يعرض 1 - 20 نتائج من 302 نتيجة بحث عن '"Palacio, Luis"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Academic Journal
  3. 3
  4. 4
    Academic Journal

    المؤلفون: Lorente, Luis, Palacio, Luis

    المصدر: Pirineos; Vol. 178 (2023); not.003 ; 1988-4281 ; 0373-2568 ; 10.3989/pirineos.2023.v178

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://pirineos.revistas.csic.es/index.php/pirineos/article/view/350/550; https://pirineos.revistas.csic.es/index.php/pirineos/article/view/350/551; https://pirineos.revistas.csic.es/index.php/pirineos/article/view/350/552; Ciudad, C., Robles, H. & Matthysen, E., 2009. Post fledging habitat selection of juvenile middle spotted woodpeckers: a multi-scale approach. Ecography, 32 676-682.; Ciudad, C., Fernández-García, J.M. & Robles, H., 2020. Criterios ecológicos para la compatibilización entre actividades forestales y conservación del pico mediano. Informe técnico del proyecto POCTEFA Habios. https://www.habios.eu/blog/2020/09/01/criterios-ecologicos-para-la-compatibilizacion-entre-actividades-forestales-y-conservacion-del-pico-mediano/.; Ciudad, C. & Robles, H., 2021. Pico mediano Dendrocoptes medius. En: N. López-Jiménez (ed.), Libro Rojo de las Aves de España. Madrid, España: SEO/BirdLife. 125-136 pp.; Fernández-García, J.M., 2016. The Middle-spotted Woodpecker Leiopicus medius in the Basque Country, Northern Spain: review of current ecological status. Ornis Hungarica, 24 (1): 42-54.; Fernández-García J. M. & Robles H., 2020. Citizen science to assess the fine-grain distribution and habitat use of the Middle Spotted Woodpecker Dendrocoptes medius. Acta Ornithol. 55: 261-268.; Kosiński, Z., Kempa M. & Hybsz, R., 2004. Accuracy and efficiency of different techniques for censusing territorial middle spotted woodpeckers Dendrocopos medius. Acta Ornithologica, 39: 29-34.; Lorente, L., 1989. Atlas Ornitológico de Aragón. Tercera fase: Alta Ribagorza. Informe inédito.; Palacio, L. M. & Bueno, A., 2021. Confirmada la reproducción de una pareja de pico mediano Dendrocopos medius en el Pirineo aragonés. Anuario ornitológico de Aragón. https://www.anuariorocin.blogspot.com/.; Pasinelli, G., 2000. Oaks Quercus sp. and only oaks? Relations between habitat structure and home range size of the Middle Spotted Woodpecker Dendrocopos medius. Biol. Conserv. 93: 227-235.; Pasinelli, G., 2003. Dendrocopos medius Middle Spotted Woodpecker. BWP Update, 5: 49-99.; Robles, H. & Ciudad, C., 2017. Floaters may bufer the extinction risk of small populations: an empirical assessment. Proc R Soc Lond Ser B: Biol Sci, 284:20170074.; Romero, J. L., Lammertink, M. & Pérez, J., 2013. Population increase and habitat use of the Middle Spotted Woodpecker in the Aran Valley, Spanish Pyrenees. Ardeola, 60: 345-355.; Węgrzyn, E., Węgrzyn, W. & Leniowski, K., 2021. Contact calls in woodpeckers are individually distinctive, show significant sex differences and enable mate recognition. Sci. Rep., 11: 22769.; https://pirineos.revistas.csic.es/index.php/pirineos/article/view/350

  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Book
  9. 9
  10. 10
    Academic Journal

    المساهمون: Universidad de Extremadura. Departamento de Física Aplicada, Universidad Católica Luis Amigó. Colombia, Centro de Información Tecnológica (CIT). Chile

