-
1Dissertation/ Thesis
المؤلفون: Thornberry Pérez Giraldez, Maeve
المساهمون: Argumedo Bustinza, Doris Julia
مصطلحات موضوعية: Educación virtual, Formación profesional de maestros, COVID-19 (Enfermedad)--Aspectos educativos--Perú, COVID-19 (Enfermedad)--Aspectos psicológicos--Perú, Personal docente--Aspectos psicológicos--Perú, https://purl.org/pe-repo/ocde/ford#5.01.00
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12404/28655
-
2
المساهمون: Brito Astudillo, Gilberto Segundo
مصطلحات موضوعية: PSICOLOGÍA, PSICOLOGÍA DEL TRABAJO, AUTOPERCEPCIÓN, PERSONAL DOCENTE - ASPECTOS PSICOLÓGICOS, IDENTIFICACIÓN (PSICOLOGÍA)
وصف الملف: application/pdf
-
3Dissertation/ Thesis
المؤلفون: Lora Téllez, Elizabeth Elena
المساهمون: Millán de Lange, Anthony Constant
مصطلحات موضوعية: Innovaciones educativas - Colombia, Personal docente - Aspectos psicológicos - Colombia, Educación superior - Colombia
وصف الملف: application/pdf; 176 páginas
Relation: http://hdl.handle.net/10584/11186
الاتاحة: http://hdl.handle.net/10584/11186
-
4Dissertation/ Thesis
المؤلفون: Ames Chipana, Nicole Janeth
المساهمون: Bolaños Hidalgo, Aurea Julia
مصطلحات موضوعية: Educación primaria--Perú--Lima, Educación pública--Perú--Lima, Personal docente--Aspectos psicológicos--Perú--Lima, Educación sexual--Perú--Lima, https://purl.org/pe-repo/ocde/ford#5.05.01
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12404/21990
-
5Dissertation/ Thesis
المؤلفون: Valle Pinedo, Yvett Graciela
المساهمون: Nakamura Goshima, Patricia Eileen
مصطلحات موضوعية: Personal docente--Aspectos psicológicos, Motivación (Educación), Educación a distancia, Educación primaria--Investigaciones, https://purl.org/pe-repo/ocde/ford#5.03.01
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12404/22486
-
6
المؤلفون: Mosquera Navarro, Rodolfo
المساهمون: Castrillón Gómez, Omar Danilo, Parra Osorio, Liliana
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Red Neuronal artificial de retropropagación, Red Neuronal de Tensión Superficial, docentes de colegios públicos, 629 - Otras ramas de la ingeniería [620 - Ingeniería y operaciones afines], personal docente - aspectos psicológicos, Colombia, artificial intelligence, Classification, psychosocial risk, State-school teachers, 370 - Educación, tensión superficial física, 006 - Métodos especiales de computación [000 - Ciencias de la computación, información y obras generales], calidad de vida en el trabajo, rendimiento laboral, physical surface tension, Physical surface tension-Neural Net, Artificial Neural Network backpropagation, riesgo psicosocial, Prediction, personal docente - aspectos sociales
وصف الملف: application/pdf
-
7
المؤلفون: Huaringa Angeles, Katty Janett
المساهمون: Matos Fernandez, Lennia
المصدر: Pontificia Universidad Católica del Perú
Repositorio de Tesis-PUCP
PUCP-Institucional
instacron:PUCP
PUCP-Tesisمصطلحات موضوعية: purl.org/pe-repo/ocde/ford#5.01.00 [https], Estudiantes universitarios--Investigaciones, Motivación (Educación), Personal docente--Aspectos psicológicos, Escolares--Investigaciones
-
8Dissertation/ Thesis
المؤلفون: Mosquera Navarro, Rodolfo
المساهمون: Castrillón Gómez, Omar Danilo, Parra Osorio, Liliana
مصطلحات موضوعية: 370 - Educación, 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería, 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación, artificial intelligence, personal docente - aspectos sociales, personal docente - aspectos psicológicos, calidad de vida en el trabajo, rendimiento laboral, Red Neuronal artificial de retropropagación, tensión superficial física, riesgo psicosocial, docentes de colegios públicos, Red Neuronal de Tensión Superficial, Colombia, Artificial Neural Network backpropagation, physical surface tension, Classification, Prediction, psychosocial risk, State-school teachers, Physical surface tension-Neural Net
جغرافية الموضوع: Colombia
وصف الملف: 205 p.; application/pdf
Relation: Abma, F. I., Brouwer, S., de Vries, H. J., Arends, I., Robroek, S. J., Cuijpers, M. P., van der Wilt, G. J., Bültmann, U., & van der Klink, J. J. (2016). The capability set for work: Development and validation of a new questionnaire. Scandinavian Journal of Work, Environment & Health, 42(1), 34–42. https://doi.org/10.5271/sjweh.3532; Adamson, A. W., & Gast, A. P. (1967). Arthur W. Adamson, Alice P. Gast—Physical chemistry of surfaces. New York: Interscience Publishers, 150(180).; Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13–49. https://doi.org/10.1016/j.tele.2019.01.007; Aliabadi, M. (2015). Prediction of hearing loss among the noise-exposed workers in a steel factory using artificial intelligence approach. Int Arch Occup Environ Health, 88(6), 779–787.; Alpaydin, E. (2020). Introduction to Machine Learning (Fourth). The MIT Press.; Al-Shargie, F. (2019). Multilevel Assessment of Mental Stress using SVM with ECOC: An EEG Approach [Preprint]. engrXiv. https://doi.org/10.31224/osf.io/7v9ks; Anand, R. S., & Kumar, V. (2018). EEG-metric based mental stress detection. Network Biology, 8(1), 25–34.; Andayani, U., Nababan, E. B., Siregar, B., Muchtar, M. A., Nasution, T. H., & Siregar, I. (2017). Optimization backpropagation algorithm based on Nguyen-Widrom adaptive weight and adaptive learning rate. 2017 4th International Conference on Industrial Engineering and Applications (ICIEA), 363–367. https://doi.org/10.1109/IEA.2017.7939239; Ansoleaga, E., Portales, U. D., Toro, J. P., & Portales, U. D. (2014). Mental Health and Nature of Work: When the Emotional Demands Becomes Inevitable. Revista Psicologia: Organizações e Trabalh, 14(2), 180–189.; Baradaran, V., Ghadami, S., & Malihi, S. E. (2008). A Multi Objective approach for selecting solutions to improve job satisfaction an empirical case analysis. 