-
1Dissertation/ Thesis
المؤلفون: Gorri Cirella, Daniel
Thesis Advisors: Ortiz Uribe, Inmaculada, Urtiaga Mendía, Ane Miren, Universidad de Cantabria. Departamento de Ingeniería Química y Química Inorgánica
المصدر: TDR (Tesis Doctorales en Red)
مصطلحات موضوعية: Volatile organochlorinated compounds, Concentration-polarization, Mass transfer, Hollow fibers, Diffusion coefficient, Membranes, Pervaporation, Compuestos organoclorados volátiles, Polarización de la concentración, Transporte de materia, Fibras huecas, Coeficiente de difusión, Membranas, Pervaporación, Ingeniería Química
وصف الملف: application/pdf
-
2Academic Journal
المصدر: Ingeniería e Investigación; Vol. 28 No. 1 (2008); 123-132 ; Ingeniería e Investigación; Vol. 28 Núm. 1 (2008); 123-132 ; 2248-8723 ; 0120-5609
مصطلحات موضوعية: colmatación, membranas, microfiltración, modelos matemáticos, polarización de la concentración, bloqueo de poro, difusión de corte inducido, migración lateral, fouling, membrane, microfiltration, mathematical model, concentration polarisation, pore blocking, shear-induced diffusion, lateral migration
وصف الملف: application/pdf
Relation: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14876/15682; Agashichev, S. P., Concentration polarization in cross-flow microfiltration under the conditions of shear-induced diffusion., Desalination, 200, 2006, pp. 346-348.; Altena, F. W., Belfort, G., Lateral migration of spherical particles in porous flow channels: applications to membrane filtration., Chem. Eng. Sci., 89 (2), 1984, pp. 343-355.; Altmann, J., Ripperger, S., Particle deposition and layer formation at the crossflow microfiltration., J. Memb. Sci., 124, 1991, pp. 119-128.; Bacchin, P., Si-Hassen, D., Starov, V., Clifton, M.J. y Aimar, P., A unifying model for concentration polarization, gel layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions., Chem. Eng. Sci., 57, 2002, pp. 77-91.; Balakrishnan, M., Dua, M., Bhagat, J. J., Effect of operating parameters on sugarcane juice ultrafiltration: results of a field experience., Sep. Pur. Tech., 19, 2000, pp. 209- 220.; Bird, M. R., Barttlet, M., Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate., J. Food Eng., 53, 2002, pp. 143-152.; Bird, R. B., Stewart, W. E., Lightfoot, E. N., Fenómenos de Transporte., Editorial Reverté, S.A., México, 1993.; Bolton, G., LaCasse, D., Kuriyel, R., Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids., J. Memb. Sci., 277, 2005, pp. 75-84.; Carneiro, L., dos Santos Sa., I., dos Santos Gomes, F., Matta, V. M., Cabral., L. M. C., Cold sterilization and clarification of pinneapple juice by tangential microfiltration., Desalination 148, 2002, pp. 93-98.; Carrère, H., Blaszkowa, F., Roux de Balmann, H., Modelling the microfiltration of lactic acid fermentation broths and comparison of operating modes., Desalination, 145, 2002, pp. 201-206.; Choi, H., Zhang, K., Dionysiou, D. D., Oerther, D.B., Sorial, G. A., Influence of cross-flow velocity on membrane performance during filtration of biological suspension., J. Memb. Sci., 248, 2005, pp. 189-199.; Cross, R. A., Optimum process designs for ultrafiltration and crossflow microfiltration systems., Desalination, 145, 2002, pp. 59-163.; Cumming, I. W., Holdich, R. G., Ismail, B., Prediction of deposit depth and transmembrane pressure during crossflow microfiltration. J. Memb. Sci., 154, 1999, pp. 229-237.; Curcio, S., Calabrò, V., Iorio, G., A theoretical analysis of transport phenomena in membrane concentration of liquorice solutions: a FEM approach., J. Food Eng., 71, 2005, pp. 252-264.; Curcio, S., Calabrò, V., Iorio, G., Cindío, B., Fruit juice concentration by membranes: effect of rheological