يعرض 1 - 20 نتائج من 294 نتيجة بحث عن '"PROPIEDADES FÍSICO MECANICAS"', وقت الاستعلام: 0.61s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Eidos; Vol. 17 No. 24 (2024): DIGITAL ARCHITECTURE: EXPLORING THE SYNTHESIS BETWEEN TECHNOLOGY, DESIGN, AND MATERIALIZATION; 95-110 ; Eídos; Vol. 17 Núm. 24 (2024): ARQUITECTURA DIGITAL: EXPLORANDO LA SÍNTESIS ENTRE TECNOLOGÍA, DISEÑO Y MATERIALIZACIÓN; 95-110 ; Eidos; v. 17 n. 24 (2024): ARQUITECTURA DIGITAL: EXPLORANDO LA SÍNTESIS ENTRE TECNOLOGÍA, DISEÑO Y MATERIALIZACIÓN; 95-110 ; 1390-5007 ; 1390-499X ; 10.29019/eidos.v17i24

    وصف الملف: application/pdf; text/html

  2. 2
    Academic Journal

    المصدر: Colombia Forestal; Vol. 27 No. 2 (2024): July-december; e21457 ; Colombia forestal; Vol. 27 Núm. 2 (2024): Julio-diciembre; e21457 ; 2256-201X ; 0120-0739