    وصف الملف: 17 p.; application/pdf

    Relation: http://hdl.handle.net/10662/14588; A. Mulero, I. Cachadiña, L.F. Cardona, and J.O. Valderrama. Pressure–Surface Tension–Temperature Equation of State for n-Alkanes. Industrial & Engineering Chemistry Research, 2022, 61 (9), 3457-3473 DOI:10.1021/acs.iecr.1c04979; Industrial & Engineering Chemistry Research (IECRED); 3457; 3473; 61

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المؤلفون: Cardona Palacio, Luis Fernando

    وصف الملف: application/pdf

    Relation: Assael, M. J.; Charitidou, E.; Dymond, J. H.; Papadaki, M. (1992). Viscosity and thermal conductivity of binary n-heptane+ n-alkane mixtures. International journal of thermophysics, 13(2), 237-249. https://doi.org/10.1007/BF00504434; Abdulagatov, I. M.; Azizov, N. D. (2006). (p, ρ, T, x) and viscosity measurements of {x1n-heptane+(1− x1) n-octane} mixtures at high temperatures and high pressures. The Journal of Chemical Thermodynamics, 38(11), 1402-1415. https://doi.org/10.1016/j.jct.2006.01.012; Benabithe, Z. Z.; Vanegas, D.; Montoya, J. C. R.; Velásquez, J. A. (2020). Caso de estudio de la destilación etanol-agua en operación continua y discontinua y su simulación con ecuaciones cúbicas de estado y modelos de actividad. TecnoLógicas, 23(49), 223-249. https://doi.org/10.22430/22565337.1638; Bonyadi, M.; Rostami, M. (2017). A new viscosity model based on Soave-Redlich-Kwong equation of state. Fluid Phase Equilibria, 451, 40-47. https://doi.org/10.1016/j.fluid.2017.07.009; Bloxham, J. C.; Redd, M. E.; Giles, N. F.; Knotts IV, T. A.; Wilding, W. V. (2021). Proper Use of the DIPPR 801 Database for Creation of Models, Methods, and Processes. Journal of Chemical & Engineering Data, 66(1), 3-10. https://doi.org/10.1021/acs.jced.0c00641; Cardona, L. F. (2016). Calculation of the viscosity of hydrocarbons based on the cubic equation of state of Jarrahian-Heidaryan. Revista Mexicana De Ingeniería Química, 15(3), 1019-1025.; Cano-Gómez, J. J.; Iglesias-Silva, G. A.; Castrejón-González, E. O.; Ramos-Estrada, M.; Hall, K. R. (2015). Density and viscosity of binary liquid mixtures of ethanol+ 1-hexanol and ethanol+ 1-heptanol from (293.15 to 328.15) K at 0.1 MPa. Journal of Chemical & Engineering Data, 60(7), 1945-1955. https://doi.org/10.1021/je501133u; Cardona, L. F.; Forero, L. A.; Velásquez, J. A. (2019). Modelamiento de la Viscosidad con Base en una Ecuación Cúbica μTP del Tipo Peng-Robinson. Información tecnológica, 30(4), 259-272. http://dx.doi.org/10.4067/S0718-07642019000400259; Chevalier, J. L. E.; Petrino, P. J.; Gaston-Bonhomme, Y. H. (1990). Viscosity and density of some aliphatic, cyclic, and aromatic hydrocarbons binary liquid mixtures. Journal of Chemical and Engineering Data, 35(2), 206-212. https://doi.org/10.1021/je00060a034; Daubert, T. E. (1998). Evaluated equation forms for correlating thermodynamic and transport properties with temperature. Industrial & Engineering Chemistry Research, 37(8), 3260-3267. https://doi.org/10.1021/ie9708687; Derevich, I. V. (2010). Thermodynamic model of viscosity of hydrocarbons and their mixtures. International Journal of Heat and Mass Transfer, 53(19-20), 3823-3830. https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.035; Elliott, J. R.; Lira, C. T.; Lira, C. T. (2012). Introductory chemical engineering thermodynamics (2a ed.). Nueva York: Prentice Hall.; Fan, T. B.; Wang, L. S. (2006). A viscosity model based on Peng-Robinson equation of state for light hydrocarbon liquids and gases. Fluid Phase Equilibria, 247(1-2), 59-69. https://doi.org/10.1016/j.fluid.2006.06.008; Forero, L. A.; Velásquez, J. A. (2019). Representación Simultánea del Equilibrio Líquido-Vapor, el Volumen Molar y la Entalpía de Exceso de Mezclas Complejas mediante una Ecuación de Estado tipo Peng-Robinson. Información Tecnológica, 30(6), 21-34. http://dx.doi.org/10.4067/S0718-07642019000600021; Hussein, N. M.; Asfour, A. F. A. (2009). Densities and kinematic viscosities of ten binary 1-alkanol liquid systems at temperatures of (293.15 and 298.15) K. Journal of Chemical & Engineering Data, 54(10), 2948-2952. https://doi.org/10.1021/je800497u; Kontogeorgis, G. M.; Folas, G. K. (2010). Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories. Nueva York: John Wiley & Sons, Inc. Kumagai, A.; Yokoyama, C. (1998). Liquid viscosity of binary mixtures of methanol with ethanol and 1-propanol from 273.15 to 333.15 K. International Journal of Thermophysics, 19(1), 3-13. https://doi.org/10.1023/A:1021438800094; Lasdon, L. S.; Waren, A. D.; Jain, A., Ratner, M. (1978). Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Transactions on Mathematical Software, 4(1), 34-50. https://doi.org/10.1145/355769.355773; Lemmon, E. W.; Huber, M. L.M.; Mclinden, M. O. (2007). NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP. (version 8.0) [software]. NIST-REFPROP 8. https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport-0?pub_id=50520; Liu, X.; Zhu, C.; He, M.; Zhang, Y. (2017). Correlation for viscosities of pure liquids at high pressures. Journal of Molecular Liquids, 231, 404-410. https://doi.org/10.1016/j.molliq.2017.02.026; Martins, R. J.; Cardoso, M. J. D. M.; Barcia, O. E. (2003). A new model for calculating the viscosity of pure liquids at high pressures. Industrial & Engineering Chemistry Research, 42(16), 3824-3830. https://doi.org/10.1021/ie021017o Novak, L. T. (2011). Fluid viscosity-residual entropy correlation. International Journal of Chemical Reactor Engineering, 9(1), 1-27. https://doi.org/10.2202/1542-6580.2839; Poulopoulos, S. G.; Philippopoulos, C. J. (2003). The effect of adding oxygenated compounds to gasoline on automotive exhaust emissions. J. Eng. Gas Turbines Power, 125(1), 344-350. https://doi.org/10.1115/1.1501076; Poling, B. E.; Prausnitz, J. M.; O’connell, J. P. (2001). Properties of gases and liquids (5a ed.). Nueva York: McGraw-Hill Education.; Sastry, N. V.; Raj, M. M. (1996). Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol+ hexane and+ heptane at 303.15 and 313.15 K. Journal of Chemical & Engineering Data, 41(3), 612-618. https://doi.org/10.1021/je950172p; Sastry, N. V.; Valand, M. K. (1998). Densities, viscosities, and relative permittivities for pentane+ 1-alcohols (C1 to C12) at 298.15 K. Journal of Chemical & Engineering Data, 43(2), 152-157. https://doi.org/10.1021/je9701801; Satyro, M. A.; Yarranton, H. W. (2010). Expanded fluid-based viscosity correlation for hydrocarbons using an equation of state. Fluid Phase Equilibria, 298(1), 1-11. https://doi.org/10.1016/j.fluid.2010.06.023; Valderrama, J. O. (2003). The state of the cubic equations of state. Industrial & Engineering Chemistry Research, 42(8), 1603-1618. https://doi.org/10.1021/ie020447b; Valderrama, J. O.; Muñoz, J. M.; Rojas, R. E. (2011). Viscosity of ionic liquids using the concept of mass connectivity and artificial neural networks. Korean Journal of Chemical Engineering, 28(6), 1451-1457. https://doi.org/10.1007/s11814-010-0512-0; Varzandeh, F.; Stenby, E. H.; Yan, W. (2017). General approach to characterizing reservoir fluids for EoS models using a large PVT database. Fluid Phase Equilibria, 433, 97-111. https://doi.org/10.1016/j.fluid.2016.10.018; Valderrama, J. O.; Cardona, L. F.; Rojas, R. E. (2019). Correlation and prediction of ionic liquid viscosity using Valderrama-Patel-Teja cubic equation of state and the geometric similitude concept. Part I: pure ionic liquids. Fluid Phase Equilibria, 497, 164-177. https://doi.org/10.1016/j.fluid.2019.04.034; https://revistas.eia.edu.co/index.php/reveia/article/download/1535/1460; Núm. 38 , Año 2022 : .; 16; 38; 3809 pp. 1; 19; Revista EIA; https://repository.eia.edu.co/handle/11190/5169; https://doi.org/10.24050/reia.v19i38.1535

