-
1Academic Journal
المؤلفون: Parsasadr, Hossein, Mustafa, Syed, Golian, Mohsen, Bense, Victor
المصدر: Hydrogeology Journal 32 (2024) 4 ; ISSN: 1431-2174
مصطلحات موضوعية: Dewatering, Dynamic mesh, Groundwater modeling, Iran, Mining
وصف الملف: application/pdf
Relation: https://edepot.wur.nl/658983
-
2Academic Journal
المؤلفون: Parsasadr, Hossein, Nassery, Hamid Reza, Capasso, Giorgio, Alijani, Farshad, Caracausi, Antonio
المساهمون: #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia
مصطلحات موضوعية: Zagros groundwater, Dissolved gases, δ13C of TDIC, Mantle-derived He, Collision zone, 03.02. Hydrology, 03. Hydrosphere
وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document
Relation: Journal of Volcanology and Geothermal Research; /418 (2021); Afsari, N., Sodoudi, F., Farahmand, F.T., Ghassemi, M.R., 2011. Crustal structure of northwest Zagros (Kermanshah) and Central Iran (Yazd and Isfahan) using teleseismic PS converted phases. J. Seismol. 15 (2), 341–353. Alaminia, Z., Tadayon, M., Griffith, E.M., Solé, J., Corfu, F., 2021. Tectonic-controlled sediment-hosted fluorite-barite deposits of the central Alpine-Himalayan segment, Komsheche, NE Isfahan, Central Iran. Chem. Geol. 566, 120084 URL. https://doi.org/ 10.1016/j.chemgeo.2021.120084. Alavi, M., 1980. Tectonostratigraphic evolution of the Zagrosides of Iran. Geology 8 (3), 144–149. Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229 (3-4), 211–238. https://doi.org/10.1016/0040-1951(94) 90030-2. Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am. J. Sci. 304 (1), 1–20. https://doi.org/10.2475/ajs.304.1.1. Apollaro, C., Caracausi, A., Paternoster,M., Randazzo, P., Aiuppa, A., De Rosa, R., . Vanni, E., 2020. Fluid geochemistry in a low-enthalpy geothermal field along a sector of southern Apennines chain (Italy). J. Geochem. Explor. 219, 106618. https://doi.org/ 10.1016/j.gexplo.2020.106618. Babadi, M.F., Mehrabi, B., Tassi, F., Cabassi, J., Vaselli, O., Shakeri, A., . Chaplygin, I., 2019. Origin of fluids discharged from mud volcanoes in SE Iran. Mar. Pet. Geol. 106, 190–205. https://doi.org/10.1016/j.marpetgeo.2019.05.005. Bafti, B.S., Niedermann, S., Sosnicka,M., Gleeson, S.A., 2021.Microthermometry and noble gas isotope analysis of magmatic fluid inclusions in the Kerman porphyry Cu deposits, Iran: constraints on the source of ore-forming fluids. Mineral. Deposita, 1–31 https://doi.org/10.1007/s00126-021-01041-8. Ballentine, C.J., Burnard, P.G., 2002. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 47 (1), 481–538. https://doi.org/10.2138/ rmg.2002.47.12. Ballentine, C.J., Schoell, M., Coleman, D., Cain, B.A., 2001. 300-Myr-old magmatic CO2 in natural gas reservoirs of theWest Texas Permian basin. Nature 409 (6818), 327–331. Ballentine, C.J., Burgess, R., Marty, B., 2002. Tracing fluid origin, transport and interaction in the crust. Rev. Mineral. Geochem. 47 (1), 539–614. https://doi.org/10.2138/ rmg.2002.47.13. Barnes, I., Irwin,W.P.,White, D.E., 1978. Global distribution of carbon dioxide discharges, and major zones of seismicity. US Geological Survey, Water Resources Division. vol. 78. Berberian, M., 1981. Active faulting and tectonics of Iran. Zagros Hindu Kush Himalaya Geodynamic Evolution. 3 , pp. 33–69 URL. https://doi.org/10.1029/GD003p0033. Berberian, F., Muir, I., Pankhurst, R., Berberian, M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. J. Geol. Soc. 139 (5), 605–614. https://doi.org/10.1144/gsjgs.139.5.0605. Burnard, P., Bourlange, S., Henry, P., Geli, L., Tryon, M., Natal'In, B., . Çagatay, M., 2012. Constraints on fluid origins and migration velocities along the Marmara Main Fault (Sea of Marmara, Turkey) using helium isotopes. Earth Planet. Sci. Lett. 341, 68–78. https://doi.org/10.1016/j.epsl.2012.05.042. Capasso, G., Inguaggiato, S., 1998. A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl. Geochem. 