properties on concentration polarization phenomena., J. Food Eng., 48, 2001, pp. 235-241.; Davis, R. H., Leighton, D. T., Shear-induced transport of a particle layer along a porous wall., Chem. Eng. Sci. 42 (2), 1987, pp. 275-281.; Davis, R. H., Sherwood, J. D., A similarity solution for steady-state crossflow microfiltration., Chem. Eng. Sci. 45 (11), 1990, pp. 3203-3209.; Djuric, M., Gyura, J., Zavargo, Z., Seres, Z., Tekic, M., Modelling of ultrafiltration of non-sucrose compounds in sugar beet processing., J. Food Eng., 65, 2004, pp. 73-82.; Duclos-Orsello, C., Weiyi, L., Chia-Chi, H., A three mechanism model to describe fouling of microfiltration mem branes., J. Memb. Sci., 280, 2006, pp. 856–866.; Eckstein, E. C., Bailey, D. G., Shapiro, A. H., Self diffusion of particles in shear flow of a suspension., J. Fluid Mech. 79, 1977, pp. 191-208.; Green, G., Belfort, G., Fouling of ultrafiltration membranes: lateral migration and the particle trajectory model., Desalination, 35, 1980, pp.129-147.; Hermia, J., Constant pressure blocking filtration law: Application to power law non-newtonians fluids., Trans. I. Chem. E., 60, 1982, pp.183-188.; Hwang, K-J., Lin, T-T., Effect of morphology of polymeric membrane on the performance of cross-flow micro filtration., J. Memb. Sci. 199, 2002, pp. 41-52.; Hwang, K.-J., Wu, R.-M., Use of models in the design of cross-flow microfilters for the purification of protein from bio-mixtures., J. Chin. Inst. Chem. Eng. ARTICLE IN PRESS.; Jiraratananon, R., Chanachai, A., A study fouling in the ultrafiltration of passion fruit juice., J. Memb. Sci. 111, 1996, pp. 39-48.; Jonsson, G., Prádanos, P., Hernández, A., Fouling phenomena in microporous membranes., Flux decline kinetics and structural modifications. J. Memb. Sci. 112, 1996, pp. 171-183.; Kawakatsu, T., Nakajima, M., Nakao, S., Kimura, S., Three dimensional simulation of random packing and pore blocking phenomena during microfiltration., Desalination, 101, 1995, pp. 203-209.; Knutsen, J. S., Davis, R. H., Deposition of foulant particles during tangential flow filtration., J. Memb. Sci., 271, 2006, pp. 101-113.; Kromkamp, J., Bastiaanse, A., Swarts, J., Brans, G., van der Sman, R. G. M., Boom, R. M., A suspension model for hydrodynamics and concentration polarization in crossflow microfiltration., J. Memb. Sci. 253, 2005, pp. 67-79.; Lee, Y., Clark, M., Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions. J. Memb. Sci. 149, 1998, pp. 181-202.; Leighton, D. T., Acrivos, A., Measurement of the shear induced coefficient of self-diffusion in concentrated suspension spheres. J. Fluid Mech., 177, 1987, pp. 109- 131.; Mondor, M., Moresoli, C., Experimental verification of the shear-induced hydrodinamic diffusion model of crossflow microfiltration, with consideration the transmembrane pressure axial variation., J. Memb. Sci. 175, 2000, pp. 119-137.; Nassehi, V., Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration., Chem. Eng. Sci., 53 (6), 1998, pp. 1253-1265.; Riedl, K., Girard, B., Lencki, R. W., Influence of membrane structure in fouling layer morphology during apple juice clarification., J. Memb. Sci., 139, 1998, pp. 155-166.; Ripperger, S., Altmann, J., Crossflow microfiltration – state of art., Sep. Pur. Tech., 26, 2002, pp. 19-31.; Romero, C. A., Davis, R. H., Global model of crossflow microfiltration based on hydrodynamic particle diffusion., J Memb. Sci., 39, 1988, pp. 157-185.; Romero, C. A., Davis, R. H., Transient model of crossflow microfiltration., Chem. Eng. Sci., 45 (1), 1990, pp. 13-25. Song, L., A new model for the calculation of the limiting flux in ultrafiltration., J. Memb. Sci. 144, 1998a, pp, 173- 