  14. 14
  15. 15
    Academic Journal

    المؤلفون: Cardona Palacio, Luis Fernando

    المصدر: Cuaderno activa; Vol. 8 (2016); 101-117 ; 2619-5232 ; 2027-8101

    وصف الملف: application/pdf; text/xml

    Relation: https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/334/364; https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/334/1078; Acharya, C., Sukla, L., y Misra, V. (2004). Biodepyritisation of coal. Journal of Chemical Technology & Biotechnology, 1-12.; Adiga, K., Pithapurwala, Y. y Shah, D. (1988). Coal slurries in mixed liquid fuels: Rheology and ignition characteristics. Fuel Processing Technology, 59-69.; Ahimou, F., Paquot, M., Jacques, P., Thonart, P., y Rouxhet, P. G. (2001). Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis. Journal of Microbiological Methods, 119-126.; Blázquez, M., Ballester, A., González, F. y Mier, J. (1991). Desulfuración de carbones. La biodesulfuración como alternativa. Canteras y Explotaciones, 40-49.; Botero, A., Torem, M., y de Mesquita, L. (2008). Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Minerals Engineering, 21(1), 83-92.; Casas, A. (2007). Bioflotação de magnesita, calcita e barita usando Rhodococcus opacus como biorreagente (tesis de doctorado). Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brasil.; Cheng, C., y Lehmann, J. (2009). Ageing of black carbon along a temperature gradient. Chemosphere, 75(8), 1021-7.; Crawford, R., y Mainwaring, D. (2001). The influence of surfactant adsorption on the surface characterisation of Australian coals, 80, 313-320.; Franco, A., y Diaz, A. R. (2009). The future challenges for “clean coal technologies”: Joining efficiency increase and pollutant emission control. Energy, 34(3), 348-354.; Galdos, M., Cavalett, O., Seabra, J., Nogueira, L. A., y Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 104, 576-582.; Hendryx, M. (2015). The public health impacts of surface coal mining, The Extractive Industries and Society, 2, 820-826.; Ichihara, T., Fukuda, J., Takaha, T., Suzuki, S., Yuguchi, Y., y Kitamura, S. (2016). Small-angle X-ray scattering measurements of gel produced from α-amylase-treated cassava starch granules. Food Hydrocolloids, 55, 228-234.; Kameya, Y., Hayashi, T., y Motosuke, M. (2016). Oxidation-resistant graphitic surface nanostructure of carbon black developed by ethanol thermal decomposition. Diamond and Related Materials, 65, 26-31.; Kastrisianaki-Guyton, E., Chen, L., Rogers, S., Cosgrove, T., y van Duijneveldt, J. (2016). Adsorption of sodium dodecylsulfate on single-walled carbon nanotubes characterised using small-angle neutron scattering. Journal of colloid and interface science, 472, 1-7.; Kim, G., Park, K., Choi, J., Gomez-Flores, A., Han, Y., Choi, S., y Kim, H. (2015). Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow. International Journal of Mineral Processing, 143, 98-104.; Li, Y., Henze, D., Jack, D., Henderson, B., y Kinney, P. (2016). Assessing public health burden associated with exposure to ambient black carbon in the United States. The Science of the total environment, 539, 515-25.; Madani, S., Badalyan, A., Biggs, M., y Pendleton, P. (2015). Uncertainty in pore size distribution derived from adsorption isotherms: I. Classical methods. Microporous and Mesoporous Materials, 214, 210-216.; Mays, T. J. (2007). A new classification of pore sizes, Studies in Surface Science and Catalysis, 57-62.; Mishra, S. K., y Panda, D. (2005). Studies on the adsorption of Brij-35 and CTAB at the coal-water interface. Journal of colloid and interface science, 283(2), 294-9.; Naik, K., Reddy, P. y Misra, V. (2004). Optimization of coal flotation using statistical technique. Fuel Processing Technology, 85, 1473-1485.; Ndikubwimana, T., Zeng, X., He, N., Xiao, Z., Xie, Y., Chang, J.-S. y Lu, Y. (2015). Microalgae biomass harvesting by bioflocculation-interpretation by classical DLVO theory. Biochemical Engineering Journal, 101, 160-167.; Peng, Y., Liang, L., Tan, J., Sha, J. y Xie, G. (2015). Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. International Journal of Mineral Processing, 142, 17-21.; Polat, M., Polat, H., Chander, S. (2003). Physical and chemical interactions in coal flotation. International Journal of Mineral Processing, 72, 199-213.; Raichur, A.M., Misra, M., Bukka, K., y Smith, R. W. (1996). Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei. Colloids and Surfaces B: Biointerfaces, 13-24.; Rincón, Y., García, C., Sarmiento, C., Rincón, C., y Mata, F. (2003). Predicción de las ecuaciones constitutivas para suspensiones de carbón- agua. Ciencia, 11(1), 77-86.; Rong, R., y Hitchins, J. (1995). Preliminary study of correlations between fine coal characteristics and properties and their dewatering behaviour. Minerals Engineering, 8(3), 293-309.; Seraji, M., Ghafoorian, N., y Bahramian, A. (2016). Investigation of microstructure and mechanical properties of novolac/silica and C/SiO2/ SiC aerogels using mercury porosimetry method. Journal of Non-Crystalline Solids, 435, 1-7.; Sharma, P. (2001). Surface Studies Relevant to Microbial Adhesion and Bioflotation of Sulphide Minerals (tesis de doctorado). LuleÃ¥ University of Technology, LuleÃ¥, Suecia.; Shukla, S., Kukade, S., Mandal, S., y Kundu, G. (2008). Coal-oil-water multiphase fuel: Rheological behavior and prediction of optimum particle size. Fuel, 87(15-16), 3428-3432.; Sis, H., y Birinci, M. (2009). Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341(1-3); Vásquez, T., Botero, A., de Mesquita, L., y Torem, M. (2007). Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Minerals Engineering, 20(9), 939-944.; Vijayalakshmi, S. y Raichur, A. (2002). Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa. Int. J. Miner. Process, 67, 199-210.; Vijayalakshmi, S. y Raichur, A. (2003). The utility of Bacillus subtilis as a bioflocculant for fine coal. Colloids and Surfaces B: Biointerfaces, 29(4), 265-275.; Volesky, B. (2007). Biosorption and me. Water research, 41(18), 4017-29.; Wang, J., Feng, L., Davidsson, S. y Höök, M. (2013). Chinese coal supply and future production outlooks. Energy, 60, 204-214.; Yianato, J. (2007). Fluid flow and kinetic modelling in flotation related processes columns and Mechanically Agitated Cells-A Review. Chemical Engineering Research and Design, 85, 1592-1600; https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/334

