يعرض 1 - 20 نتائج من 864 نتيجة بحث عن '"Percepción Remota"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
    Report
  2. 2
    Academic Journal
  3. 3
    Book

    المساهمون: Universidad de Sevilla. Departamento de Ingeniería Gráfica, Universidad de Sevilla. RNM931: Tecnologías de la información Geoespacial, Gráfica e Hidrológica.

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المصدر: Academia XXII; Vol. 14 No. 28 (2023): Green. The organic – Nature and architecture/urbanism, interaction and conditioning; 291-305 ; Academia XXII; Vol. 14 Núm. 28 (2023): Verde. Lo orgánico – Naturaleza y arquitectura/urbanismo, interacción y condicionamiento; 291-305 ; 2594-083X ; 2007-252X ; 10.22201/fa.2007252Xp.2023.14.28

    وصف الملف: application/pdf; text/html

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    المصدر: TecnoLógicas; Vol. 26 No. 56 (2023); e2567 ; TecnoLógicas; Vol. 26 Núm. 56 (2023); e2567 ; 2256-5337 ; 0123-7799

    وصف الملف: application/pdf; application/zip; text/xml; text/html

    Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2567/2865; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2567/2873; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2567/2874; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2567/2878; V. C. F. Gomes, G. R. Queiroz, and K. R. Ferreira, “An overview of platforms for big earth observation data management and analysis,” Remote Sens., vol. 12, no. 8, p. 1253, Apr. 2020. https://doi.org/10.3390/rs12081253; M. Rast and T. H. Painter, “Earth Observation Imaging Spectroscopy for Terrestrial Systems: An Overview of Its History, Techniques, and Applications of Its Missions,” Surv Geophys, vol. 40, pp. 303–331, Mar. 2019. https://doi.org/10.1007/s10712-019-09517-z; P. C. Pandey, N. Koutsias, G. P. Petropoulos, P. K. Srivastava, and E. Ben Dor, “Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers—a review of the state of the art,” Geocarto Int., vol. 36, no. 9, pp. 957-988, Jun. 2019. https://doi.org/10.1080/10106049.2019.1629647; M. E. D. Chaves, M. C. A. Picoli, and I. D. Sanches, “Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review,” Remote Sens., vol. 12, no. 18, p. 3062, Sep. 2020. https://doi.org/10.3390/rs12183062; G. L. Spadoni, A. Cavalli, L. Congedo, and M. Munafò, “Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography,” Remote Sens. Appl.: Soc. Environ., vol. 20, p. 100419, Nov. 2020. https://doi.org/10.1016/j.rsase.2020.100419; X. Zhang, J. Zhou, S. Liang, and D. Wang, “A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature,” Remote Sens. Environ., vol. 260, p. 112437, Jul. 2021. https://doi.org/10.1016/j.rse.2021.112437; M. Shimoni, R. Haelterman, and C. Perneel, “Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques,” IEEE Geosci. Remote Sens. Magazine, vol. 7, no. 2, pp. 101-117, Jun. 2019. https://doi.org/10.1109/MGRS.2019.2902525; H. Ren, Y. Zhao, W. Xiao, and Z. Hu, “A review of UAV monitoring in mining areas: Current status and future perspectives,” Int. J. Coal. Sci. Technol., vol. 6, pp. 320-333, Aug. 2019. https://doi.org/10.1007/s40789-019-00264-5; R. P. Sishodia, R. L., Ray, and S. K. Singh, “Applications of remote sensing in precision agriculture: A review,” Remote Sens., vol. 12, no. 19, p. 3136, Sep. 2020. https://doi.org/10.3390/rs12193136; L. Kumar, K. Schmidt, S. Dury, and A. Skidmore, A. “Imaging spectrometry and vegetation science,” Imaging Spectrometry, pp. 111-155, 2002. https://doi.org/10.1007/978-0-306-47578-8_5; S. L. Ustin et al, “Retrieval of foliar information about plant pigment systems from high resolution spectroscopy,” Remote Sens. Environ., vol. 113, supplement 1, pp. S67-S77, Sep. 2009. https://doi.org/10.1016/j.rse.2008.10.019; J. Xue, and B. Su, “Significant remote sensing vegetation indices: A review of developments and applications,” Journal of Sensors, vol. 2017, p. 1353691, May. 2017. https://doi.org/10.1155/2017/1353691; K. R. Thorp et al, “Proximal hyperspectral sensing and data analysis approaches for field-based plant phenomics,” Comput. Electron. Agric., vol. 118, pp. 225-236, Oct. 2015. https://doi.org/10.1016/j.compag.2015.09.005; S. Huang, L. Tang, J. P. Hupy, Y. Wang, and G. Shao, “A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing,” J. For. Res., vol. 32, pp. 1-6, May. 2020. https://doi.org/10.1007/s11676-020-01155-1; S. Jacquemoud et al., “PROSPECT+ SAIL models: A review of use for