يعرض 1 - 20 نتائج من 214 نتيجة بحث عن '"Piotrowski, Z."', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Conference

    المصدر: WIT Transactions on Ecology and The Environment ; The Sustainable City IX ; volume 1, page 873-883 ; ISSN 1743-3541 1746-448X

  2. 2
    Conference

    المصدر: WIT Transactions on Biomedicine and Health ; Modelling in Medicine and Biology X ; volume 1, page 85-96 ; ISSN 1743-3525 1747-4485

  3. 3
    Book

    المؤلفون: Piotrowski, Z. A.

    المصدر: ISBN 9781134736546.

  4. 4
    Conference

    المؤلفون: Piotrowski, Z., Gajewski, P.

    المصدر: Computational Methods and Experimental Measurements XV ; WIT Transactions on Modelling and Simulation ; ISSN 1743-355X 1746-4064

  5. 5
    Conference

    المؤلفون: Piotrowski, Z., Gajewski, P.

    المصدر: WIT Transactions on Modelling and Simulation ; Computational Methods and Experimental Measurements XIV ; volume 1, page 251-258 ; ISSN 1743-355X 1746-4064

  6. 6
    Conference

    المؤلفون: Piotrowski, Z.

    المصدر: WIT Transactions on the Built Environment ; Safety and Security Engineering III ; volume 1, page 301-309 ; ISSN 1743-3509 1746-4498

  7. 7
    Academic Journal

    المؤلفون: Brown, J. B., Piotrowski, Z.

    المصدر: Proceedings of the American Mathematical Society, 1986 Apr 01. 96(4), 683-688.

  8. 8
    Conference

    المؤلفون: Piotrowski, Z., Gajewski, P.

    المصدر: WIT Transactions on Modelling and Simulation, Vol 46 ; Computational Methods and Experimental Measurements XIII ; volume I, page 791-800 ; ISSN 1743-355X 1746-4064

  9. 9
    Academic Journal

    المصدر: The Rocky Mountain Journal of Mathematics, 1998 Apr 01. 28(1), 237-251.

  10. 10
    Academic Journal
  11. 11
    Academic Journal

    مصطلحات موضوعية: Applied Mathematics

    وصف الملف: application/pdf

    Relation: http://publications.imp.fu-berlin.de/2586/1/gmd-12-651-2019.pdf; Kühnlein, C. and Deconinck, W. and Klein, R. and Malardel, S. and Piotrowski, Z. and Smolarkiewicz, P. and Szmelter, J. and Wedi, N. (2019) A nonhydrostatic finite-volume dynamical core for the IFS. Geoscientific Model Development, 12 (2). pp. 651-676.

  12. 12
    Academic Journal

    المؤلفون: Doboš, J., Piotrowski, Z.

    المصدر: International Journal of Mathematical Education in Science and Technology ; volume 28, issue 4, page 513-518 ; ISSN 0020-739X 1464-5211

  13. 13
    Academic Journal

    المؤلفون: Patel, Daksha, Piotrowski, Z. H

    المصدر: Pediatric Research ; volume 39, page 274-274 ; ISSN 0031-3998 1530-0447

  14. 14
    Conference
  15. 15
    Book

    المصدر: Springer Proceedings in Physics ; Advances in Turbulence XII ; page 787-789 ; ISSN 0930-8989 1867-4941 ; ISBN 9783642030840 9783642030857

  16. 16
    Conference

    المصدر: MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155) ; volume 1, page 45-47

  17. 17
  18. 18
    Academic Journal

    المؤلفون: Cao, J., Drozdowski, R., Piotrowski, Z.