  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المؤلفون: Cardona-Palacio, Luis-Fernando

    المصدر: Revista Científica; Vol. 42 No. 3 (2021): September-December 2021; 276-289 ; Revista Científica; Vol. 42 Núm. 3 (2021): Septiembre-Diciembre 2021; 276-289 ; 2344-8350 ; 0124-2253

    وصف الملف: text/xml; application/pdf

    Relation: https://revistas.udistrital.edu.co/index.php/revcie/article/view/18052/17672; https://revistas.udistrital.edu.co/index.php/revcie/article/view/18052/17585; Asensio-Delgado, S., Jovell, D., Zarca, G., Urtiaga, A., Llovell, F. (2020). Thermodynamic and process modeling of the recovery of R410A compounds with ionic liquids. International Journal of Refrigeration, 118, 365-375. https://doi.org/10.1016/j.ijrefrig.2020.04.013; Akhgar, A., Toghraie, D., Sina, N., Afrand, M. (2019). Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Technology, 355, 602-610. https://doi.org/10.1016/j.powtec.2019.07.086; Alvarez-Guerra, M., Luis, P., Irabien, A. (2011). Modelo de contribución de grupos para la estimación de la ecotoxicidad de líquidos iónicos. Afinidad, 68(551), 20-24; Bloxham, J. C., Redd, M. E., Giles, N. F., Knotts IV, T. A., Wilding, W. V. (2021). Proper use of the DIPPR 801 database for creation of models, methods, and processes. Journal of Chemical & Engineering Data, 66(1), 3-10. https://doi.org/10.1021/acs.jced.0c00641; Bonyadi, M., Rostami, M. (2017). A new viscosity model based on Soave-Redlich-Kwong equation of state. Fluid Phase Equilibria, 451, 40-47. https://doi.org/10.1016/j.fluid.2017.07.009; Bhunia, P., Ghangrekar, M. M. (2008). Analysis, evaluation, and optimization of kinetic parameters for performance appraisal and design of UASB reactors. Bioresource Technology, 99(7), 2132-2140. https://doi.org/10.1016/j.biortech.2007.05.053; Burke, J. A. (2006). Two mathematical programming models of cheese manufacture. Journal of Dairy Science, 89(2), 799-809. https://doi.org/10.3168/jds.S0022-0302(06)72142-7; Cardona, L. F. (2016). Nueva correlación generalizada para estimar la presión de vapor. Revista Científica, 25(2), 280-289. https://doi.org/10.14483//udistrital.jour.RC.2016.25.a11; Cardona, L. F., Forero, L. A., Velásquez, J. A. (2019). Correlation and prediction of thermal conductivity using the Redlich-Kwong cubic equation of state and the geometric similitude concept for pure substances and mixtures. Industrial & Engineering Chemistry Research, 58(51), 23417-23437. https://doi.org/10.1021/acs.iecr.9b04974; Cardona, L. F., Valderrama, J. O. (2020a). Physical and transport properties of ionic liquids using the geometric similitude concept and a cubic equation of state. Part 1: Thermal conductivity and speed of sound of pure substances. Journal of Molecular Liquids, 315. https://doi.org/10.1016/j.molliq.2020.113681; Cardona, L. F., Valderrama, J. O. (2020b). Surface tension of mixtures containing ionic liquids based on an equation of state and on the geometric similitude concept. Ionics, 26(12), 6095-6118. https://doi.org/10.1007/s11581-020-03697-0; Castillo, F. (2015). Líquidos iónicos: métodos de síntesis y aplicaciones. ConCiencia Tecnológica, 49, 52-56; Chen, Z., Akbari, M., Forouharmanesh, F., Keshani, M., Akbari, M., Afrand, M., Karimipour, A. (2020). A new correlation for predicting the thermal conductivity of liquid refrigerants. Journal of Thermal Analysis and Calorimetry, 143, 795-800. https://doi.org/10.1007/s10973-019-09238-w; Daubert, T. E. (1998). Evaluated equation forms for correlating thermodynamic and transport properties with temperature. Industrial & Engineering Chemistry Research, 37(8), 