2008 IEEE International Conference on Industrial Engineering and Engineering Management, 1945–1948. https://doi.org/10.1109/IEEM.2008.4738211; Bauer, G. F., & Hämmig, O. (2014). Bridging Occupational, Organizational and Public Health. Springer Netherlands. https://doi.org/10.1007/978-94-007-5640-3; Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine learning practice and the bias-variance trade-off. ArXiv:1812.11118 [Cs, Stat]. http://arxiv.org/abs/1812.11118; Benítez, R., Escudero, G., & Kanaan, S. (2014). Inteligencia artificial avanzada (2da ed.). UOC.; Berens, J., Schneider, K., Görtz, S., Oster, S., & Burghoff, J. (2019). Early Detection of Students at Risk—Predicting Student Dropouts Using Administrative Student Data from German Universities and Machine Learning Methods. Journal of Educational Data Mining, 11(3), 1–41.; Berry, M. V. (1971). The molecular mechanism of surface tension. Physics Education, 6(2). https://doi.org/10.1088/0031-9120/6/2/001; Bitalino. (2017). BITalino [OpenSignals]. http://www.bitalino.com/; Botero Alvarez, C. C. (2013). Riesgo psicosocial intralaboral y “burnout” en docentes universitarios de algunos países latinoamericanos. Cuadernos de Administración, 28(48), 118–133. https://doi.org/10.25100/cdea.v28i48.460; British Standards Institution (BSI). (2011). PAS1010: Guidance on the management of psychosocial risks in the workplace. BSI.; Brown, R. C. (1947). The fundamental concepts concerning surface tension and capillarity. Proceedings of the Physical Society, 59(3), 429–448. https://doi.org/10.1088/0959-5309/59/3/310; Bruhn, A., & Frick, K. (2011). Why it was so difficult to develop new methods to inspect work organization and psychosocial risks in Sweden. Safety Science, 49(4), 575–581. https://doi.org/10.1016/j.ssci.2010.07.011; Burke, R. J., & Pignata, S. (2020). Handbook of Research on Stress and Well-Being in the Public Sector (First, Vol. 1). Edward Elgar.; Canadian Standards Association. (2013). Psychological health and safety in the workplace—Prevention, promotion, and guidance to staged implementation. Bureau de normalisation du Québec.; Cardenas Gonzalo, D. (2015). Influencia de los síntomas físicos sobre el estrés laboral y familiar. Dyna Management, 3(3), 248–262. https://doi.org/10.6036/MN7831; Chakraborty, U. (2020). Artificial Intelligence for All: Transforming Every Aspect of Our Life (1a ed.). Bpb publications.; Chen, L., Pan, X., Zhang, Y.-H., Liu, M., Huang, T., & Cai, Y.-D. (2019). Classification of Widely and Rarely Expressed Genes with Recurrent Neural Network. Computational and Structural Biotechnology Journal, 17, 49–60. https://doi.org/10.1016/j.csbj.2018.12.002; Cheng, J., Wang, L., & Xiong, Y. (2019). Ensemble of cuckoo search variants. Computers & Industrial Engineering, 135, 299–313. https://doi.org/10.1016/j.cie.2019.06.015; Cox, T., Griffiths, A., Rial-González, E., & Agencia Europea para la Seguridad y la Salud en el Trabajo. (2006). Investigación sobre el estrés relacionado con el trabajo. Oficina de publicaciones officiales de las Comunidades europeas.; Cuixart, C. N. (2012). NTP:926 Factores psicosociales: Metodología de evaluación. Centro Nacional de Condiciones del Trabajo. https://www.insst.es/documents/94886/326879/926w.pdf/cdecbd91-70e8-4cac-b353-9ea39340e699; Czaja, S. J., & Nair, S. N. (2006). Human Factors Engineering and Systems Design. En G. Salvendy (Ed.), Handbook of Human Factors and Ergonomics (pp. 32–49). John Wiley & Sons, Inc. https://doi.org/10.1002/0470048204.ch2; Darvishi, E., Khotanlou, H., Khoubi, J., Giahi, O., & Mahdavi, N. (2017). Prediction Effects of Personal, Psychosocial, and Occupational Risk Factors on Low Back Pain Severity Using Artificial Neural Networks Approach in Industrial Workers. Journal of Manipulative and Physiological Therapeutics, 40(7), 486–493. https://doi.org/10.1016/j.jmpt.2017.03.012; Dediu, V., Leka, S., & Jain, A. (2018). Job demands, job resources and innovative work behaviour: A European Union study. European Journal of Work and Organizational Psychology, 27(3), 310–323. https://doi.org/10.1080/1359432X.2018.1444604; Dimsdale, J. E. (2019). Trastorno de síntomas somáticos [Profesional]. Manual MSD. https://www.msdmanuals.com/es/professional/trastornos-psiqui%C3%A1tricos/trastornos-de-s%C3%ADntomas-som%C3%A1ticos-y-relacionados/trastorno-de-s%C3%ADntomas-som%C3%A1ticos; Dollard, M. F., & Neser, D. Y. (2013). Worker health is good for the economy: Union density and psychosocial safety climate as determinants of country differences in worker health and productivity in 31 European countries. Social Science & Medicine, 92, 114–123. https://doi.org/10.1016/j.socscimed.2013.04.028; Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (Second). John Wiley & Sons.; El Yafrani, M., & Ahiod, B. (2018). Efficiently solving the Traveling Thief Problem using hill climbing and simulated annealing. Information Sciences, 432, 231–244. https://doi.org/10.1016/j.ins.2017.12.011; El-Batawi, M. A. (1988). Psychosocial health problems of workers in developing countries. En Psychosocial factors at work and their relationship with health (1a ed., Vol. 1, pp. 15–20). World Health Organization.; Elhoone, H., Zhang, T., Anwar, M., & Desai, S. (2020). Cyber-based design for additive