13 (5), 631–642. https://doi.org/10.1016/S0883-2927(97)00109-1. Capasso, G., D'Alessandro, W., Favara, R., Inguaggiato, S., Parello, F., 2001. Interaction between the deep fluids and the shallow groundwaters on Vulcano Island (Italy). J. Volcanol. Geotherm. Res. 108 (1-4), 187–198. https://doi.org/10.1016/S0377-0273 (00)00285-7. Capasso, G., Favara, R., Grassa, F., Inguaggiato, S., Longo, M., 2005. On-line technique for preparing and measuring stable carbon isotope of total dissolved inorganic carbon in water samples (δ13CTDIC). Ann. Geophys. 48, 159–166. Caracausi, A., Paternoster, M., 2015. Radiogenic helium degassing and rock fracturing: a case study of the southern Apennines active tectonic region. J. Geophys. Res. Solid Earth 120, 2200–2211. https://doi.org/10.1002/2014JB011462. Caracausi, A., Sulli, A., 2019. Outgassing of mantle volatiles in compressional tectonic regime away from volcanism: the role of continental delamination. Geochem. Geophys. Geosyst. 20 (4), 2007–2020. https://doi.org/10.1029/2018GC008046. Caracausi, A., Favara, R., Italiano, F., Nuccio, P., Paonita, A., Rizzo, A., 2005. Active geodynamics of the centralMediterranean Sea: Tensional tectonic evidences inwestern Sicily from mantle-derived helium. Geophys. Res. Lett. 32 (4). https://doi.org/ 10.1029/2004GL021608 URL. Caracausi, A., Martelli, M., Nuccio, P., Paternoster, M., Stuart, F., 2013. Active degassing of mantle-derived fluid: a geochemical study along the Vulture line, southern Apennines (Italy). J. Volcanol. Geotherm. Res. 253, 65–74. https://doi.org/10.1016/j. jvolgeores.2012.12.005. Chaichi, Z., Haddadan, M., 2008. Geological Map of NIR, Scale: 1/100,000. Geological Survey and Mineral Exploration of Iran. Chiodini, G., Caliro, S., Cardellini, C., Frondini, F., Inguaggiato, S., Matteucci, F., 2011. Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes. Earth Planet. Sci. Lett. 304 (3-4), 389–398. https://doi.org/10.1016/j.epsl.2011.02.016. Clark, I., 2015. Groundwater geochemistry and isotopes. CRC Press. Clark, I.D., Fritz, P., 1997. Environmental isotopes in hydrogeology. CRC Press. Craig, H., 1961. Isotopic variations in meteoric waters. Science 133 (3465), 1702–1703. https://doi.org/10.1126/science.133.3465.1702. D'Alessandro, W., De Gregorio, S., Dongarrà, G., Gurrieri, S., Parello, F., Parisi, B., 1997. Chemical and isotopic characterization of the gases of Mount Etna (Italy). J. Volcanol. Geotherm. Res. 78 (1-2), 65–76. https://doi.org/10.1016/S0377-0273 (97)00003-6. Darling,W., Bath, A., Talbot, J., 2003. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater. Hydrol. Earth Syst. Sci. 7 (2), 183–195. https://doi.org/10.5194/hess-7-183-2003. de Martonne, E., 1926. Une nouvelle function climatologique: L'indice d'aridité. Meteorologie 2, 449–459. Deines, P., Langmuir, D., Harmon, R.S., 1974. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim. Cosmochim. Acta 38 (7), 1147–1164. https://doi.org/10.1016/0016-7037(74)90010-6. Delkhahi, B., Nassery, H.R., Vilarrasa, V., Alijani, F., Ayora, C., 2020. Impacts of natural CO2 leakage on groundwater chemistry of aquifers from the Hamadan Province, Iran. Int. J. Greenhouse Gas Control 96, 103001. https://doi.org/10.1016/j.ijggc.2020.103001. Dogramaci, S., Skrzypek, G., Dodson, W., Grierson, P.F., 2012. Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia. J. Hydrol. 475, 281–293. https://doi.org/10.1016/j. jhydrol.2012.10.004. Emblanch, C., Zuppi, G., Mudry, J., Blavoux, B., Batiot, C., 2003. Carbon 13 of TDIC to quantify the role of the unsaturated zone: the example of the Vaucluse karst systems (Southeastern France). J. Hydrol. 279 (1-4), 262–274. https://doi.org/10.1016/ S0022-1694(03)00180-X. Fan, Y., Pang, Z., Liao, D., Tian, J., Hao, Y., Huang, T., Li, Y., 2019. Hydrogeochemical Characteristics and Genesis of GeothermalWater from the Ganzi Geothermal Field, Eastern Tibetan Plateau. Water 11 (8), 1631. https://doi.org/10.3390/w11081631. Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Jean-Baptiste, P., Parello, F., Valenza, M., 2002. Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy. Geochim. Cosmochim. Acta 66 (6), 963–981. https://doi.org/ 10.1016/S0016-7037(01)00813-4. Fourré, E., Di Napoli, R., Aiuppa, A., Parello, F., Gaubi, E., Jean-Baptiste, P., . Mamou, A.B., 2011. Regional variations in the chemical and helium–carbon isotope composition of geothermal fluids across Tunisia. Chem. Geol. 288 (1-2), 67–85. https://doi.org/ 10.1016/j.chemgeo.2011.07.003. Frondini, F., Caliro, S., Cardellini, C., Chiodini, G., Morgantini, N., 2009. Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy). Appl. Geochem. 24 (5), 860–875. https://doi.org/10.1016/j.apgeochem. 2009.01.010. Gaillardet, J., Dupré, B., Louvat, P., Allegre, C., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159 (1-4), 3–30. https://doi.org/10.1016/S0009-2541(99)00031-5. Gat, J., Carmi, I., 1970. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J. Geophys. Res. 75 (15), 3039–3048. https://doi.org/ 10.1029/JC075i015p03039. Gautheron, C., Moreira, M., 2002. Helium signature of the subcontinental lithospheric mantle. Earth Planet. Sci. Lett. 199 (1-2), 39–47. https://doi.org/10.1016/S0012- 821X(02)00563-0. Giustini, F., Blessing, M., Brilli, M., Lombardi, S., Voltattorni, N., Widory, D., 2013. Determining the origin of carbon dioxide and methane in the gaseous emissions of the San Vittorino plain (Central Italy) by means of stable isotopes and noble gas analysis. Appl. Geochem. 34, 90–101. https://doi.org/10.1016/j.apgeochem.2013.02.015. Grassa, F., Capasso, G., Favara, R., Inguaggiato, S., 2006. Chemical and isotopic composition of waters and dissolved gases in some thermal springs of Sicily and adjacent volcanic islands, Italy. Pure Appl. Geophys. 163 (4), 781–807. Heydarizad, M., Raeisi, E., Sorí, R., Gimeno, L., 2019. Developing Meteoric water lines for iran based on air masses and moisture sources. Water 11 (11), 2359. https://doi. org/10.3390/w11112359. Inguaggiato, S., Pecoraino, G., D'amore, F., 2000. Chemical and isotopical characterisation of fluid manifestations of Ischia Island (Italy). J. Volcanol. Geotherm. Res. 99 (1-4), 151–178. https://doi.org/10.1016/S0377-0273(00)00158-X. Inguaggiato, S., Martin-Del Pozzo, A., Aguayo, A., Capasso, G., Favara, R., 2005. Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): evidence of gas–water interaction between magmatic component and shallow fluids. J. Volcanol. Geotherm. Res. 141 (1-2), 91–108. https://doi.org/ 10.1016/j.jvolgeores.2004.09.006. Italiano, F., Martelli, M., Martinelli, G., Nuccio, P.M., 2000. Geochemical evidence of melt intrusions along lithospheric faults of the Southern Apennines, Italy: geodynamic and seismogenic implications. J. Geophys. Res. Solid Earth 105 (B6), 13569–13578. https://doi.org/10.1029/2000JB900047. Italiano, F., Bonfanti, P., Ditta, M., Petrini, R., Slejko, F., 