يعرض 1 - 20 نتائج من 48 نتيجة بحث عن '"Pliss, Iryna"', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Information Technology and Management Science; Vol 20, No 1 (2017): Information Technology and Management Science; 6-11 ; 2255-9094 ; 2255-9086

    وصف الملف: application/pdf

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المصدر: System research and information technologies; No. 3 (2021); 110-119 ; Системные исследования и информационные технологии; № 3 (2021); 110-119 ; Системні дослідження та інформаційні технології; № 3 (2021); 110-119 ; 2308-8893 ; 1681-6048

    وصف الملف: application/pdf

  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المؤلفون: Perova, Iryna, Pliss, Iryna

    المصدر: International Journal of Intelligent Systems and Applications ; volume 9, issue 7, page 12-21 ; ISSN 2074-904X 2074-9058

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Book

    المصدر: Advances in Intelligent Systems and Computing ; Advances in Intelligent Systems and Computing V ; page 371-382 ; ISSN 2194-5357 2194-5365 ; ISBN 9783030632694 9783030632700

  14. 14
  15. 15
    Conference

    المصدر: 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) ; page 304-307

  16. 16
    Conference

    المساهمون: Kharkiv National University of Radio Electronics, Lviv Polytechnic National University, Tallinn University of Technology

    جغرافية الموضوع: 21-25 August 2018, Lviv, Львів

    وصف الملف: 171-176; application/pdf; image/png

    Relation: Data stream mining and processing : proceedings of the IEEE second international conference, 2018; http://www.ics.uci.edu/~mlearn/MLRepository.html; [1] C. C. Aggarwal, Data Mining. Cham: Springer, Int. Publ., Switzerland, 2015.; [2] M. Bramer, Principles of Data Mining. Springer-Verlag London, 2016.; [3] A. Bifet, R. Gavaldà, G. Holmes, and B. Pfahringer, Machine Learning for Data Streams with Practical Examples in MOA. The MIT Press, 2018.; [4] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. John Wiley & Sons. Chichester, 1999.; [5] C. C. Aggarwal and C. K. Reddy, Data Clustering. Algorithms and Application. Boca Raton: CRC Press, 2014.; [6] R. Xu and D. C. Wunsch, Clustering. IEEE Press Series on Computational Intelligence. Hoboken, NJ: John Wiley & Sons, Inc., 2009.; [7] A. Bifet, Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams, IOS Press, 2010.; [8] J. Kacprzyk, and W. Pedrycz, Springer Handbook of Computational Intelligence, Berlin Heidelberg: Springer, Verlag, 2015.; [9] K.-L. Du and M. N. S. Swamy, Neural Networks and Statistical Learning. London: Springer-Verlag, 2014.; [10] J.-C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, N.Y.: Plenum Press, 1981.; [11] Ye. V. Bodyanskiy, A. O. Deineko, and Y. V. Kutsenko, “On-line kernel clustering based on the general regression neural network and T. Kohonen’s self-organizing map,” Automatic Control and Computer Sciences, 51(1), pp. 55-62, 2017.; [12] J. Keller, J. C. Bezdek, R. Krishnapuram and N. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. The Handbook of Fuzzy Sets. Kluwer, Dordrecht, Netherlands: Springer, vol. 4, 1999.; [13] B. Quost, and T. Denœux “Clustering and classification of fuzzy data using the fuzzy EM algorithm,” Fuzzy Sets and Systems. vol. 286, pp. 134-156, March 2016.; [14] J. Yu, Ch. Chaomu, and M. S. Yang, “On convergence and parameter selection of the EM and DA-EM algorithms for Gaussian mixtures,” Pattern Recognition, vol. 77, pp. 188-203, May 2018.; [15] X. L. Meng and D. B. Rubin, “Maximum likelihood estimation via the ECM algorithm:a general framework,” Biometrica, vol. 80, рр. 267-278, 1993.; [16] Ye. Bodyanskiy, “Computational intelligence techniques for data analysis,” Lecture