manufacturing using artificial neural networks for Industry 4.0. International Journal of Production Research, 58(9), 2841–2861. https://doi.org/10.1080/00207543.2019.1671627; Esling, P., & Devis, N. (2020). Creativity in the era of artificial intelligence. ArXiv:2008.05959 [Cs]. http://arxiv.org/abs/2008.05959; Espinoza, L. M., & Villalobos, D. G. (2015). Prevalencia de riesgo psicosocial en un grupo de docentesy directivos del distrito capital [Tesis de Maestría]. Universidad del Rosario.; European agency for safety and health and work. (2011). Annual_report_2010_summary_es.pdf. EU-Osha 2010. https://osha.europa.eu/es/publications/annual_report/ar_summary_2010/view; European Agency for Safety and Health at Work. (2012). Drivers and barriers for psychosocial risk management: An analysis of the findings of the European Survey of Enterprises on New and Emerging Risks (ESENER). report. Publ. Office of the Europ. Union.; Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010; Fecode. (2015). Acta-de-acuerdos-fecode_MEN-Mayo-7-2015. https://fecode.edu.co/index.php/actas-de-acuerdo; Fernandes de Mello, R., & Antonelli Ponti, M. (2018). Machine Learning: A Practical Approach on the Statistical Learning Theory. Springer International Publishing. https://doi.org/10.1007/978-3-319-94989-5; Fowkes, F. M. (1961). Determination of interfacial tensions, contact angles, and dispersion forces in surfaces. 66, 1.; Frone, M. R., & Tidwell, M.-C. O. (2015). The meaning and measurement of work fatigue: Development and evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI). Journal of Occupational Health Psychology, 20(3), 273–288. https://doi.org/10.1037/a0038700; Galatzer-Levy, I. R., Karstoft, K.-I., Statnikov, A., & Shalev, A. Y. (2014). Quantitative forecasting of PTSD from early trauma responses: A Machine Learning application. Journal of Psychiatric Research, 59, 68–76. https://doi.org/10.1016/j.jpsychires.2014.08.017; García Castro, C. M., & Muñoz Sánchez, A. I. (2013). Health and work of district schools faculty of the district one of Bogotá. AVANCES EN ENFERMERÍA, 13.; García-Herrero, S., Lopez-Garcia, J. R., Herrera, S., Fontaneda, I., Báscones, S. M., & Mariscal, M. A. (2017). The Influence of Recognition and Social Support on European Health Professionals’ Occupational Stress: A Demands-Control-Social Support-Recognition Bayesian Network Model. BioMed Research International, 2017, 1–14. https://doi.org/10.1155/2017/4673047; González Fuentes, A., Busto Serrano, N. M., Sánchez Lasheras, F., Fidalgo Valverde, G., & Suárez Sánchez, A. (2020). Prediction of Health-Related Leave Days among Workers in the Energy Sector by Means of Genetic Algorithms. Energies, 13(10), 2475. https://doi.org/10.3390/en13102475; González Herranz, R. (2016). Sistemas de ayuda al diagnóstico y a la terapia funcional en enfermedades neurodegenerativas [Disertación doctoral]. Universidad Politécnica de Madrid.; Hadi, W., El-Khalili, N., AlNashashibi, M., Issa, G., & AlBanna, A. A. (2019). Application of data mining algorithms for improving stress prediction of automobile drivers: A case study in Jordan. Computers in Biology and Medicine, 114, 103474. https://doi.org/10.1016/j.compbiomed.2019.103474; Hallner, D., & Hasenbring, M. (2004). Classification of psychosocial risk factors (yellow flags) for the development of chronic low back and leg pain using artificial neural network. Neuroscience Letters, 361(1–3), 151–154. https://doi.org/10.1016/j.neulet.2003.12.107; Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed). Morgan Kaufmann Publishers.; Hegde, J., & Rokseth, B. (2020). Applications of machine learning methods for engineering risk assessment – A review. Safety Science, 122, 104492. https://doi.org/10.1016/j.ssci.2019.09.015; Hernández, M. G. G., Martínez, R. M. R., Maldonado-Macias, A. A., & Leal, J. S. (Eds.). (2020). Work Stress and Psychosocial Factors in the Manufacturing Industry: A Literature Review (First, Vol. 1). IGI Global. https://doi.org/10.4018/978-1-7998-1052-0; Hesser, D. F., & Markert, B. (2019). Tool wear monitoring of a retrofitted CNC milling machine using artificial neural networks. Manufacturing Letters, 19, 1–4. https://doi.org/10.1016/j.mfglet.2018.11.001; Holte, R. C. (1993). Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning, 11, 63–91.; Houtman, I., van Zwieten, M., Leka, S., Jain, A., & de Vroome, E. (2020). Social Dialogue and Psychosocial Risk Management: Added Value of Manager and Employee Representative Agreement in Risk Perception and Awareness. International Journal of Environmental Research and Public Health, 17(10), 3672. https://doi.org/10.3390/ijerph17103672; Iavicoli, S., Leka, S., Jain, A., Persechino, B., Rondinone, B. M., Ronchetti, M., & Valenti, A. (2014). Hard and soft law approaches to addressing psychosocial risks in Europe: Lessons learned in the development of the Italian approach. Journal of Risk Research, 17(7), 855–869. https://doi.org/10.1080/13669877.2013.822911; Jacobson, S. H., & Yücesan, E. (2004). Analyzing the Performance of Generalized Hill Climbing Algorithms. Journal of Heuristics, 10(4), 387–405. https://doi.org/10.1023/B:HEUR.0000034712.48917.a9; Jain, A., Dediu, V., Zwetsloot, G., & Leka, S. (2017). Workplace Innovation and Wellbeing at Work: A Review of Evidence and Future Research Agenda. En P. Oeij, D. Rus, & F. D. Pot (Eds.), Workplace Innovation (pp. 111–128). Springer International Publishing. https://doi.org/10.1007/978-3-319-56333-6_8; Jasper, J. J. (1972). The Surface Tension of Pure Liquid Compounds. 