185. Song, L., Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling., J. Memb. Sci. 139, 1998b, pp. 183-200.; Stamatakis, K., Tien, C., A simple model of cross-flow filtration based on particle adhesion., AIChE J., 39 (8), 1993, pp.1292-1302.; Thomassen, J. K., Faraday, D. B. F., Underwood, B. O., Cleaver, J. A. S., The effect of varying transmembrane pressure and crossflow velocity on the microfiltration fouling of a model beer., Sep. Pur. Tech., 41, 2005, pp. 91-100.; Vaillant, F., Cisse, M., Chaverri, M., Perez, A., Dornier, M., Viquez, F., Dhuique-Mayer, C., Clarification and concentration of melon juice using membrane processes., Inn. Food Sci. Eng. Tech., 6, 2005, pp. 213-220.; Vaillant, F., Perez, A., M., Viquez, F., Microfiltración tangencial: una alternativa innovadora para la transformación de frutas tropicales., La Alimentación Latinoamericana 252, 2004, pp. 38-46.; Vaillant, F., Millan, A., Dornier, M., Decloux, M., Reynes, M., Strategy for economical optimisation of the clarification of pulpy fruit juices using crossflow microfiltration. J. Food Eng., 48, 2001, pp. 83-90.; Vaillant, F., Millán, P., O’Brien, G., Dornier, M., Decloux, M., Reynes, M., Crossflow microfiltration of passion fruit juice after partial enzymatic liquefaction., J. Food Eng., 42, 1999, pp. 215-224.; Vélez, C., Franco, E., González, J. A., Nuevos procesos membranarios aplicados a frutas tropicales-Ajustes hacia la fase industrial., Informe final de la automatización. Proyecto COLCIENCIAS-UNIVALLE-CIRAD-PASSICOL, Cali, 2007.; Vyas, H. K., Bennett, R. J., Marshall, A. D., Performance of crossflow microfiltration during constant transmembrane pressure and constant flux operations., Int. Dairy J. 12, 2002, pp. 473-479.; Wang, B. J., Wei, T. C., Yu, Z. R., Effect of operating temperature on component distribution of West Indian cherry juice in a microfiltration system., LWT, 38, 683- 689, 2005.; Wang, L., Song, L., Flux decline in crossflow microfiltration and ultrafiltration: experimental verification of fouling dynamics., J. Memb. Sci., 160, 1999, pp. 41-50.; Wiley, D. E., Fletcher, D. F., Techniques for computational fluid dynamics modeling of flow in membrane channels., J. Memb. Sci., 211, 2003, pp. 127-137.; Ye, Y., Le Clech, V., Fane, A. G., Evolution of fouling during crossflow filtration of model EPS solutions., J. Memb. Sci., 264, 2005, pp. 190-199.; Youn, K-S., Hong, J-H., Bae, D-H., Kim, S-J., Kim, S-D., Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment., J. Memb. Sci., 228, 2004, pp. 179-186.; Yu, J., Lencki, W., Effect of enzyme treatments on the fouling behavior of apple juice during microfiltration., J. Food Eng., 63, 2004, pp. 413-423.; Zydney, L., Colton, C. K., A concentration polarization model for the filtrate flux in crossflow microfiltration of particulate suspensions., Chem. Eng. Comm., 47, 1986, pp. 1-21.; https://revistas.unal.edu.co/index.php/ingeinv/article/view/14876
-
3Academic Journal
مصطلحات موضوعية: fouling, membrane, microfiltration, mathematical model, concentration polarisation, pore blocking, shear-induced diffusion, lateral migration, colmatación, membranas, microfiltración, modelos matemáticos, polarización de la concentración, bloqueo de poro, difusión de corte inducido, migración lateral
وصف الملف: application/pdf
Relation: http://revistas.unal.edu.co/index.php/ingeinv/article/view/14876; Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación; Ingeniería e Investigación; Ingeniería e Investigación; Vol. 28, núm. 1 (2008); 123-132 Ingeniería e Investigación; Vol. 28, núm. 1 (2008); 123-132 2248-8723 0120-5609; Ortíz Jerez, Mónica Jimena and Vélez Pasos, Carlos Antonio and Franco Mejía, Edinson (2008) Modelos matemáticos de la colmatación de membranas en microfiltración tangencial. Ingeniería e Investigación; Vol. 28, núm. 1 (2008); 123-132 Ingeniería e Investigación; Vol. 28, núm. 1 (2008); 123-132 2248-8723 0120-5609 .; https://repositorio.unal.edu.co/handle/unal/28887; http://bdigital.unal.edu.co/18935/