Notes in Informatics, Bonn: GI, pp. 15 – 36, 2005.; [17] Ye. Gorshkov, V. Kolodyaznhiy and Ye., Bodyanskiy, “New recursive learning algorithms for fuzzy Kohonen clustering network,” 17th Int. Workshop on Nonlinear Dynamics of Electronic Systems, Rapperswil, Switzerland, pp. 58-61, 2009.; [18] L. Jain and C. Mumford, Computational Intelligence, Collaboration, Fuzzy and Emergence, Berlin: Springer, Vergal, 2009.; [19] S. Osowski, Sieci neuronowe do przetwarzania informacji, Warszawa: Oficijna Wydawnicza Politechniki Warszawskiej, 2006.; [20] A. B. Geva and I. Gath “Unsupervised optimal fuzzy clustering,” Pattern Analysis and Machine Intelligence, vol. 2, n.7, pp. 773-787, 1989.; [21] T. Kohonen, Self-Organizing Maps. Berlin: Springer-Verlag, 1995.; [22] Ye. Bodyanskiy, A. Deineko, Y. Kutsenko and O. Zayika, “Data streams fast EM-fuzzy clustering based on Kohonen`s self-learning,” 1th IEEE International Conference on Data Stream Mining & Processing (DSMP 2016), Lviv, Ukrane, pp. 309-313, 2016.; [23] A. B. Geva, “Clustering as a basis for evolving neuro-fuzzy modeling,” Evolving Systems, pp. 59-71, 2010.; [24] UCI Repository of machine learning databases. CA: University of California, Department of Information and Computer Science. [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html; [10] J.-C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, N.Y., Plenum Press, 1981.; [11] Ye. V. Bodyanskiy, A. O. Deineko, and Y. V. Kutsenko, "On-line kernel clustering based on the general regression neural network and T. Kohonen’s self-organizing map," Automatic Control and Computer Sciences, 51(1), pp. 55-62, 2017.; [13] B. Quost, and T. Denœux "Clustering and classification of fuzzy data using the fuzzy EM algorithm," Fuzzy Sets and Systems. vol. 286, pp. 134-156, March 2016.; [14] J. Yu, Ch. Chaomu, and M. S. Yang, "On convergence and parameter selection of the EM and DA-EM algorithms for Gaussian mixtures," Pattern Recognition, vol. 77, pp. 188-203, May 2018.; [15] X. L. Meng and D. B. Rubin, "Maximum likelihood estimation via the ECM algorithm:a general framework," Biometrica, vol. 80, rr. 267-278, 1993.; [16] Ye. Bodyanskiy, "Computational intelligence techniques for data analysis," Lecture Notes in Informatics, Bonn: GI, pp. 15 – 36, 2005.; [17] Ye. Gorshkov, V. Kolodyaznhiy and Ye., Bodyanskiy, "New recursive learning algorithms for fuzzy Kohonen clustering network," 17th Int. Workshop on Nonlinear Dynamics of Electronic Systems, Rapperswil, Switzerland, pp. 58-61, 2009.; [20] A. B. Geva and I. Gath "Unsupervised optimal fuzzy clustering," Pattern Analysis and Machine Intelligence, vol. 2, n.7, pp. 773-787, 1989.; [22] Ye. Bodyanskiy, A. Deineko, Y. Kutsenko and O. Zayika, "Data streams fast EM-fuzzy clustering based on Kohonen`s self-learning," 1th IEEE International Conference on Data Stream Mining & Processing (DSMP 2016), Lviv, Ukrane, pp. 309-313, 2016.; [23] A. B. Geva, "Clustering as a basis for evolving neuro-fuzzy modeling," Evolving Systems, pp. 59-71, 2010.; Data Stream Online Clustering Based on Fuzzy Expectation-Maximization Approach / Anastasiia Deineko, Polina Zhernova, Boris Gordon, Oleksandr Zayika, Iryna Pliss, Nelya Pabyrivska // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 171–176. — (Dynamic Data Mining & Data Stream Mining).; © Національний університет „Львівська політехніка“, 2018; https://ena.lpnu.ua/handle/ntb/52484; Data Stream Online Clustering Based on Fuzzy Expectation-Maximization Approach / Anastasiia Deineko, Polina Zhernova, Boris Gordon, Oleksandr Zayika, Iryna Pliss, Nelya Pabyrivska // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 171–176. — (Dynamic Data Mining & Data Stream Mining).