vegetation characterization,” Remote Sens. Environ., vol. 113, supplement 1, pp. S56-S66, Sep. 2009. https://doi.org/10.1016/j.rse.2008.01.026; J. Verrelst, L. Alonso, G. Camps-Valls, J. Delegido, and J. Moreno, “Retrieval of vegetation biophysical parameters using Gaussian process techniques,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1832-1843, May. 2012. https://doi.org/10.1109/TGRS.2011.2168962; J. Abdulridha, R. Ehsani, and A. De Castro, “Detection and differentiation between laurel wilt disease, phytophthora disease, and salinity damage using a hyperspectral sensing technique,” Agriculture, vol. 6, no. 4, p. 56, Oct. 2016. https://doi.org/10.3390/agriculture6040056; J.J. Vega Diaz, A. P. Sandoval Aldana, and D. V. Reina Zuluaga, “Prediction of dry matter content of recently harvested ‘Hass’ avocado fruits using hyperspectral imaging,” J. Sci. Food Agric., vol. 101, no. 3, pp. 897-906, Feb. 2021. https://doi.org/10.1002/jsfa.10697; S. Sankaran, R. Ehsani, S. A. Inch, and R. C. Ploetz, “Evaluation of visible-near infrared reflectance spectra of avocado leaves as a non-destructive sensing tool for detection of laurel wilt,” Plant disease, vol. 96, no. 11, pp. 1683-1689, Nov. 2012. https://doi.org/10.1094/PDIS-01-12-0030-RE; M. L. Alcaraz, T. G. Thorp, and J. I. Hormaza, “Phenological growth stages of avocado (Persea americana) according to the BBCH scale,” Scientia Horticulturae, vol. 164, pp 434-439, Dec. 2013. https://doi.org/10.1016/j.scienta.2013.09.051; M. Velez-Reyes and L. O. Jimenez, “Subset selection analysis for the reduction of hyperspectral imagery,” in IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings, Seattle, WA, USA, 1998, vol. 3, pp. 1577-1581. https://doi.org/10.1109/IGARSS.1998.691622; E. M. Barnes et al, “Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data,” In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, 2000. https://www.tucson.ars.ag.gov/unit/Publications/PDFfiles/1356.pdf; M. D. Steven, “The sensitivity of the OSAVI vegetation index to observational parameters,” Remote Sens. Environ., vol. 63, no. 1, pp. 49-60, Jan. 1998. https://doi.org/10.1016/S0034-4257(97)00114-4; C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. De Colstoun, and J. E McMurtrey III, “Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance,” Remote Sens. Environ., vol. 74, no. 2, pp. 229-239, Nov. 2000. https://doi.org/10.1016/S0034-4257(00)00113-9; J. Dash, A. Mathur, G. M. Foody, P. J. Curran, J. W. Chipman, and T. M. Lillesand, “Land cover classification using multi‐temporal MERIS vegetation indices,” Int. J. Remote Sens., vol. 28, no. 6, pp. 1137-1159, Mar. 2007. https://doi.org/10.1080/01431160600784259; M. V. Gutiérrez-Soto, E. Cadet-Piedra, W. Rodríguez-Montero, and J. M. Araya-Alfaro. “El GreenSeeker™ y el diagnóstico del estado de salud de los cultivos,” Agronomía Mesoamericana, vol. 22, no. 2, pp. 397-403, Dec. 2011. https://www.scielo.sa.cr/scielo.php?pid=S1659-13212011000200016&script=sci_arttext; M. L. Pérez-Bueno et al. “Detection of white root rot in avocado trees by remote sensing,” Plant disease, vol. 103, no. 6, pp. 1119-1125, Apr. 2019. https://doi.org/10.1094/PDIS-10-18-1778-RE; J. S. Arias Garcia, D. Pereira da Silva, A. Hurtado Salazar, R. A. Iturrieta Espinoza, and N. Ceballos-Aguirre. “Phenology of hass avocado in the Andean tropics of Caldas, Colombia,” Revista Brasileira de Fruticultura, vol. 44, no. 5, pp. 1-16, Sep. 2022. https://dx.doi.org/10.1590/0100-29452022252; J. Goudriaan and J. L. Monteith. “A mathematical function for crop growth based on light interception and leaf area expansion,” Ann. Bot. vol. 66, no. 6, pp. 695–701. Dec. 1990. https://doi.org/10.1093/oxfordjournals.aob.a088084; F. Paz-Pellat et al., “Diseño de un índice espectral de la vegetación: NDVIcp,” Agrociencia, vol. 41, no. 5, pp. 539–554. Jul. 2007. https://www.scielo.org.mx/scielo.php?pid=S1405-31952007000500539&script=sci_arttext; M. Reyes, F. Paz, M. Casiano, F. Pascual, M. I. Marín, and E. Rubiños. “Caracterización del efecto de estrés usando índices espectrales de la vegetación para la estimación de variables relacionadas con la biomasa del área,” Agrociencia vol. 45, no. 2, pp. 221-233. 2011. https://www.scielo.org.mx/scielo.php?pid=S1405-31952011000200007&script=sci_abstract&tlng=pt; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2567

  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20