يعرض 1 - 20 نتائج من 1,125 نتيجة بحث عن '"Parra E"', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المؤلفون: Soler, Juan Franquelo, Blazquez-Parra, E. Beatriz (ORCID 0000-0002-7329-7277)

    المصدر: International Journal of Education and Practice. 2022 10(1):1-10.

    Peer Reviewed: Y

    Page Count: 10

  3. 3
    Academic Journal

    المساهمون: UAM. Departamento de Medicina

    وصف الملف: application/pdf

    Relation: Journal of Nutrition, Health and Aging; https://doi.org/10.1007/s12603-015-0649-y; Gobierno de España. SRD09/0076/00101; Gobierno de España. PI05/0451; Gobierno de España. PI05/1497; Gobierno de España. PI05/52475; Gobierno de España. PI05/1043; Gobierno de España. PI10/00072; Gobierno de España. PS09/01405; Gobierno de España. PI14/01567; http://hdl.handle.net/10486/715786; 659; 664

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Report
  7. 7
    Report
  8. 8
    Academic Journal

    المساهمون: Universidad del Sinúthrough the Laboratory of Computational Physics

    المصدر: IEEE Transactions on Magnetics ; volume 61, issue 1, page 1-11 ; ISSN 0018-9464 1941-0069

  9. 9
    Report
  10. 10
    Academic Journal
  11. 11
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المساهمون: Ontario Graduate Scholarship, UTM Postdoctoral Fellowship Award, McLaughlin Centre Accelerator Grant, Conselho Nacional de Desenvolvimento Científico e, FAPESP

    المصدر: Clinical Epigenetics ; volume 15, issue 1 ; ISSN 1868-7083

  14. 14
    Academic Journal
  15. 15
    Academic Journal

    المؤلفون: Herrera-Parra, E.1 (AUTHOR), Cristóbal-Alejo, J.2 (AUTHOR) jairo.cal@conkal.tecnm.mx, Magaña-Alvarez, A.3 (AUTHOR), Medina-Baizabal, I. L.3 (AUTHOR), Gamboa-Angulo, Marcela3 (AUTHOR) mmarcela@cicy.mx

    المصدر: Journal of Plant Diseases & Protection. Oct2024, Vol. 131 Issue 5, p1685-1694. 10p.