  17. 17
    Conference

    المساهمون: Kharkiv National University of Radio Electronics

    جغرافية الموضوع: 21-25 August 2018, Lviv, Львів

    وصف الملف: 519-523; application/pdf; image/png

    Relation: Data stream mining and processing : proceedings of the IEEE second international conference, 2018; http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits; [1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, pp. 436-444, 2015.; [2] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85-117, 2015.; [3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.; [4] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual understanding: A review,” Neurocomputing, vol. 187, pp. 27-48, 2016.; [5] P. Stubberud, “A vector matrix real time backpropagation algorithm for recurrent neural networks that approximate multi-valued periodic functions,” Int. J. on Computational Intelligence and Application, 8(4), pp. 395-411, 2009.; [6] P. Daniušis and P. Vaitkus, “Neural networks with matrix inputs,” Informatica, 19, №4, pp. 477-486, 2008.; [7] M. Mohamadian, H. Afarideh, and F. Babapour, “New 2D MatrixBased Neural Network for Image Processing Applications,” IAENG International Journal of Computer Science, 42(3), pp. 265-274, 2015.; [8] J. Gao, Y. Guo, and Z. Wang, “Matrix neural networks,” in Proceedings of the14th International Symposium on Neural Networks (ISNN), Part II, Sapporo, Sapporo, Japan, pp. 1–10, 2017.; [9] V. M. Kuntsevych and M. M. Lychak, Synthesis of optimal and adaptive control systems. The game approach (В. М. Кунцевич, М. М. Лычак, Синтез оптимальных и адаптивных систем управления. Игровой подход). Kyiv : Naukova dumka, 1985.; [10] V. M. Kuntsevych, “On a solving of the problem of two-dimensional discrete filtration (synthesis of matrix filters),” Automatica i Telemekhanika, no. 6, pp. 68-78, 1987.; [11] Ye. V. Bodyanskiy, and I. P. Pliss, “On a solving of the problem of a matrix object controlling under uncertainty conditions,” Automatika i Telemekhanika, no. 2, pp. 175-178, 1990.; [12] Ye. Bodyanskiy, I. Pliss, and V. A. Timofeev, “Discrete adaptive identification and extrapolation of two-dimensional fields,” Pattern Recognition and Image Analysis, vol. 5, no. 3, pp. 410-416, 1995.; [13] S. Haykin, Neural Networks: A Comprehensive Foundation. Upper Saddle River, N. J. : Prentice Hall, Inc., 1999.; [14] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford : Clarendon Press, 1995.; [15] http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits; [1] Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," Nature, vol. 521, pp. 436-444, 2015.; [2] J. Schmidhuber, "Deep Learning in neural networks: An overview," Neural Networks, vol. 61, pp. 85-117, 2015.; [4] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, "Deep learning for visual understanding: A review," Neurocomputing, vol. 187, pp. 27-48, 2016.; [5] P. Stubberud, "A vector matrix real time backpropagation algorithm for recurrent neural networks that approximate multi-valued periodic functions," Int. J. on Computational Intelligence and Application, 8(4), pp. 395-411, 2009.; [6] P. Daniušis and P. Vaitkus, "Neural networks with matrix inputs," Informatica, 19, No 4, pp. 477-486, 2008.; [7] M. Mohamadian, H. Afarideh, and F. Babapour, "New 2D MatrixBased Neural Network for Image Processing Applications," IAENG International Journal of Computer Science, 42(3), pp. 265-274, 2015.; [8] J. Gao, Y. Guo, and Z. Wang, "Matrix neural networks," in Proceedings of the14th International Symposium on Neural Networks (ISNN), Part II, Sapporo, Sapporo, Japan, pp. 1–10, 2017.; [9] V. M. Kuntsevych and M. M. Lychak, Synthesis of optimal and adaptive control systems. The game approach (V. M. Kuntsevich, M. M. Lychak, Sintez optimalnykh i adaptivnykh sistem upravleniia. Ihrovoi podkhod). Kyiv : Naukova dumka, 1985.; [10] V. M. Kuntsevych, "On a solving of the problem of two-dimensional discrete filtration (synthesis of matrix filters)," Automatica i Telemekhanika, no. 6, pp. 68-78, 1987.; [11] Ye. V. Bodyanskiy, and I. P. Pliss, "On a solving of the problem of a matrix object controlling under uncertainty conditions," Automatika i Telemekhanika, no. 2, pp. 175-178, 1990.; [12] Ye. Bodyanskiy, I. Pliss, and V. A. Timofeev, "Discrete adaptive identification and extrapolation of two-dimensional fields," Pattern Recognition and Image Analysis, vol. 5, no. 3, pp. 410-416, 1995.; Deep 2D-Neural Network and its Fast Learning / Yevgeniy Bodyanskiy, Iryna Pliss, Daria Kopaliani, Olena Boiko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 519–523. — (Machine Vision and Pattern Recognition).; © Національний університет „Львівська політехніка“, 2018; https://ena.lpnu.ua/handle/ntb/52436; Deep 2D-Neural Network and its Fast Learning / Yevgeniy Bodyanskiy, Iryna Pliss, Daria Kopaliani, Olena Boiko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 519–523. — (Machine Vision and Pattern Recognition).

  18. 18
    Book

    المصدر: Advances in Dependability Engineering of Complex Systems ; Advances in Intelligent Systems and Computing ; page 49-59 ; ISSN 2194-5357 2194-5365 ; ISBN 9783319594149 9783319594156

  19. 19
    Conference
  20. 20
    Book

    المصدر: Green IT Engineering: Concepts, Models, Complex Systems Architectures ; Studies in Systems, Decision and Control ; page 229-244 ; ISSN 2198-4182 2198-4190 ; ISBN 9783319441610 9783319441627