8884-43-5-603.1; Roleda M.Y., Lüder U.H., Wiencke C. 2010. UV-susceptibility of zoospores of the brown macroalga Laminaria digitata from Spitsbergen. Polar Biol. 33: 577-588. https://doi.org/10.1007/s00300-009-0733-z; Ruhland C.T., Fogal M.J., Buyarski C.R., et al. 2007. Solar ultraviolet-B radiation increases phenolic content and ferric reducing antioxidant power in Avena sativa. Molecules 12: 1220-1232. https://doi.org/10.3390/12061220 PMid:17876291 PMCid:PMC6149342; Salgado LT., Andrade L.R., Amado G.M. 2005. Localization of specific monosaccharides in cells of the brown alga Padina gymnospora and the relation to heavy-metal accumulation. Protoplasma 225: 123-128. https://doi.org/10.1007/s00709-004-0066-2 PMid:15868219; Salgado L.T., Tomazetto R., Cinelli L.P., et al. 2007. The influence of brown algae alginates on phenolic compounds capability of ultraviolet radiation absorption in vitro. Brazilian J. Oceanogr. 55: 145-154. https://doi.org/10.1590/S1679-87592007000200007; Sampath-Wiley P., Neefus C.D., Jahnke L.S. 2008. Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis. J. Exp. Mar. Bio. Ecol. 361: 83-91 https://doi.org/10.1016/j.jembe.2008.05.001; Schmidt É.C., dos Santos R., Horta P.A., et al. 2010a. Effects of UVB radiation on the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales): Changes in cell organization, growth and photosynthetic performance. Micron 41: 919-930. https://doi.org/10.1016/j.micron.2010.07.010 PMid:20732818; Schmidt É.C., Maraschin M., Bouzon Z.L. 2010b. Effects of UVB radiation on the carragenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales): Changes in ultrastructure, growth, and photosynthetic pigments. Hydrobiologia 649: 171-182. https://doi.org/10.1007/s10750-010-0243-6; Schmidt É.C., dos Santos R.W., de Faveri C., et al. 2012. Response of the agarophyte Gelidium floridanum after in vitro exposure to ultraviolet radiation B: Changes in ultrastructure, pigments, and antioxidant systems. J. Appl. Phycol. 24: 1341-1352. https://doi.org/10.1007/s10811-012-9786-4; Schmidt É.C., Kreusch M., Felix M., et al. 2015. Effects of ultraviolet radiation (UVA+UVB) and copper on the morphology, ultrastructural organization and physiological responses of the red alga Pterocladiella capillacea. Photochem. Photobiol. 91: 359-370. https://doi.org/10.1111/php.12396 PMid:25443444; Schoenwaelder M.E. 2002. The occurrence and cellular significance of physodes in brown algae. Phycologia 41: 125-139. https://doi.org/10.2216/i0031-8884-41-2-125.1; Senger H., Bauer B. 1987. The influence of light quality on adaptation and function of the photosynthetic apparatus. Photochem. Photobiol. 45: 939-946. https://doi.org/10.1111/j.1751-1097.1987.tb07905.x; Simioni C., Schmidt É.C., Felix M., et al. 2014. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: Growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure. Photochem. Photobiol. 90: 1050-1060. https://doi.org/10.1111/php.12296 PMid:24893751; Strid Å., Chow W.S., Anderson J.M. 1994. UV-B damage and protection at the molecular level in plants. Photosynth. Res. 39: 475-489. https://doi.org/10.1007/BF00014600 PMid:24311138; Széchy M.T.M., Veloso V.G., De Paula É.J. 2001. Brachyura (Decapoda, Crustacea) of phytobenthic communities of the sublittoral region of rocky shores of Rio de Janeiro and São Paulo, Brazil. Trop. Ecol. 42: 231-242.; Teramura A.H. 1983. Effects of ultraviolet B radiation on the growth and yield of crop plants. Physiol. Plant. 58: 415-427. https://doi.org/10.1111/j.1399-3054.1983.tb04203.x; Ursi S., Plastino E.M. 2001. Crescimento in vitro de linhagens de coloração vermelha e verde clara de Gracilaria birdiae (Gracilariales, Rhodophyta) em dois meios de cultura: análise de diferentes estádios reprodutivos. Rev. bras. Bot. 24: 587-594. https://doi.org/10.1590/S0100-84042001000500014; Villafañe V.E., Sundback K., Figueroa F.L., et al. 2003. Environment, Photosynthesis in the aquatic UVR, as affected by UVR. In: Helbling E., Zagarese H. (eds), UV Effects in Aquatic Organisms and Ecosystems. Comprehensive Series in Photochemical and Photobiological Sciences, pp 359-383.; Viñegla B., Figueroa F. 2009. Effect of solar and artificial UV radiation on photosynthetic performance and carbonic anhydrase activity in intertidal macroalgae from southern Spain. Ciencias Mar. 35: 59-74. https://doi.org/10.7773/cm.v35i1.1512; Wang W., Wang S.X., Guan H.S. 2012. The antiviral activities and mechanisms of marine polysaccharides: An overview. Mar. Drugs 10: 2795-2816. https://doi.org/10.3390/md10122795 PMid:23235364 PMCid:PMC3528127; Xu J., Gao K. 2010. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta). J. Photochem Photobiol. B Biol. 100: 117-122. https://doi.org/10.1016/j.jphotobiol.2010.05.010 PMid:20573516; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844

  16. 16
    Academic Journal
  17. 17
  18. 18
    Academic Journal

    المصدر: Revista de Ecocardiografía Práctica y Otras Técnicas de Imagen Cardíaca; Vol. 1 No. 1 (2018): Journal of Practical Echocardiography and Other Cardiac Imaging Techniques; 47-50 ; Revista de Ecocardiografía Práctica y Otras Técnicas de Imagen Cardíaca; Vol. 1 Núm. 1 (2018): Revista de Ecocardiografía Práctica y Otras Técnicas de Imagen Cardíaca; 47-50 ; 2529-976X

    وصف الملف: application/pdf

  19. 19
    Academic Journal
  20. 20
    Academic Journal