  16. 16
    Electronic Resource
  17. 17
    Academic Journal

    وصف الملف: 11 páginas; application/pdf

    Relation: Chemical Physics; I. Swart, F.M.F. de Groot, B.M. Weckhuysen, P. Gruene, G. Meijer, A. Fielicke, H2 Adsorption on 3d Transition Metal Clusters: A Combined Infrared Spectroscopy and Density Functional Study, J. Phys. Chem. A. 112 (2008) 1139–1149, https://doi. org/10.1021/jp076702t.; V. Jain, B. Kandasubramanian, Functionalized graphene materials for hydrogen storage, J. Mater. Sci. 55 (2020) 1865–1903, https://doi.org/10.1007/s10853- 019-04150-y.; C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda, L. Salmon, S. Moya, J. Ruiz, D. Astruc, Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release, J. Am. Chem. Soc. 139 (2017) 11610–11615, https://doi.org/10.1021/jacs.7b06859.; G. Chen, R. Wang, W. Zhao, B. Kang, D. Gao, C. Li, J.Y. Lee, Effect of Ru crystal phase on the catalytic activity of hydrolytic dehydrogenation of ammonia borane, J. Power Sources 396 (2018) 148–154, https://doi.org/10.1016/j. jpowsour.2018.06.028.; A. Montoya, A. Schlunke, B.S. Haynes, Reaction of Hydrogen with Ag(111): Binding States, Minimum Energy Paths, and Kinetics, J. Phys. Chem. B 110 (2006) 17145–17154, https://doi.org/10.1021/jp062725g.; A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan, E.S. Cho, T.W. Heo, D. Prendergast, J.J. Urban, B.C. Wood, M.D. Allendorf, V. Stavila, Nanostructured Metal Hydrides for Hydrogen Storage, Chem. Rev. 118 (2018) 10775–10839, https://doi.org/10.1021/acs.chemrev.8b00313.; K. García-Díez, J. Fern´ andez-Fern´ andez, J.A. Alonso, M.J. Lopez, ´ Theoretical study of the adsorption of hydrogen on cobalt clusters, PCCP 20 (2018) 21163–21176, https://doi.org/10.1039/C8CP03048K.; H. Akbarzadeh, A.N. Shamkhali, H2 adsorption on Ag-nanocluster/single-walled carbon nanotube composites: A molecular dynamics study on the effects of nanocluster size, diameter, and chirality of nanotube, J. Comput. Chem. 36 (2015) 433–440, https://doi.org/10.1002/jcc.23817.; M. Yu, L. Liu, Q. Wang, L. Jia, B. Hou, Y. Si, D. Li, Y. Zhao, High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics, International Journal of Hydrogen Energy. 43 (2018) 5576–5590. https://doi.org/ https://doi.org/10.1016/j.ijhydene.2018.01.165.; A. Nakhaei Pour, Z. Keyvanloo, M. Izadyar, S.M. Modaresi, Dissociative hydrogen adsorption on the cubic cobalt surfaces: A DFT study, Int. J. Hydrogen Energy 40 (2015) 7064–7071, https://doi.org/10.1016/j.ijhydene.2015.04.028.; K. Mudiyanselage, Y. Yang, F.M. Hoffmann, O.J. Furlong, J. Hrbek, M.G. White, P. Liu, D.J. Stacchiola, Adsorption of hydrogen on the surface and sub-surface of Cu (111), The Journal of Chemical Physics. 139 (2013) 044712. https://doi.org/ 10.1063/1.4816515.; K. Cao, G. Füchsel, A.W. Kleyn, L.B.F. Juurlink, Hydrogen adsorption and desorption from Cu(111) and Cu(211), PCCP 20 (2018) 22477–22488, https://doi. org/10.1039/C8CP03386B.; P. Zhao, Y. He, D.B. Cao, X. Wen, H. Xiang, Y.W. Li, J. Wang, H. Jiao, High coverage adsorption and co-adsorption of CO and H 2 on Ru(0001) from DFT and thermodynamics, PCCP 17 (2015) 19446–19456, https://doi.org/ 10.1039/c5cp02486b.; I. Yarovsky, A. Goldberg, DFT study of hydrogen adsorption on Al 13 clusters, Mol. Simul. 31 (2005) 475–481, https://doi.org/10.1080/08927020412331337041.; S. Amaya-Roncancio, A.A. García Blanco, D.H. Linares, K. Sapag, DFT study of hydrogen adsorption on Ni/graphene, Appl. Surf. Sci. 447 (2018) 254–260, https://doi.org/10.1016/j.apsusc.2018.03.233.; P. Felício-Sousa, K.F. Andriani, J.L.F. Da Silva, Ab initioinvestigation of the role of the d-states occupation on the adsorption properties of H2, CO, CH4and CH3OH on the Fe13, Co13, Ni13and Cu13clusters, PCCP 23 (2021) 8739–8751, https://doi. org/10.1039/d0cp06091g.; S. Amaya-Roncancio, L. Reinaudi, M. Cecilia, Gimenez, Adsorption and dissociation of CO on metal clusters, Materials Today, Communications. 24 (2020), 101158, https://doi.org/10.1016/j.mtcomm.2020.101158.; M.R. Dehghan, S. Ahmadi, Z. Mosapour Kotena, M. Niakousari, A computational study of N2 adsorption on aromatic metal Mg16M;(M=Be, Mg, and Ca) nanoclusters, J. Mol. Graph. Model. 105 (2021), 107862, https://doi.org/10.1016/ j.jmgm.2021.107862.; P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. MartinSamos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter. 