2009. Heliumand carbon isotopes in the dissolved gases of Friuli region (NE Italy): geochemical evidence of CO2 production and degassing over a seismically active area. Chem. Geol. 266 (1-2), 76–85. https://doi.org/10.1016/j.chemgeo.2009.05.022. Kaviani, A., Mahmoodabadi, M., Rümpker, G., Pilia, S., Tatar, M., Nilfouroushan, F., . Ali, M.Y., 2021. Mantle-flow diversion beneath the Iranian plateau induced by Zagros' lithospheric keel. Sci. Rep. 11 (1), 2848. https://doi.org/10.1038/s41598-021- 81541-9. Kis, B.M., Caracausi, A., Palcsu, L., Baciu, C., Ionescu, A., Futó, I., . Harangi, S., 2019. Noble gas and carbon isotope systematics at the seemingly inactive Ciomadul volcano (Eastern-Central Europe, Romania): evidence for volcanic degassing. Geochem. Geophys. Geosyst. 20 (6), 3019–3043. https://doi.org/10.1029/2018GC008153. Liotta, M., Paonita, A., Caracausi, A., Martelli, M., Rizzo, A., Favara, R., 2010. Hydrothermal processes governing the geochemistry of the crater fumaroles at Mount Etna volcano (Italy). Chem. Geol. 278 (1-2), 92–104. https://doi.org/10.1016/j.chemgeo. 2010.09.004. Mahmoodabadi, M., Yaminifard, F., Tatar, M., Kaviani, A., 2020. Shear wave velocity structure of the upper-mantle beneath the northern Zagros collision zone revealed by nonlinear teleseismic tomography and Bayesian Monte-Carlo joint inversion of surface wave dispersion and teleseismic P-wave coda. Phys. Earth Planet. Inter. 300, 106444. https://doi.org/10.1016/j.pepi.2020.106444. Marty, B., Jambon, A., 1987. C3 He in volatile fluxes from the solid Earth: implications for carbon geodynamics. Earth Planet. Sci. Lett. 83 (1-4), 16–26. https://doi.org/10.1016/ 0012-821X(87)90047-1. Mook, W., Bommerson, J., Staverman, W., 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22 (2), 169–176. https://doi.org/10.1016/0012-821X(74)90078-8. Mörner, N.-A., Etiope, G., 2002. Carbon degassing from the lithosphere. Glob. Planet. Chang. 33 (1-2), 185–203. https://doi.org/10.1016/S0921-8181(02)00070-X. Muñoz-Montecinos, J., Angiboust, S., Garcia-Casco, A., Glodny, J., Bebout, G., 2021. Episodic hydrofracturing and large-scale flushing along deep subduction interfaces: Implications for fluid transfer and carbon recycling (Zagros Orogen, southeastern Iran). Chem. Geol., 120173 https://doi.org/10.1016/j.chemgeo.2021.120173. Mutlu, H., Güleç, N., Hilton, D.R., 2008. Helium–carbon relationships in geothermal fluids of western Anatolia, Turkey. Chem. Geol. 247 (1–2), 305–321. https://doi.org/ 10.1016/j.chemgeo.2007.10.021. Nassery, H.R., Raei, M., 2013. Nature and source of gas specious in Gariz aquifer (Yazd, Iran). 2nd International Conference on Hydrology & Groundwater Expo. DoubleTree by Hilton, Raleigh, NC, USA, p. 54. O’Leary, M.H., 1988. Carbon isotopes in photosynthesis. Bioscience 38 (5), 328–336. O'nions, R., Oxburgh, E., 1988. Helium, volatile fluxes and the development of continental crust. Earth Planet. Sci. Lett. 90 (3), 331–347. https://doi.org/10.1016/0012-821X(88) 90134-3. Ozima, M., Podosek, F.A., 2002. Noble gas geochemistry. Cambridge University Press. Parkhurst, D.L., Appelo, C., 1999. User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water Resour. Invest. Report 99 (4259), 312. Paternoster, M., Oggiano, G., Sinisi, R., Caracausi, A., Mongelli, G., 2017. Geochemistry of two contrasting deep fluids in the Sardinia microplate (western Mediterranean): Relationshipswith tectonics and heat sources. J. Volcanol. Geotherm. Res. 336, 108–117. https://doi.org/10.1016/j.jvolgeores.2017.02.011. Paul, A., Hatzfeld, D., Kaviani, A., Tatar,M., Péquegnat, C., 2010. Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). Geol. Soc. Lond., Spec. Publ. 330 (1), 5–18. https://doi.org/10.1144/SP330.2. Payehghadr, M., Eliasi, A., 2010. Chemical compositions of Persian Gulf water around the Qeshm Island at various seasons. Asian J. Chem. 22 (7), 5282–5288. Pineau, F., Shilobreeva, S., Hekinian, R., Bideau, D., Javoy, M., 2004. Deep-sea explosive activity on the Mid-Atlantic Ridge near 34 50′ N: a stable isotope (C, H, O) study. Chem. Geol. 211 (1-2), 159–175. https://doi.org/10.1016/j.chemgeo.2004.06.029. Priestley, K., McKenzie, D., Barron, J., Tatar, M., Debayle, E., 2012. The Zagros core: deformation of the continental lithospheric mantle. Geochem. Geophys. Geosyst. 13 (11). https://doi.org/10.1029/2012GC004435. Rueedi, J., Cronin, A., Taylor, R., Morris, B., 2007. Tracing sources of carbon in urban groundwater using δ13C TDIC ratios. Environ. Geol. 52 (3), 541–557. Sano, Y., Gamo, T., Williams, S.N., 1997. Secular variations of helium and carbon isotopes at Galeras volcano, Colombia. J. Volcanol. Geotherm. Res. 77 (1–4), 255–265. https:// doi.org/10.1016/S0377-0273(96)00098-4. Sano, Y., Takahata, N., Kagoshima, T., Shibata, T., Onoue, T., Zhao, D., 2016. Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan. Sci. Rep. Nat. 6, 37939. https://doi.org/10.1038/srep37939. Scheffer, C., Tarantola, A., Vanderhaeghe, O., Rigaudier, T., Photiades, A., 2017. CO2 flow during orogenic gravitational collapse: Syntectonic decarbonation and fluid mixing at the ductile-brittle transition (Lavrion, Greece). Chem. Geol. 450, 248–263. https://doi.org/10.1016/j.chemgeo.2016.12.005. Shahabpour, J., 1999. The role of deep structures in the distribution of some major ore deposits in Iran, NE of the Zagros thrust zone. J. Geodyn. 28 (2-3), 237–250. https:// doi.org/10.1016/S0264-3707(98)00040-4. Spera, F., 1980. Thermal evolution of plutons: a parameterized approach. Science 18 (207), 299–301. https://doi.org/10.1126/science.207.4428.299. Taghipour, N., Aftabi, A.,Mathur, R., 2008. Geology and Re-Os geocronology ofmineralization of the Miduk porphyry copper deposit, Iran. Resour. Geol. 58 (2), 143–160. https://doi.org/10.1111/j.1751-3928.2008.00054.x. Venturi, S., Tassi, F., Bicocchi, G., Cabassi, J., Capecchiacci, F., Capasso, G., . Grassa, F., 2017. Fractionation processes affecting the stable carbon isotope signature of thermal waters from hydrothermal/volcanic systems: the examples of Campi Flegrei and Vulcano Island (southern Italy). J. Volcanol. Geotherm. Res. 345, 46–57. https://doi. org/10.1016/j.jvolgeores.2017.08.001. Yazd Meteorological Organization, 2014. Annual Data of Gariz Meteorological Station. https://yazdmet.ir/. Yong, L., Zhu, G., Wan, Q., Xu, Y., Zhang, Z., Sun, Z., . Guo, H., 2020. The soil water evaporation process from mountains based on the stable isotope composition in a headwater basin and northwest China. Water 12 (10), 2711. https://doi.org/10.3390/ w12102711. YRWC, 1994. Hydrogeology Survey Report of Aliabad-Ernan Yazd, Iran (In Persian). Zelenski,M., Chaplygin, I., Babadi,M.F., Taran, Y., Campion, R.,Mehrabi, B., . Pokrovsky, B., 2020. Volcanic gas emissions from Taftan and Damavand, the Iranian volcanoes. J. Volcanol. Geotherm. Res. 397, 106880. https://doi.org/10.1016/j.jvolgeores.2020. 106880. Zhang, L., Guo, Z., Sano, Y., Zhang, M., Sun, Y., Cheng, Z., Yang, T.F., 2017. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone. J. Asian Earth Sci. 149, 110–123. https://doi. org/10.1016/j.jseaes.2017.05.036.