3260-3267. https://doi.org/10.1021/ie9708687; Díaz-Parra, O., Vera-López, E. (2018). Simulación de áreas de alta consecuencia para gasoductos. Científica, 31(1), 32-44. https://doi.org/10.14483/23448350.12513; Dong, Q., Kazakov, A., Muzny, C., Chirico, R., Widegren, J., Diky, V., Magee, J., Marsh, K., Frenkel, M. (2007). ILThermo: A free-access web database for thermodynamic properties of ionic liquids. Journal of Chemical & Engineering Data, 52(4), 1151-1159. https://doi.org/10.1021/je700171f; Fang, H., Ni, K., Wu, J., Li, J., Huang, L., Reible, D. (2019). The effects of hydrogen bonding on the shear viscosity of liquid water. International Journal of Sediment Research, 34(1), 8-13. https://doi.org/10.1016/j.ijsrc.2018.10.008; Fröba, A. P., Rausch, M. H., Krzeminski, K., Assenbaum, D., Wasserscheid, P., Leipertz, A. (2010). Thermal conductivity of ionic liquids: Measurement and prediction. International Journal of Thermophysics, 31(11), 2059-2077. https://doi.org/10.1007/s10765-010-0889-3; Frez, C., Diebold, G. J., Tran, C. D., Yu, S. (2006). Determination of thermal diffusivities, thermal conductivities, and sound speeds of room-temperature ionic liquids by the transient grating technique. Journal of Chemical & Engineering Data, 51(4), 1250-1255. https://doi.org/10.1021/je0600092; Gardas, R. L., Coutinho, J. A. (2009). Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AIChE Journal, 55(5), 1274-1290. https://doi.org/10.1002/aic.11737; Ge, R., Hardacre, C., Nancarrow, P., Rooney, D. W. (2007). Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. Journal of Chemical & Engineering Data, 52(5), 1819-1823. https://doi.org/10.1021/je700176d; Godsen, S. (2002). Optimization analysis of projectile motion using spreadsheets. The Physics Teacher, 40(9), 523-525. https://doi.org/10.1119/1.1534816; Hezave, A. Z., Raeissi, S., Lashkarbolooki, M. (2012). Estimation of thermal conductivity of ionic liquids using a perceptron neural network. Industrial & Engineering Chemistry Research, 51(29), 9886-9893. https://doi.org/10.1021/ie202681b; Hopp, M., Gross, J. (2019). Thermal conductivity from entropy scaling: A group-contribution method. Industrial & Engineering Chemistry Research, 58(44), 20441-20449. https://doi.org/10.1021/acs.iecr.9b04289; Huang, H.-J., Lin, W., Ramaswamy, S., Tschirner, U. (2009). Process modeling of comprehensive integrated forest biorefinery: An integrated approach. Applied Biochemistry and Biotechnology, 154(1), 26-37. https://doi.org/10.1007/s12010-008-8478-7; Huang, Y., Zhang, X., Zhao, Y., Zeng, S., Dong, H., Zhang, S. (2015). New models for predicting thermophysical properties of ionic liquid mixtures. Physical Chemistry Chemical Physics, 17(40), 26918-26929. https://doi.org/10.1039/C5CP03446A; Iglesias, O. A., Pastor, J., Henseler, A., Bertolini, R., Soto, J. D., Paniagua, C. N. (2004). Spreadsheet use in conceptual design of chemical processes. International Journal of Engineering Education, 20(6), 999-1004; Kazakov A., Magee J.W., Chirico R.D., Paulechka E., Diky V., Muzny C.D., Kroenlein K., Frenkel M. (s. f.). NIST Standard Reference Database 147: NIST Ionic Liquids Database (ILThermo), Version 2.0. Gaithersburg, MD: National Institute of Standards and Technology. http://ilthermo.boulder.nist.gov; Kemmer, G., Keller, S. (2010). Nonlinear least-squares data fitting in Excel spreadsheets. Nature Protocols, 5(2), 267-281. https://doi.org/10.1038/nprot.2009.182; Lasdon, L. S., Waren, A. D., Jain, A., Ratner, M. (1978). Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Transactions on Mathematical Software, 4(1), 34-50. https://doi.org/10.1145/355769.355773; Minea, A. A. (2020). Overview of ionic liquids as candidates for new heat transfer fluids. International Journal of Thermophysics, 41. https://doi.org/10.1007/s10765-020-02727-3; Poling, B. E., Prausnitz, J. M., O’Connell, J. P. (2001). Properties of Gases and Liquids. Nueva York: McGraw-Hill Education; Ranjbarzadeh, R., Moradikazerouni, A., Bakhtiari, R., Asadi, A., Afrand, M. (2019). An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles. Journal of Cleaner Production, 206, 1089-1100. https://doi.org/10.1016/j.jclepro.2018.09.205; Rivas, A., Gómez‐Acebo, T., Ramos, J. C. (2006). The application of spreadsheets to the analysis and optimization of systems and processes in the teaching of hydraulic and thermal engineering. Computer Applications in Engineering Education, 14(4), 256-268. https://doi.org/10.1002/cae.20085; Tomassetti, S., Coccia, G., Pierantozzi, M., Di Nicola, G. (2020). Correlations for liquid thermal conductivity of low GWP refrigerants in the reduced temperature range 0.4 to 0.9 from saturation line to 70 MPa. International Journal of Refrigeration, 117, 358-368. https://doi.org/10.1016/j.ijrefrig.2020.05.004; Tomida, D., Kenmochi, S., Tsukada, T., Qiao, K., Bao, Q., Yokoyama, C. (2012). Viscosity and thermal conductivity of 1-hexyl-3-methylimidazolium tetrafluoroborate and 1-octyl-3-methylimidazolium tetrafluoroborate at pressures up to 20 MPa. International Journal of Thermophysics, 33(6), 959-969. https://doi.org/10.1007/s10765-012-1233-x Valderrama, J. O., Álvarez, V. H. (2005). Correct way of reporting results when modelling supercritical phase equilibria using equations of state. The Canadian Journal of Chemical Engineering, 83(3), 578-581. https://doi.org/10.1002/cjce.5450830323; Valderrama, J. O., Forero, L. A., Rojas, R. E. (2019a). Critical properties of metal-containing ionic liquids. Industrial & Engineering Chemistry Research, 58(17), 7332-7340. https://doi.org/10.1021/acs.iecr.9b00279; Valderrama, J. O., Cardona, L. F., Rojas, R. E. (2019b). Correlation of ionic liquid viscosity using Valderrama-Patel-Teja cubic equation of state and the geometric similitude concept. Part II: Binary mixtures of ionic liquids. Fluid Phase Equilibria, 497, 178-194. https://doi.org/10.1016/j.fluid.2019.04.034; https://revistas.udistrital.edu.co/index.php/revcie/article/view/18052

  18. 18
    Dissertation/ Thesis
  19. 19
  20. 20
    Book

    المصدر: Fondo Editorial Universidad Católica Luis Amigó

    وصف الملف: Digital (DA)

    Relation: https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/42; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/104; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/105; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/106; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/107; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/108; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/109; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/110; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/111; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/112; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/113; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/114; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/115; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/116; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/117; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/118; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/view/12/10/119; https://editorial.ucatolicaluisamigo.edu.co/index.php/editorial/catalog/book/12