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502.; M.D. the E. Transition, QUANTUMESPRESSO, (n.d.). https://www.quantumespresso.org/resources/faq/pseudopotentials (accessed March 5, 2021).; (No Title), (n.d.). https://www.quantum-espresso.org/upf_files/H.pbe-rrkjus_ psl.1.0.0.UPF (accessed June 2, 2021).; (No Title), (n.d.). https://www.quantum-espresso.org/upf_files/Ru.pbe-spn-rrkjus_ psl.1.0.0.UPF (accessed June 2, 2021).; (No Title), (n.d.). https://www.quantum-espresso.org/upf_files/Cu.pbe-d-rrkjus. UPF (accessed June 2, 2021).; (No Title), (n.d.). https://www.quantum-espresso.org/upf_files/Co.rel-pbe-ndrrkjus.UPF (accessed June 2, 2021).; J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868, https://doi.org/10.1103/ PhysRevLett.77.3865.; M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045–1097, https:// doi.org/10.1103/RevModPhys.64.1045.; Z.Z. Lin, X. Chen, C. Yin, H. Tang, Y.C. Hu, X.J. Ning, Theoretical prediction of the growth and surface structure of Pt and Ni nanoparticles, EPL (Europhysics Letters). 96 (2011) 66005, https://doi.org/10.1209/0295-5075/96/66005.; X. Liu, D. Tian, C. Meng, DFT study on the adsorption and dissociation of H2 on Pdn (n=4, 6, 13, 19, 55) clusters, Journal of Molecular Structure. 1080 (2015) 105–110. https://doi.org/https://doi.org/10.1016/j.molstruc.2014.09.078.; C. Kittel, Introduction to Solid State Physics, eigth, Jhon Wiley & Sons, New York, 2005.; H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B. 13 (1976) 5188–5192, https://doi.org/10.1103/PhysRevB.13.5188.; G. Henkelman, B.P. Uberuaga, H. Jonsson, ´ Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904, https://doi.org/10.1063/1.1329672.; A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, in, Computational Materials Science, Elsevier (2003) 155–168, https://doi.org/10.1016/S0927-0256(03)00104-6.; F. Silveri, M.G. Quesne, A. Roldan, N.H. de Leeuw, C.R.A. Catlow, Hydrogen adsorption on transition metal carbides: a DFT study, PCCP 21 (2019) 5335–5343, https://doi.org/10.1039/C8CP05975F.; W. Bergermayer, H. Schweiger, E. Wimmer, Ab initio thermodynamics of oxide surfaces: O2 on Fe2O3(0001), Physical Review B. 69 (2004), 195409, https://doi. org/10.1103/PhysRevB.69.195409.; S.A. Tacey, B.W.J. Chen, T. Szilvasi, ´ M. Mavrikakis, An automated cluster surface scanning method for exploring reaction paths on metal-cluster surfaces, Comput. Mater. Sci. 186 (2021), 110010, https://doi.org/10.1016/j. commatsci.2020.110010.; Y. Kunisada, H. Kasai, Hindered rotational physisorption states of H2 on Ag(111) surfaces, PCCP 17 (2015) 19625–19630, https://doi.org/10.1039/C5CP01701G.; B. Jiang, H. Guo, Six-dimensional quantum dynamics for dissociative chemisorption of H2 and D2 on Ag(111) on a permutation invariant potential energy surface, PCCP 16 (2014) 24704–24715, https://doi.org/10.1039/ C4CP03761H.; P. Hirunsit, K. Shimizu, R. Fukuda, S. Namuangruk, Y. Morikawa, M. Ehara, Cooperative H 2 Activation at Ag Cluster/θ-Al 2 O 3 (110) Dual Perimeter Sites: A Density Functional Theory Study, The Journal of Physical Chemistry C. 118 (2014) 7996–8006, https://doi.org/10.1021/jp5000792.; H.-W.-H.-P.-D.-L.-Z.-H.-Z.-U.-O. Zhi-Jun, CO and H2 Molecules Adsorption on Cu (111) Surface and Solvent Effects, Acta Phys. -Chim. Sin. 25 (2009) 2507–2512.; G.H. Guvelioglu, P. Ma, X. He, R.C. Forrey, H. Cheng, First principles studies on the growth of small Cu clusters and the dissociative chemisorption of H2, Physical Review B - Condensed Matter and Materials Physics. 73 (2006), 155436, https:// doi.org/10.1103/PhysRevB.73.155436.; M.J.S. Spencer, G.L. Nyberg, DFT modelling of hydrogen on Cu(110)- and (111)- type clusters, Mol. Simul. 28 (8-9) (2002) 807–825.; G.X. Ge, H.X. Yan, Q. Jing, Y.H. Luo, Theoretical Study of Hydrogen Adsorption on Ruthenium Clusters, J. Cluster Sci. 22 (2011) 473–489, https://doi.org/10.1007/ s10876-011-0395-1.; 11; 559; https://hdl.handle.net/11323/13638; Corporación Universidad de la Costa; https://repositorio.cuc.edu.co/

  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal

    وصف الملف: 1412-; Electronic

    Relation: https://www.ncbi.nlm.nih.gov/pubmed/35301298; Nat Commun, 13(1); orcid:0000-0001-6607-0886 (Kruglyak, Volodymyr V); ScopusID: 6701455792 (Kruglyak, Volodymyr V); Vol. 13, article 1412; https://doi.org/10.1038/s41467-022-28899-0; ANR-15-GRFL-0005; ANR-17-CE24-0025 (TOPSKY); 18-CE24-0018-01 (SANTA); ANR-20-CE42-0012-01(MEDYNA); 824123; 766726; EP/T016574/1; http://hdl.handle.net/10871/130432; Nature Communications