-
4
المصدر: Ingeniería e Investigación, Vol 28, Iss 1, Pp 123-132 (2008)
Ingeniería e Investigación, Volume: 28, Issue: 1, Pages: 123-132, Published: APR 2008مصطلحات موضوعية: Work (thermodynamics), fouling, polarización de la concentración, difusión de corte inducido, modelos matemáticos, Thermodynamics, Tropical fruit, concentration polarisation, Permeate flux, Membrane surface, membrane, pore blocking, Mathematical model, Fouling, Chemistry, General Engineering, Environmental engineering, microfiltration, Building and Construction, Operating variables, colmatación, migración lateral, microfiltración, bloqueo de poro, lateral migration, Membrane, lcsh:TA1-2040, shear-induced diffusion, membranas, lcsh:Engineering (General). Civil engineering (General), mathematical model
وصف الملف: text/html
-
5
المؤلفون: Gorri Cirella, Eugenio Daniel
المساهمون: Ortiz Uribe, Inmaculada, Urtiaga Mendia, Ana María, Universidad de Cantabria
المصدر: Tesis Doctorales en Red (TDR)
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)مصطلحات موضوعية: Membranes, Pervaporación, Concentration-polarization, Volatile organochlorinated compounds, Fibras huecas, Transporte de materia, Compuestos organoclorados volátiles, Polarización de la concentración, Coeficiente de difusión, Membranas, Pervaporation, Hollow fibers, Mass transfer, Diffusion coefficient
-
6
المصدر: Redalyc
Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: pore blocking, fouling, polarización de la concentración, difusión de corte inducido, modelos matemáticos, microfiltration, colmatación, migración lateral, lateral migration, microfiltración, bloqueo de poro, concentration polarisation, shear-induced diffusion, membranas, membrane, mathematical model
وصف الملف: application/pdf
-
7Dissertation/ Thesis
المؤلفون: Gorri Cirella, Daniel
المساهمون: Ortiz Uribe, Inmaculada, Urtiaga Mendia, Ana María, Universidad de Cantabria
المصدر: Tesis Doctorales en Red (TDR)
مصطلحات موضوعية: Volatile organochlorinated compounds, Concentration-polarization, Mass transfer, Hollow fibers, Diffusion coefficient, Membranes, Pervaporation, Compuestos organoclorados volátiles, Polarización de la concentración, Transporte de materia, Fibras huecas, Coeficiente de difusión, Membranas, Pervaporación
Relation: http://hdl.handle.net/10803/10694; D.L. SA. 558-2010; http://hdl.handle.net/10902/1237
الاتاحة: http://hdl.handle.net/10902/1237
-
8Electronic Resource
Additional Titles: Modelos matemáticos de la colmatación de membranas en microfiltración tangencial
المصدر: Ingeniería e Investigación; Vol. 28 No. 1 (2008); 123-132; Ingeniería e Investigación; Vol. 28 Núm. 1 (2008); 123-132; 2248-8723; 0120-5609
مصطلحات الفهرس: colmatación, membranas, microfiltración, modelos matemáticos, polarización de la concentración, bloqueo de poro, difusión de corte inducido, migración lateral, fouling, membrane, microfiltration, mathematical model, concentration polarisation, pore blocking, shear-induced diffusion, lateral migration, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
URL:
https://revistas.unal.edu.co/index.php/ingeinv/article/view/14876/15682 https://revistas.unal.edu.co/index.php/ingeinv/article/view/14876/15682
*ref*/Agashichev, S. P., Concentration polarization in cross-flow microfiltration under the conditions of shear-induced diffusion., Desalination, 200, 2006, pp. 346-348.