    وصف الملف: application/pdf

    Relation: mr:MR2595078; zbl:Zbl 1224.54079; reference:[1] Andrijevi'c, D.: Semi-preopen sets.Mat. Ves. 38 (1986), 24-32.; reference:[2] Arhangel'skii, A. V.: Mappings and spaces.Russ. Math. Surv. 21 (1966), 115-162. MR 0227950; reference:[3] Arhangel'skii, A. V., Reznichenko, E. A.: Paratopological and semitopological groups versus topological groups.Topology Appl. 151 (2005), 107-119. Zbl 1077.54023, MR 2139745, 10.1016/j.topol.2003.08.035; reference:[4] Banakh, T., Ravsky, O.: Oscillator topologies on a paratopological group and related number invariants.Algebraic Structures and Their Applications. Proc. Third International Algebraic Conference, Kiev, Ukraine, July 2-8, 2001 Instytut Matematyky NAN Kiev (2002), 140-153. Zbl 1098.22004, MR 2210489; reference:[5] Banakh, T., Ravsky, S.: On subgroups of saturated or totally bounded paratopological groups.Algebra Discrete Math. (2003), 1-20. Zbl 1061.22003, MR 2070399; reference:[6] Bella, A.: Some remarks on the Novak number.General topology and its relations to modern analysis and algebra VI (Prague, 1986) Heldermann Berlin (1988), 43-48. Zbl 0634.54004, MR 0952589; reference:[7] Bohn, E., Lee, J.: Semi-topological groups.Am. Math. Mon. 72 (1965), 996-998. Zbl 0134.03601, MR 0190259, 10.2307/2313342; reference:[8] Bourbaki, N.: Elements of Mathematics, General Topology, Chapters 1-4.Springer Berlin (1989). Zbl 0683.54003, MR 0979294; reference:[9] Bouziad, A.: The Ellis theorem and continuity in group.Topology Appl. 50 (1993), 73-80. MR 1217698, 10.1016/0166-8641(93)90074-N; reference:[10] Bouziad, A.: Continuity of separately continuous group actions in $p$-spaces.Topology Appl. 71 (1996), 119-124. Zbl 0855.22006, MR 1399551, 10.1016/0166-8641(95)00039-9; reference:[11] Cao, J., Greenwood, S.: The ideal generated by $\sigma$-nowhere dense sets.Appl. Gen. Topol. 7 (2006), 253-264. Zbl 1114.54021, MR 2295174, 10.4995/agt.2006.1928; reference:[12] Engelking, R.: General Topology. Revised and completed edition.Heldermann-Verlag Berlin (1989). MR 1039321; reference:[13] Ferri, S., Hernández, S., Wu, T. S.: Continuity in topological groups.Topology Appl. 153 (2006), 1451-1457. MR 2211210, 10.1016/j.topol.2005.04.007; reference:[14] Frolík, Z.: Remarks concerning the invariance of Baire spaces under mappings.Czechoslovak Math. J. 11 (1961), 381-385. MR 0133098; reference:[15] Gentry, K. R., Hoyle, H. B.: Somewhat continuous functions.Czechoslovak Math. J. 21 (1971), 5-12. Zbl 0222.54010, MR 0278269; reference:[16] Guran, I.: Cardinal invariants of paratopological grups.2nd International Algebraic Conference in Ukraine Vinnytsia (1999).; reference:[17] J. L. Kelley, I. Namioka, W. F. Donoghue jun., K. R. Lucas, B. J. Pettis, T. E. Poulsen, G. B. Price, W. Robertson, W. R. Scott, K. T. Smith: Linear Topological Spaces.D. Van Nostarand Company, Inc. Princeton (1963). MR 0166578; reference:[18] Kempisty, S.: Sur les fonctions quasicontinues.Fundam. Math. 19 (1932), 184-197 French. Zbl 0005.19802, 10.4064/fm-19-1-184-197; reference:[19] Kenderov, P. S., Kortezov, I. S., Moors, W. B.: Topological games and topological groups.Topology Appl. 109 (2001), 157-165. Zbl 0976.22003, MR 1806330, 10.1016/S0166-8641(99)00152-2; reference:[20] Lau, A. T.-M., Loy, R. J.: Banach algebras on compact right topological groups.J. Funct. Anal. 225 (2005), 263-300. Zbl 1098.46035, MR 2152500, 10.1016/j.jfa.2005.04.006; reference:[21] Liu, C.: A note on paratopological group.Commentat. Math. Univ. Carol. 47 (2006), 633-640. MR 2337418; reference:[22] Mercourakis, S., Negrepontis, S.: Banach Spaces and Topology. II. Recent Progress in General Topology (Prague, 1991).North-Holland Amsterdam (1992), 493-536. MR 1229137; reference:[23] Montgomery, D.: Continuity in topological groups.Bull. Am. Math. Soc. 42 (1936), 879-882. Zbl 0015.39403, MR 1563458, 10.1090/S0002-9904-1936-06456-6; reference:[24] Neubrunn, T.: A generalized continuity and product spaces.Math. Slovaca 26 (1976), 97-99. Zbl 0318.54008, MR 0436064; reference:[25] Neubrunn, T.: Quasi-continuity.Real Anal. Exch. 14 (1989), 259-306. Zbl 0679.26003, MR 0995972, 10.2307/44151947; reference:[26] Piotrowski, Z.: Quasi-continuity and product spaces.Proc. Int. Conf. on Geometric Topology, Warszawa 1978 PWN Warsaw (1980), 349-352. Zbl 0481.54007, MR 0656769; reference:[27] Piotrowski, Z.: Separate and joint continuity.Real Anal. Exch. 11 (1985-86), 293-322. Zbl 0606.54009, MR 0844254, 10.2307/44151750; reference:[28] Piotrowski, Z.: Separate and joint continuity II.Real Anal. Exch. 15 (1990), 248-258. Zbl 0702.54009, MR 1042540, 10.2307/44152002; reference:[29] Piotrowski, Z.: Separate and joint continuity in Baire groups.Tatra Mt. Math. Publ. 14 (1998), 109-116. Zbl 0938.22001, MR 1651201; reference:[30] Pták, V.: Completeness and the open mapping theorem.Bull. Soc. Math. Fr. 86 (1958), 41-74. MR 0105606, 10.24033/bsmf.1498; reference:[31] Ravsky, O.: Paratopological groups. II.Math. Stud. 17 (2002), 93-101. Zbl 1018.22001, MR 1932275; reference:[32] Rothmann, D. D.: A nearly discrete metric.Am. Math. Mon. 81 (1974), 1018-1019. Zbl 0292.26001, MR 0350705, 10.2307/2319315; reference:[33] Ruppert, W.: Compact Semitopological Semigroups: An Intrinsic Theory. Lecture Notes in Mathematics Vol. 1079.Springer (1984). MR 0762985; reference:[34] Solecki, S., Srivastava, S. M.: Automatic continuity of group operations.Topology Appl. 77 (1997), 65-75. Zbl 0882.22001, MR 1443429, 10.1016/S0166-8641(96)00119-8; reference:[35] Talagrand, M.: Espaces de Baire et espaces de Namioka.Math. Ann. 270 (1985), 159-164 French. Zbl 0582.54008, MR 0771977, 10.1007/BF01456180; reference:[36] Tkachenko, M.: Paratopological groups versus topological groups.Lecture at Advances in Set-Theoretic Topology. Conference in Honour of Tsugunori Nogura on his 60th Birthday, Erice, June 2008.; reference:[37] Zelazko, W.: A theorem on $B_0$ division algebras.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 373-375. Zbl 0095.31303, MR 0125901; reference:[38] Zelazko, W.: A theorem on $B_0$ division algebras.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 373-375. Zbl 0095.31303, MR 0125901

  19. 19
    Book
  20. 20
    Academic Journal