1(4), 841–1010. https://doi.org/10.1063/1.3253106; Jebelli, H., Khalili, M. M., & Lee, S. (2019). Mobile EEG-Based Workers’ Stress Recognition by Applying Deep Neural Network. En I. Mutis & T. Hartmann (Eds.), Advances in Informatics and Computing in Civil and Construction Engineering (pp. 173–180). Springer International Publishing. https://doi.org/10.1007/978-3-030-00220-6_21; Johnson, J. V., & Hall, E. M. (1988). Job strain, work place social support, and cardiovascular disease: A cross-sectional study of a random sample of the Swedish working population. American Journal of Public Health, 78(10), 1336–1342.; Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415; Jung, J. S., Park, S. J., Kim, E. Y., Na, K.-S., Kim, Y. J., & Kim, K. G. (2019). Prediction models for high risk of suicide in Korean adolescents using machine learning techniques. PLOS ONE, 14(6), e0217639. https://doi.org/10.1371/journal.pone.0217639; Karasek, R. A. (1979). Job Demands, Job Decision Latitude, and Mental Strain: Implications for Job Redesign. Administrative Science Quarterly, 24(2), 285. https://doi.org/10.2307/2392498; Kataoka, H., Kano, H., Yoshida, H., Saijo, A., Yasuda, M., & Osumi, M. (1998). Development of a skin temperature measuring system for non-contact stress evaluation. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286), 2, 940–943. https://doi.org/10.1109/IEMBS.1998.745598; Kato, E. R. R., Aranha, G. D. de A., & Tsunaki, R. H. (2018). A new approach to solve the flexible job shop problem based on a hybrid particle swarm optimization and Random-Restart Hill Climbing. Computers & Industrial Engineering, 125, 178–189. https://doi.org/10.1016/j.cie.2018.08.022; Kohonen, T. (1989). Self-Organization and Associative Memory (Vol. 8). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-88163-3; Kortum, E., & Leka, S. (2014). Tackling psychosocial risks and work-related stress in developing countries: The need for a multilevel intervention framework. International Journal of Stress Management, 21(1), 7–26. https://doi.org/10.1037/a0035033; Kortum, E., Leka, S., & Cox, T. (2010). Psychosocial risks and work-related stress in developing countries: Health impact, priorities, barriers and solutions. International Journal of Occupational Medicine and Environmental Health, 23(3). https://doi.org/10.2478/v10001-010-0024-5; Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-63913-0; Lahmiri, S., & Bekiros, S. (2019). Can machine learning approaches predict corporate bankruptcy? Evidence from a qualitative experimental design. Quantitative Finance, 19(9), 1569–1577. https://doi.org/10.1080/14697688.2019.1588468; Lal, A., Dhinesh, R., Harish, C. S., Moorthy, D. M. J., & Madhumathi, R. (2018). Stress Detection using Machine Learning. International Journal for Trends in Engineering & Technology, 28(1), 37–39.; Langenhan, M. K., Leka, S., & Jain, A. (2013). Psychosocial Risks: Is Risk Management Strategic Enough in Business and Policy Making? Safety and Health at Work, 4(2), 87–94. https://doi.org/10.1016/j.shaw.2013.04.003; Larrabee, J. H., Janney, M. A., Ostrow, C. L., Withrow, M. L., Hobbs, G. R., & Burant, C. (2003). Predicting Registered Nurse Job Satisfaction and Intent to Leave: JONA: The Journal of Nursing Administration, 33(5), 271–283. https://doi.org/10.1097/00005110-200305000-00003; Law, K.-Y., & Zhao, H. (2016). Surface wetting: Characterization, contact angle, and fundamentals. (2a ed.). Springer International Publishing.; Lawrence, S. A., Jordan, P. J., & Callan, V. J. (2015). Initial validation of the support mobilization for work stressors inventory. Australian Journal of Management, 40(4), 587–612. https://doi.org/10.1177/0312896214528186; Leka, S, & Cox, T. (2011). Guide Prima-EF. Guidance on the European Framework for Psychosocial Risk Management. A Resource for Employers and Workers Representatives. WHO.; Leka, Stavroula, Jain, A., & Lerouge, L. (2017). Work-Related Psychosocial Risks: Key Definitions and an Overview of the Policy Context in Europe. En L. Lerouge (Ed.), Psychosocial Risks in Labour and Social Security Law (pp. 1–12). Springer International Publishing. https://doi.org/10.1007/978-3-319-63065-6_1; Leka, Stavroula, Van Wassenhove, W., & Jain, A. (2015). Is psychosocial risk prevention possible? Deconstructing common presumptions. Safety Science, 71, 61–67. https://doi.org/10.1016/j.ssci.2014.03.014; Li, B., Mendenhall, J., & Meiler, J. (2019). Interfaces Between Alpha-helical Integral Membrane Proteins: Characterization, Prediction, and Docking. Computational and Structural Biotechnology Journal, 17, 699–711. https://doi.org/10.1016/j.csbj.2019.05.005; Li, L., Cen, Z.-Y., Tseng, M.