*ref*/Altena, F. W., Belfort, G., Lateral migration of spherical particles in porous flow channels: applications to membrane filtration., Chem. Eng. Sci., 89 (2), 1984, pp. 343-355.
*ref*/Altmann, J., Ripperger, S., Particle deposition and layer formation at the crossflow microfiltration., J. Memb. Sci., 124, 1991, pp. 119-128.
*ref*/Bacchin, P., Si-Hassen, D., Starov, V., Clifton, M.J. y Aimar, P., A unifying model for concentration polarization, gel layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions., Chem. Eng. Sci., 57, 2002, pp. 77-91.
*ref*/Balakrishnan, M., Dua, M., Bhagat, J. J., Effect of operating parameters on sugarcane juice ultrafiltration: results of a field experience., Sep. Pur. Tech., 19, 2000, pp. 209- 220.
*ref*/Bird, M. R., Barttlet, M., Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate., J. Food Eng., 53, 2002, pp. 143-152.
*ref*/Bird, R. B., Stewart, W. E., Lightfoot, E. N., Fenómenos de Transporte., Editorial Reverté, S.A., México, 1993.
*ref*/Bolton, G., LaCasse, D., Kuriyel, R., Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids., J. Memb. Sci., 277, 2005, pp. 75-84.
*ref*/Carneiro, L., dos Santos Sa., I., dos Santos Gomes, F., Matta, V. M., Cabral., L. M. C., Cold sterilization and clarification of pinneapple juice by tangential microfiltration., Desalination 148, 2002, pp. 93-98.
*ref*/Carrère, H., Blaszkowa, F., Roux de Balmann, H., Modelling the microfiltration of lactic acid fermentation broths and comparison of operating modes., Desalination, 145, 2002, pp. 201-206.
*ref*/Choi, H., Zhang, K., Dionysiou, D. D., Oerther, D.B., Sorial, G. A., Influence of cross-flow velocity on membrane performance during filtration of biological suspension., J. Memb. Sci., 248, 2005, pp. 189-199.
*ref*/Cross, R. A., Optimum process designs for ultrafiltration and crossflow microfiltration systems., Desalination, 145, 2002, pp. 59-163.
*ref*/Cumming, I. W., Holdich, R. G., Ismail, B., Prediction of deposit depth and transmembrane pressure during crossflow microfiltration. J. Memb. Sci., 154, 1999, pp. 229-237.
*ref*/Curcio, S., Calabrò, V., Iorio, G., A theoretical analysis of transport phenomena in membrane concentration of liquorice solutions: a FEM approach., J. Food Eng., 71, 2005, pp. 252-264.
*ref*/Curcio, S., Calabrò, V., Iorio, G., Cindío, B., Fruit juice concentration by membranes: effect of rheological properties on concentration polarization phenomena., J. Food Eng., 48, 2001, pp. 235-241.
*ref*/Davis, R. H., Leighton, D. T., Shear-induced transport of a particle layer along a porous wall., Chem. Eng. Sci. 42 (2), 1987, pp. 275-281.