-L., Shen, Q., & Ali, M. H. (2021). Improving short-term wind power prediction using hybrid improved cuckoo search arithmetic—Support vector regression machine. Journal of Cleaner Production, 279, 123739. https://doi.org/10.1016/j.jclepro.2020.123739; Li, Z., Sun, D., Zhu, R., & Lin, Z. (2017). Detecting event-related changes in organizational networks using optimized neural network models. PLOS ONE, 12(11), e0188733. https://doi.org/10.1371/journal.pone.0188733; Lippel, K., & Quinlan, M. (2011). Regulation of psychosocial risk factors at work: An international overview. Safety Science, 49(4), 543–546. https://doi.org/10.1016/j.ssci.2010.09.015; Lotfan, S., Shahyad, S., Khosrowabadi, R., Mohammadi, A., & Hatef, B. (2019). Support vector machine classification of brain states exposed to social stress test using EEG-based brain network measures. Biocybernetics and Biomedical Engineering, 39(1), 199–213. https://doi.org/10.1016/j.bbe.2018.10.008; Loy-Benitez, J., Heo, S., & Yoo, C. (2020). Soft sensor validation for monitoring and resilient control of sequential subway indoor air quality through memory-gated recurrent neural networks-based autoencoders. Control Engineering Practice, 97, 104330. https://doi.org/10.1016/j.conengprac.2020.104330; Macleod, D. B. (1923). On a relation between surface tension and density. Transactions of the Faraday Society, 19(July), 38. https://doi.org/10.1039/tf9231900038; Maqsoom, A., Mughees, A., Zahoor, H., Nawaz, A., & Mazher, K. M. (2020). Extrinsic psychosocial stressors and workers’ productivity: Impact of employee age and industry experience. Applied Economics, 52(26), 2807–2820. https://doi.org/10.1080/00036846.2019.1696936; Márquez Gómez, M. (2020). Prediction of work-related musculoskeletal discomfort in the meat processing industry using statistical models. International Journal of Industrial Ergonomics, 75, 102876. https://doi.org/10.1016/j.ergon.2019.102876; Maynard, M. (2020). Maynard, Morgan—Neural Networks_ Introduction to Artificial Neurons, Backpropagation and Multilayer Feedforward Neural Networks with Real-World Applications (Advance. Maynard.; McClelland, J. L., & Rumelhart, E. (eds. ). (1986). Parallel Distributed Processing (Vol. 2). MIT Press.; McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259; Mehanović, D., Mašetić, Z., & Kečo, D. (2020). Prediction of Heart Diseases Using Majority Voting Ensemble Method. En A. Badnjevic, R. Škrbić, & L. Gurbeta Pokvić (Eds.), CMBEBIH 2019 (Vol. 73, pp. 491–498). Springer International Publishing. https://doi.org/10.1007/978-3-030-17971-7_73; Memish, K., Martin, A., Bartlett, L., Dawkins, S., & Sanderson, K. (2017). Workplace mental health: An international review of guidelines. Preventive Medicine, 101, 213–222. https://doi.org/10.1016/j.ypmed.2017.03.017; Meneses, A. A. de M., da Silva, P. V., Nast, F. N., Araujo, L. M., & Schirru, R. (2020). Application of Cuckoo Search algorithm to Loading Pattern Optimization problems. Annals of Nuclear Energy, 139, 107214. https://doi.org/10.1016/j.anucene.2019.107214; Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems, 3111–3119.; Ministerio de Educación. (2015). Decreto_1655_de_2015.pdf. Min_educación.; Ministerio de la Protección Social. (2008). Resolución número 002646 de 2008. http://www.saludcapital.gov.co/Documentos%20Salud%20Ocupacional/RESOL.%202646%20DE%202008%20RIESGO%20PSICOSOCIAL.pdf; Ministerio del Trabajo. (2014). Decreto_1477_del_5_de_agosto_de_2014. https://www.mintrabajo.gov.co/documents/20147/36482/decreto_1477_del_5_de_agosto_de_2014.pdf/b526be63-28ee-8a0d-9014-8b5d7b299500; Ministerio del trabajo. (2015). Guía técnica general para la Promoción, prevención e intervención de los factorespsicosociales y sus efectos en población trabajadora. Javegraf. http://fondoriesgoslaborales.gov.co/wp-content/uploads/2018/09/01-Guia-tecnica-general.pdf; Ministerio del Trabajo, & Organización Iberoamericana de Seguridad Social, Oiss. (2013). II_ENCUESTA_NACIONAL_CONDICIONES_SST_COLOMBIA_2013.pdf (Oiss).; Moncada, S., Utzet, M., Molinero, E., Llorens, C., Moreno, N., Galtés, A., & Navarro, A. (2014). The copenhagen psychosocial questionnaire II (COPSOQ II) in Spain-A tool for psychosocial risk assessment at the workplace: Copenhagen Psychosocial Questionnaire II in Spain. American Journal of Industrial Medicine, 57(1), 97–107. https://doi.org/10.1002/ajim.22238; Morrow, A. S., Campos Vega, A. D., Zhao, X., & Liriano, M. M. (2020). Leveraging Machine Learning to Identify Predictors of Receiving Psychosocial Treatment for Attention Deficit/Hyperactivity Disorder. Administration and Policy in Mental Health and Mental Health Services Research, 47(4). https://doi.org/10.1007/s10488-020-01045-y; Mosquera Navarro, R. (2019). Psychosocial risk level on teachers schools V1. IEEE Dataport, 1(1). http://dx.doi.org/10.21227/jdzw-7e82; Mosquera Navarro, R., Gómez, O. D. C., Osorio, L. P., & García, A. C. (2018). Classification system for the predicting of psychosocial risk level in public-school teachers based on Artificial Intelligence. XVIII Conferencia de La Asociación Española Para La Inteligencia Artificial (CAEPIA), 1367–1372.; Mosquera, R, Castrillón Gómez, O. D., & Parra-Osorio, L. (2019). Algorithm based on Physical Surface Tension for the Prediction of Psychosocial-risk Level in Public School Teachers. [Source Code]. Doi.org/10.24433/CO.4268666.v1.1. (1.1) [Matlab]. Code Ocean.; Mosquera, Rodolfo. (2018). Psychosocial Risk Level Colombian Teachers School Repository 2016-2017. Zenodo, 2. https://doi.org/10.5281/zenodo.1298610.; Mosquera, Rodolfo, Castrillón, O. D., & Parra, L. (2018a). Support Vector Machines, Naïve Bayes Classifier and Genetic Algorithms for the Prediction of Psychosocial Risks in Teachers of Colombian Public Schools. Información tecnológica, 29(6), 153–162. https://doi.org/10.4067/S0718-07642018000600153; Mosquera, Rodolfo, Castrillón, O. D., & Parra, L. (2018b). Predicción de Riesgos Psicosociales en Docentes de Colegios Públicos Colombianos utilizando Técnicas de Inteligencia Artificial. Información tecnológica, 29(4), 267–280. https://doi.org/10.4067/S0718-07642018000400267; Mosquera, Rodolfo, Castrillón, O. D., & Parra, L. (2018c). Máquinas de Soporte Vectorial, Clasificador Naïve