*ref*/Davis, R. H., Sherwood, J. D., A similarity solution for steady-state crossflow microfiltration., Chem. Eng. Sci. 45 (11), 1990, pp. 3203-3209.
*ref*/Djuric, M., Gyura, J., Zavargo, Z., Seres, Z., Tekic, M., Modelling of ultrafiltration of non-sucrose compounds in sugar beet processing., J. Food Eng., 65, 2004, pp. 73-82.
*ref*/Duclos-Orsello, C., Weiyi, L., Chia-Chi, H., A three mechanism model to describe fouling of microfiltration mem branes., J. Memb. Sci., 280, 2006, pp. 856–866.
*ref*/Eckstein, E. C., Bailey, D. G., Shapiro, A. H., Self diffusion of particles in shear flow of a suspension., J. Fluid Mech. 79, 1977, pp. 191-208.
*ref*/Green, G., Belfort, G., Fouling of ultrafiltration membranes: lateral migration and the particle trajectory model., Desalination, 35, 1980, pp.129-147.
*ref*/Hermia, J., Constant pressure blocking filtration law: Application to power law non-newtonians fluids., Trans. I. Chem. E., 60, 1982, pp.183-188.
*ref*/Hwang, K-J., Lin, T-T., Effect of morphology of polymeric membrane on the performance of cross-flow micro filtration., J. Memb. Sci. 199, 2002, pp. 41-52.
*ref*/Hwang, K.-J., Wu, R.-M., Use of models in the design of cross-flow microfilters for the purification of protein from bio-mixtures., J. Chin. Inst. Chem. Eng. ARTICLE IN PRESS.
*ref*/Jiraratananon, R., Chanachai, A., A study fouling in the ultrafiltration of passion fruit juice., J. Memb. Sci. 111, 1996, pp. 39-48.
*ref*/Jonsson, G., Prádanos, P., Hernández, A., Fouling phenomena in microporous membranes., Flux decline kinetics and structural modifications. J. Memb. Sci. 112, 1996, pp. 171-183.
*ref*/Kawakatsu, T., Nakajima, M., Nakao, S., Kimura, S., Three dimensional simulation of random packing and pore blocking phenomena during microfiltration., Desalination, 101, 1995, pp. 203-209.
*ref*/Knutsen, J. S., Davis, R. H., Deposition of foulant particles during tangential flow filtration., J. Memb. Sci., 271, 2006, pp. 101-113.
*ref*/Kromkamp, J., Bastiaanse, A., Swarts, J., Brans, G., van der Sman, R. G. M., Boom, R. M., A suspension model for hydrodynamics and concentration polarization in crossflow microfiltration., J. Memb. Sci. 253, 2005, pp. 67-79.
*ref*/Lee, Y., Clark, M., Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions. J. Memb. Sci. 149, 1998, pp. 181-202.
*ref*/Leighton, D. T., Acrivos, A., Measurement of the shear induced coefficient of self-diffusion in concentrated suspension spheres. J. Fluid Mech., 177, 1987, pp. 109- 131.
*ref*/Mondor, M., Moresoli, C., Experimental verification of the shear-induced hydrodinamic diffusion model of crossflow microfiltration, with consideration the transmembrane pressure axial variation., J. Memb. Sci. 175, 2000, pp. 119-137.
*ref*/Nassehi, V., Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration., Chem. Eng. Sci., 53 (6), 1998, pp. 1253-1265.
*ref*/Riedl, K., Girard, B., Lencki, R. W., Influence of membrane structure in fouling layer morphology during apple juice clarification., J. Memb. Sci., 139, 1998, pp. 155-166.
*ref*/Ripperger, S., Altmann, J., Crossflow microfiltration – state of art., Sep. Pur. Tech., 26, 2002, pp. 19-31.