Bayes y Algoritmos Genéticos para la Predicción de Riesgos Psicosociales en Docentes de Colegios Públicos Colombianos. Información tecnológica, 29(6), 153–162. https://doi.org/10.4067/S0718-07642018000600153; Mosquera, Rodolfo, Castrillón, O. D., & Parra-Osorio, L. (2019). Aplicación del modelo hibrido k-nearest neighbors- Support Vector Machine para la predicción del riesgo psicosocial en docentes de colegios públicos colombianos. Proceedings of the 17th Latin American and Caribbean Conference for Engineering and Technology, 1, 5.; Mosquera, Rodolfo, Gómez, O. D. C., Osorio, L. P., & García, A. C. (2018). Classification system for the predicting of psychosocial risk level in public-school teachers based on Artificial Intelligence. Proceedings of XVIII Conferencia de La Asociación Española Para La Inteligencia Artificial, 1, 1367–1372.; Mosquera, Rodolfo, Parra-Osorio, L., & Castrillón, O. D. (2016). Metodología para la Predicción del Grado de Riesgo Psicosocial en Docentes de Colegios Colombianos utilizando Técnicas de Minería de Datos. Información tecnológica, 27(6), 259–272. https://doi.org/10.4067/S0718-07642016000600026; Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Interpretable machine learning: Definitions, methods, and applications. Proceedings of the National Academy of Sciences, 116(44), 22071–22080. https://doi.org/10.1073/pnas.1900654116; Navascués, G. (1979). Liquid surfaces: Theory of surface tension. Reports on Progress in Physics, 42(7), 59. https://doi.org/10.1088/0034-4885/42/7/002; Neal, B., Mittal, S., Baratin, A., Tantia, V., Scicluna, M., Lacoste-Julien, S., & Mitliagkas, I. (2019). A Modern Take on the Bias-Variance Tradeoff in Neural Networks. ArXiv:1810.08591 [Cs, Stat]. http://arxiv.org/abs/1810.08591; Niedhammer, I., & Chastang, J.-F. (2013). Psychosocial work factors and sickness absence in 31 countries in Europe. European Journal of Public Health, 23(4), 622–628.; Olaya Arévalo, C. (2015). Síndrome de burnout o síndrome de agotamiento profesional (sap) en el trabajo de los docentes distritales de la localidad de usme [Tesis de Maestría].; Pavelka, A., & Prochazka, A. (2004). Algorithms for initialization of neural network weights. Proceedings of the 12th Annual Conference, 453–459.; Posada Quintero, J. I., Molano Vergara, P. N., Parra Hernández, R. M., Brito Osorio, F. Y., & Rubio Orozco, E. A. (2019). Prevalencia del Síndrome de Burnout en docentes: Factores asociados al estatuto de vinculación laboral en Colombia. Revista Interamericana de Psicología Ocupacional, 37(2), 119–133. https://doi.org/10.21772/ripo.v37n2a04; Posada-Quintero, H. F., Molano-Vergara, P. N., Parra-Hernández, R. M., & Posada-Quintero, J. I. (2020). Analysis of Risk Factors and Symptoms of Burnout Syndrome in Colombian School Teachers under Statutes 2277 and 1278 Using Machine Learning Interpretation. Social Sciences, 9(3), 30. https://doi.org/10.3390/socsci9030030; Priya, A., Garg, S., & Tigga, N. P. (2020). Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms. Procedia Computer Science, 167, 1258–1267. https://doi.org/10.1016/j.procs.2020.03.442; Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Academic Pathology, 6, 237428951987308. https://doi.org/10.1177/2374289519873088; Restrepo, G. C. (2011). Factores de riesgo psicosocial que afectan el ejercicio pedagógico de los docentes del núcleo educativo no 8 de la ciudadela cuba de pereira [Tesis de Maestría]. Católica de Pereira.; Robnik-Sˇ, M., & Kononenko, I. (2003). Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning, 53(1–2), 23–69. https://doi.org/10.1023/A:1025667309714; Robnik-Sˇ, M., & Kononenko, I. (2013). Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning, 53, 23–69.; Rodriguez, L. (2007). Probabilidad y estadística básica para ingenieros. Escuela Superior Politécnica del LitoralInstituto de Ciencias Matemáticas.; Rodríguez-Arce, J., Lara-Flores, L., Portillo-Rodríguez, O., & Martínez-Méndez, R. (2020). Towards an anxiety and stress recognition system for academic environments based on physiological features. Computer Methods and Programs in Biomedicine, 190, 105408. https://doi.org/10.1016/j.cmpb.2020.105408; Rosero, A. C. T., & Álvarez, C. C. B. (2012). Riesgos psicosociales intralaborales en docencia. Revista Iberoamericana de Psicologia: Ciencia y Tecnología., 5(2), 95–106.; Rosset, S., & Tibshirani, R. J. (2020). From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation. Journal of the American Statistical Association, 115(529), 138–151. https://doi.org/10.1080/01621459.2018.1424632; Rumelhart, D. E., & MacClelland, J. L. (Eds). (1986). Parallel Distributed Processing (Vol. 1). MIT Press.; Salal, Y. K., Abdullaev, S. M., & Kumar, M. (2019). Educational Data Mining: Student Performance Prediction in Academic. International Journal of Engineeringand Advanced Technology, 8(4), 54–59.; Santos, M. (2011). Un Enfoque Aplicado del Control Inteligente. Revista Iberoamericana de Automática e Informática Industrial RIAI, 8(4), 283–296. https://doi.org/10.1016/j.riai.2011.09.016; Sauter, S. L., & Murphy, L. R. (1984). Factores psicosociales y de organización. Enciclopedia de salud y seguridad en el trabajo, 34.2-34.75.; Schlkopf, B., Smola, A. J., & Bach, F. (2018). Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT Press.; Schweidtmann, A. M., & Mitsos, A. (2019). Deterministic Global Optimization with Artificial Neural Networks Embedded. Journal of Optimization Theory and Applications, 180(3), 925–948. https://doi.org/10.1007/s10957-018-1396-0; Siegrist, J. (1996). Adverse Health Effects of High-Effort/Low-Reward Conditions. Journal of Occupational Health Psychology, 1(1), 27–41.; Silva Gutiérrez, B. N., & Vicente Flores, R. (2015). Académicos universitarios y salud ocupacional. Importancia de los factores psicosociales y variables sociodemográficas, el caso de un centro universitario regional de la Universidad de Guadalajara, México. Población y Desarrollo - Argonautas y Caminantes, 10, 33–43. https://doi.org/10.5377/pdac.v10i0.1736; Sriramprakash, S., Prasanna, V. D., & Murthy, O. V. R. (2017). Stress Detection in Working People. Procedia Computer Science, 115, 359–366. https://doi.org/10.1016/j.procs.2017.09.090; Suárez Sánchez, A., Riesgo Fernández, P., Sánchez Lasheras, F., de Cos Juez, F. J., & García Nieto, P. J. (2011). Prediction of work-related accidents according to working conditions using support vector machines. Applied Mathematics and Computation, 218(7), 3539–3552. https://doi.org/10.1016/j.amc.2011.08.100; Subhani, A. R., Mumtaz, W., Saad, M. N. B. M., Kamel, N., & Malik, A. S. (2017). Machine Learning Framework for the Detection of Mental Stress at Multiple Levels. IEEE Access, 5, 13545–13556. https://doi.org/10.1109/ACCESS.2017.2723622; Sushant K, S. (2020). A Commentary on the Application of Artificial Intelligence in the Insurance Industry. Trends in Artificial Intelligence, 4(1). https://doi.org/10.36959/643/305; Tettamanzi, A., & Tomassini, M. (2001). Soft Computing. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04335-6; Teuscher, C. (Ed.). (2004). Alan Turing: Life and Legacy of a Great Thinker. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05642-4; Tiffin, P. A., & Paton, L. W. (2018). Rise of the machines? Machine learning approaches and mental health: opportunities and challenges. The British Journal of Psychiatry, 213(3), 509–510. https://doi.org/10.1192/bjp.2018.105; Tuttle, J. F., Vesel, R., Alagarsamy, S., Blackburn, L. D., & Powell, K. (2019). Sustainable NO x emission reduction at a coal-fired power station through the use of online neural network modeling and particle swarm optimization. Control Engineering Practice, 93, 104167. https://doi.org/10.1016/j.conengprac.2019.104167; Tyson, W. R., & Miller, W. A. (1977). Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surface Science, 62(1), 267–276. https://doi.org/10.1016/0039-6028(77)90442-3; Tzeng, H.-M., Hsieh, J.-G., & Lin, Y.-L. (2004b). Predicting Nurses’ Intention to Quit With a Support Vector Machine. Computers, Informatics, Nursing, 22(4), 232–242.; Uronen, L., Moen, H., Teperi, S., Martimo, K.-P., Hartiala, J., & Salanterä, S. (2020). Towards automated detection of psychosocial risk factors with text mining. Occupational Medicine, 70(3), 203–206. https://doi.org/10.1093/occmed/kqaa022; Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer New York. https://doi.org/10.1007/978-1-4757-2440-0; Vieco Gómez, G. F., & Abello Llanos, R. (2014). Psychosocial factors at work, stress and morbidity around the world. Psicología desde el Caribe, 31(2), 354–385. https://doi.org/10.14482/psdc.31.2.5544; Villalobos F, G. H. (2004). Vigilancia Epidemiológica de los FactoresPsicosociales. Aproximación Conceptual y Valorativa. Ciencia &Trabajo, 6(14), 194–201.; Villalobos, G. (2005). Diseño de un sistema de vigilancia epidemiológica de factores de riesgo psicosocial en el trabajo. Escuela Nacional de Salud Pública.; Villalobos, G., Vargas M, A., Escobar, J., Jiménez, M. L., & Rondón, M. A. (2010). Batería de instrumentos para la evaluación de factores de riesgo psicosocial (1a ed., Vol. 1). Ministerio de protección social. http://fondoriesgoslaborales.gov.co/documents/publicaciones/estudios/; Wang, S., Cao, Y., Huang, T., Chen, Y., Li, P., & Wen, S. (2020). Sliding mode control of neural networks via continuous or periodic sampling event-triggering algorithm. Neural Networks, 121, 140–147. https://doi.org/10.1016/j.neunet.2019.09.001; Wang, X., Wang, Z., Song, Q., Shen, H., & Huang, X. (2020). A waiting-time-based event-triggered scheme for stabilization of complex-valued neural networks. Neural Networks, 121, 329–338. https://doi.org/10.1016/j.neunet.2019.09.032; Weissbrodt, R., & Giauque, D. (2017). Labour inspections and the prevention of psychosocial risks at work: A realist synthesis. Safety Science, 100, 110–124. https://doi.org/10.1016/j.ssci.2017.02.012; Wenhui Liao, Weihong Zhang, Zhiwei Zhu, & Qiang Ji. (2005). A Real-Time Human Stress Monitoring System Using Dynamic Bayesian Network. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Workshops, 3, 70–70. https://doi.org/10.1109/CVPR.2005.394; Werboz, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysisin Behavioral Sciences. Harvard.; Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. Stanford Univ Ca Stanford Electronics Labs.; Wikimedia Commons. (2006, agosto 26). Waterstrider—Aquarius remigis. WaterstriderEnWiki.Jpg. https://commons.wikimedia.org/wiki/File:WaterstriderEnWiki.jpg; Yadav, S. K., & Hashmi, A. (2018). An Investigation of Occupational stress Classification by using Machine Learning Techniques. International Journal of Computer Sciences and Engineering, 6(6), 842–850. https://doi.org/10.26438/ijcse/v6i6.842850; Yang, X.-S. & Suash Deb. (2009). Cuckoo Search via Lévy flights. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 210–214. https://doi.org/10.1109/NABIC.2009.5393690; Ye, L., Ferdinando, H., & Alasaarela, E. (2014). Techniques in Pattern Recognition for School Bullying Prevention: Review and Outlook. Journal of Pattern Recognition Research, 9(1), 50–63. https://doi.org/10.13176/11.586; Yigit, I. O., & Shourabizadeh, H. (2017). An approach for predicting employee churn by using data mining. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 1–4. https://doi.org/10.1109/IDAP.2017.8090324; Zhou, G., Moayedi, H., Bahiraei, M., & Lyu, Z. (2020). Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings. Journal of Cleaner Production, 254, 120082. https://doi.org/10.1016/j.jclepro.2020.120082; Zhou, H., Wang, J., Wu, J., Zhang, L., Lei, P., & Chen, X. (2013). Application of the Hybrid SVM-KNN Model for Credit Scoring. 2013 Ninth International Conference on Computational Intelligence and Security, 174–177. https://doi.org/10.1109/CIS.2013.43; Zubair, M., & Yoon, C. (2020). Multilevel mental stress detection using ultra-short pulse rate variability series. Biomedical Signal Processing and Control, 57, 101736. https://doi.org/10.1016/j.bspc.2019.101736; https://repositorio.unal.edu.co/handle/unal/79556; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co
-
9Dissertation/ Thesis
المؤلفون: Jibaja Barreda, Amanda Inés
المساهمون: Matos Fernández, Lennia
مصطلحات موضوعية: Motivación (Educación)--Aspectos psicológicos, Matemáticas--Estudio y enseñanza (Primaria), Personal docente--Aspectos psicológicos, https://purl.org/pe-repo/ocde/ford#5.01.00
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12404/21020
-
10Dissertation/ Thesis
المؤلفون: Tirado Cayao, Evelyn Milagros
المساهمون: Arenas Romero, Lina Vanessa
مصطلحات موضوعية: Personal docente--Aspectos psicológicos, Educación secundaria--Aspectos psicológicos, Satisfacción en el trabajo, https://purl.org/pe-repo/ocde/ford#5.01.00
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12404/22251
-
11Dissertation/ Thesis
المؤلفون: Pajares Sivina, Luciana María
المساهمون: Gargurevich Liberti, Rafael Ernesto
مصطلحات موضوعية: Inglés--Estudio y enseñanza (Secundaria), Motivación (Educación), Personal docente--Aspectos psicológicos, https://purl.org/pe-repo/ocde/ford#5.01.00
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12404/20665
-
12Dissertation/ Thesis
المؤلفون: Cardenas Reategui, Mayte Andrea
المساهمون: La Rosa Huaman, Milagros Deidamia
مصطلحات موضوعية: Educación preescolar--Perú--Pueblo Libre (Lima : Distrito), Educación de niños--Aspectos psicológicos, Personal docente--Aspectos psicológicos, Inteligencia emocional--Investigaciones, Personal docente--Investigaciones, http://purl.org/pe-repo/ocde/ford#5.03.01
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12404/19196
-
13
المؤلفون: Arias Rico, María Paola
المساهمون: Romero Porras, Johanna
المصدر: Universidad de La Sabana
Intellectum Repositorio Universidad de La Sabana
Repositorio Universidad de la Sabana
Universidad de la Sabana
instacron:Universidad de la Sabanaمصطلحات موضوعية: Personal docente -- Aspectos psicológicos, Padres e hijos, Víctimas de abuso sexual, Abuso sexual de menores
وصف الملف: application/pdf
-
14Dissertation/ Thesis
المؤلفون: Flores Flores, Paola Jimena
المساهمون: Gutiérrez Villa, Gloria Margarita
مصطلحات موضوعية: Violencia en la escuela, Acoso escolar, Personal docente--Aspectos psicológicos, http://purl.org/pe-repo/ocde/ford#5.01.00
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12404/19575
-
15
المؤلفون: Koc Chukuong, Andrea del Pilar
المساهمون: Matos Fernández, Lennia
المصدر: PUCP-Tesis
Pontificia Universidad Católica del Perú
instacron:PUCP
Repositorio de Tesis-PUCP
PUCP-Institucionalمصطلحات موضوعية: Motivación (Psicología), Stress en el trabajo, Personal docente--Aspectos sociales, purl.org/pe-repo/ocde/ford#5.01.00 [https], Personal docente--Actitudes, Personal docente--Aspectos psicológicos, Motivación del empleado
-
16
المؤلفون: Pacheco Lora, Luis Carlos
المساهمون: Aparicio Serrano, José Alfredo
المصدر: Repositorio Uninorte
Universidad del Norte
instacron:Universidad del Norteمصطلحات موضوعية: Dept.) [Personal docente -- Aspectos psicológicos -- Córdoba (Colombia], Psicología del aprendizaje
وصف الملف: application/pdf
-
17
المؤلفون: Oshiro Díaz, Michiko del Carmen
المساهمون: Soria Valencia, Edith
المصدر: PUCP-Tesis
Pontificia Universidad Católica del Perú
instacron:PUCP
Repositorio de Tesis-PUCP
PUCP-Institucionalمصطلحات موضوعية: Personal docente--Desarrollo profesional, Educación tecnológica--Perú--Lima, purl.org/pe-repo/ocde/ford#5.03.01 [https], Personal docente--Aspectos psicológicos
-
18
المؤلفون: Trujillo Gallegos, Haydée Nelly
المساهمون: Revilla Figueroa, Diana Mercedes
المصدر: Pontificia Universidad Católica del Perú
Repositorio de Tesis-PUCP
PUCP-Institucional
instacron:PUCP
PUCP-Tesisمصطلحات موضوعية: Personal docente--Aspectos psicológicos, purl.org/pe-repo/ocde/ford#5.03.01 [https], Motivación (Educación)
-
19
المؤلفون: Pérez León Ibañez, Humberto Hildebrando
المساهمون: Matos Fernández, Lennia
المصدر: Pontificia Universidad Católica del Perú
Repositorio de Tesis-PUCP
PUCP-Institucional
instacron:PUCP
PUCP-Tesisمصطلحات موضوعية: purl.org/pe-repo/ocde/ford#5.01.00 [https], Motivación (Educación), Personal docente--Actitudes, Personal docente--Aspectos psicológicos
-
20Dissertation/ Thesis
المؤلفون: Dammert Freundt Thurne, Martin
المساهمون: Matos Fernández, Lennia
مصطلحات موضوعية: Motivación (Educación), Personal docente--Aspectos psicológicos, Lectura (Educación primaria), http://purl.org/pe-repo/ocde/ford#5.01.00
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12404/9886