*ref*/Romero, C. A., Davis, R. H., Global model of crossflow microfiltration based on hydrodynamic particle diffusion., J Memb. Sci., 39, 1988, pp. 157-185.
*ref*/Romero, C. A., Davis, R. H., Transient model of crossflow microfiltration., Chem. Eng. Sci., 45 (1), 1990, pp. 13-25. Song, L., A new model for the calculation of the limiting flux in ultrafiltration., J. Memb. Sci. 144, 1998a, pp, 173- 185. Song, L., Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling., J. Memb. Sci. 139, 1998b, pp. 183-200.
*ref*/Stamatakis, K., Tien, C., A simple model of cross-flow filtration based on particle adhesion., AIChE J., 39 (8), 1993, pp.1292-1302.
*ref*/Thomassen, J. K., Faraday, D. B. F., Underwood, B. O., Cleaver, J. A. S., The effect of varying transmembrane pressure and crossflow velocity on the microfiltration fouling of a model beer., Sep. Pur. Tech., 41, 2005, pp. 91-100.
*ref*/Vaillant, F., Cisse, M., Chaverri, M., Perez, A., Dornier, M., Viquez, F., Dhuique-Mayer, C., Clarification and concentration of melon juice using membrane processes., Inn. Food Sci. Eng. Tech., 6, 2005, pp. 213-220.
*ref*/Vaillant, F., Perez, A., M., Viquez, F., Microfiltración tangencial: una alternativa innovadora para la transformación de frutas tropicales., La Alimentación Latinoamericana 252, 2004, pp. 38-46.
*ref*/Vaillant, F., Millan, A., Dornier, M., Decloux, M., Reynes, M., Strategy for economical optimisation of the clarification of pulpy fruit juices using crossflow microfiltration. J. Food Eng., 48, 2001, pp. 83-90.
*ref*/Vaillant, F., Millán, P., O’Brien, G., Dornier, M., Decloux, M., Reynes, M., Crossflow microfiltration of passion fruit juice after partial enzymatic liquefaction., J. Food Eng., 42, 1999, pp. 215-224.
*ref*/Vélez, C., Franco, E., González, J. A., Nuevos procesos membranarios aplicados a frutas tropicales-Ajustes hacia la fase industrial., Informe final de la automatización. Proyecto COLCIENCIAS-UNIVALLE-CIRAD-PASSICOL, Cali, 2007.
*ref*/Vyas, H. K., Bennett, R. J., Marshall, A. D., Performance of crossflow microfiltration during constant transmembrane pressure and constant flux operations., Int. Dairy J. 12, 2002, pp. 473-479.
*ref*/Wang, B. J., Wei, T. C., Yu, Z. R., Effect of operating temperature on component distribution of West Indian cherry juice in a microfiltration system., LWT, 38, 683- 689, 2005.
*ref*/Wang, L., Song, L., Flux decline in crossflow microfiltration and ultrafiltration: experimental verification of fouling dynamics., J. Memb. Sci., 160, 1999, pp. 41-50.
*ref*/Wiley, D. E., Fletcher, D. F., Techniques for computational fluid dynamics modeling of flow in membrane channels., J. Memb. Sci., 211, 2003, pp. 127-137.
*ref*/Ye, Y., Le Clech, V., Fane, A. G., Evolution of fouling during crossflow filtration of model EPS solutions., J. Memb. Sci., 264, 2005, pp. 190-199.
*ref*/Youn, K-S., Hong, J-H., Bae, D-H., Kim, S-J., Kim, S-D., Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment., J. Memb. Sci., 228, 2004, pp. 179-186.
*ref*/Yu, J., Lencki, W., Effect of enzyme treatments on the fouling behavior of apple juice during microfiltration., J. Food Eng., 63, 2004, pp. 413-423.
*ref*/Zydney, L., Colton, C. K., A concentration polarization model for the filtrate flux in crossflow microfiltration of particulate suspensions., Chem. Eng. Comm., 47, 1986, pp. 1-21.