    وصف الملف: application/pdf

    Relation: https://revistas.udistrital.edu.co/index.php/colfor/article/view/21457/20091; Abdalla, J. A., Hawileh, R. A., Bahurudeen, A., Jyothsna, G., Sofi, A., Shanmugam, V., & Thomas, B. S. (2023). A comprehensive review on the use of natural fibers in cement/geopolymer concrete: A step towards sustainability. Case Studies in Construction Materials, 19, e02244. https://doi.org/10.1016/j.cscm.2023.e02244 Abdelmajeed Labib, W. (2019). Utilisation of date palm fibres in cement-based composites: A feasibility study. IOP Conference Series: Materials Science and Engineering, 596(1), 012028. https://doi.org/10.1088/1757-899X/596/1/012028 Adamu, M., Marouf, M. L., Ibrahim, Y. E., Ahmed, O. S., Alanazi, H., & Marouf, A. L. (2022). Modeling and optimization of the mechanical properties of date fiber reinforced concrete containing silica fume using response surface methodology. Case Studies in Construction Materials, 17, e01633. https://doi.org/10.1016/j.cscm.2022.e01633 Aguilar Gallegos, N., Arias Arias, N. A., & Santoyo Cortés, V. H. (2013). La palma de aceite (Elaeis guinensis Jacq.): Avances y retos en la gestión de la innovación (1st ed.). Universidad Autónoma Chapingo. https://repositorio.chapingo.edu.mx/items/6472388d-2443-4986-badd-c3cc3d7988d2 Alatshan, F., Altlomate, A. M., Mashiri, F., & Alamin, W. (2017). Effect of date palm fibers on the mechanical properties of concrete. International Journal of Sustainable Building Technology and Urban Development, 8(2), 68-80. https://doi.org/10.12972/susb.20170007 Alencar, M. A. S., Rambo, M. K. D., Botelho, G. L. G. T., Barros, P. M. M., Sergio, R. L., Borges, M. S., & Bertuol, D. (2023). Feasibility study of incorporation of bamboo plant fibers in cement matrices. Sustainable Chemistry for the Environment, 2, 100020. https://doi.org/10.1016/j.scenv.2023.100020 Ali, B., Hawreen, A., Ben Kahla, N., Talha Amir, M., Azab, M., & Raza, A. (2022). A critical review on the utilization of coir (coconut fiber) in cementitious materials. Construction and Building Materials, 351, 128957. https://doi.org/10.1016/j.conbuildmat.2022.128957 Ali-Boucetta, T., Ayat, A., Laifa, W., & Behim, M. (2021). Treatment of date palm fibres mesh: Influence on the rheological and mechanical properties of fibre-cement composites. Construction and Building Materials, 273, 121056. https://doi.org/10.1016/j.conbuildmat.2020.121056 Altez Basaldúa, A. G., Cárdenas Oscanoa, A. J., Araujo Flores, M., & Sulbarán Rangel, B. C. (2020). Efecto de pudrición por hongos en las propiedades físicas y mecánicas del compuesto bambú-polipropileno. Revista Mexicana de Ciencias Forestales, 11(62), 757. https://doi.org/10.29298/rmcf.v11i62.757 Arango-Pérez, S. A., Gonzales-Mora, H. E., Ponce-Álvarez, S. P., Gutarra-Espinoza, A. A., & Cárdenas-Oscanoa, A. J. (2024). Assessment of cellulose nanofibers from bolaina blanca wood obtained at three shaft heights. Maderas, Ciencia y Tecnología, 26, 1-30. https://doi.org/10.4067/S0718-221X2024005XXXXXX Arao, Y., Fujiura, T., Itani, S., & Tanaka, T. (2015). Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Composites Part B: Engineering, 68, 200-206. https://doi.org/10.1016/j.compositesb.2014.08.032 Asyraf, M. R. M., Ishak, M. R., Syamsir, A., Nurazzi, N. M., Sabaruddin, F. A., Shazleen, S. S., Norrrahim, M. N. F., Rafidah, M., Ilyas, R. A., Rashid, M. Z. A., & Razman, M. R. (2022). Mechanical properties of oil palm fibre-reinforced polymer composites: A review. Journal of Materials Research and Technology, 17, 33-65. https://doi.org/10.1016/j.jmrt.2021.12.122 Awad, S., Ghaffar, S. H., Hamouda, T., Midani, M., Katsou, E., & Fan, M. (2022). Critical evaluation of date palm sheath fibre characteristics as a reinforcement for developing sustainable cementitious composites from waste materials. Biomass Conversion and Biorefinery, 14, 6887-6902. https://doi.org/10.1007/s13399-022-02759-9 Bajuri, F., Mazlan, N., & Ishak, M. R. (2017). Effect of silica nanoparticles in kenaf reinforced epoxy: Flexural and compressive properties. Pertanika Journal of Science and Technology, 25(3), 1029-1038. http://www.pertanika.upm.edu.my/pjst/browse/regular-issue?article=JST-S0280-2017 Banco Central de Reserva del Perú (BCRP) (2023). Producción agropecuaria por principales productos (miles de toneladas)—Agrícola—Agroexportación e Industrial—Palma Aceitera [dataset]. BCRP. https://estadisticas.bcrp.gob.pe/estadisticas/series/anuales/resultados/PM05090AA/html Bellel, N., & Bellel, N. (2023). Sustainable heat insulation composites based on Portland cement reinforced with date palm fibers. Journal of Engineered Fibers and Fabrics, 18, 155892502311577. https://doi.org/10.1177/15589250231157718 Cárdenas-Oscanoa, A. J., Fuentes Talavera, F. J., Robledo Ortiz, J. R., Meza Contreras, J. C., & Gonzáles Cruz, R. (2020). Efecto del intemperismo y biodeterioro en compuestos plástico-madera (CPM) elaborados con borato de zinc. Revista Mexicana de Ciencias Forestales, 12(63), 801. https://doi.org/10.29298/rmcf.v12i63.801 Choi, Y. C. (2022). Hydration and internal curing properties of plant-based natural fiber-reinforced cement composites. Case Studies in Construction Materials, 17, e01690. https://doi.org/10.1016/j.cscm.2022.e01690 Cipra-Rodriguez, J. A., Gonzales Mora, H. E., & Cárdenas-Oscanoa, A. J. (2022). Characterization of MDF produced with bolaina (Guazuma crinita Mart.) wood residues from plantation. Madera y Bosques, 28(3), e2832433. https://doi.org/10.21829/myb.2022.2832433 Córdova Contreras, A. R., Cárdenas Oscanoa, A. J., & Gonzáles Mora, H. E. (2020). Caracterización física y mecánica de compuestos de Guazuma crinita Mart. A base de polipropileno virgen. Revista Mexicana de Ciencias Forestales, 11(57), 621. https://doi.org/10.29298/rmcf.v11i57.621 Coutts, R. S. P. (2005). A review of Australian research into natural fibre cement composites. Cement and Concrete Composites, 27(5), 518-526. https://doi.org/10.1016/j.cemconcomp.2004.09.003 De Souza Castoldi, R., Liebscher, M., Silva De Souza, L. M., Mechtcherine, V., Prioli Menezes, R., & De Andrade Silva, F. (2023). Effect of polymeric fiber coating on the mechanical performance, water absorption, and interfacial bond with cement-based matrices. Construction and Building Materials, 404, 133222. https://doi.org/10.1016/j.conbuildmat.2023.133222 Deutsches Institut fur Normung (DIN) (1965a). DIN 52361: 1965-04. Testing of wood chipcomposites – Determination of dimensions, raw density and moisture content. DIN. Deutsches Institut fur Normung (DIN) (1965b). DIN 52364: 1965-04. Testing wood chipcomposite – Determination of moisture-related thickness variation. DIN. Deutsches Institut fur Normung (DIN) (1965c). DIN 52365: 1965-04. Testing wood chipcomposite – Determination of tensile strength vertical to the chipboard plane. DIN. Deutsches Institut fur Normung (DIN) (1982). DIN 53291: 1982-02. Testing of core composites – Compression test perpendicular to the surface layer plane. Ezugwu, E. K., Calabria-Holley, J., & Paine, K. (2023). Physico-mechanical and morphological behavior of hydrothermally treated plant fibers in cementitious composites. Industrial Crops and Products, 200, 116832. https://doi.org/10.1016/j.indcrop.2023.116832 Feng, B., Liu, J., Lu, Z., Zhang, M., & Tan, X. (2023). Study on properties and durability of alkali activated rice straw fibers cement composites. Journal of Building Engineering, 63, 105515. https://doi.org/10.1016/j.jobe.2022.105515 Fernando, S., Gunasekara, C., Shahpasandi, A., Nguyen, K., Sofi, M., Setunge, S., Mendis, P., & Rahman, Md. T. (2023). Sustainable cement composite integrating waste cellulose fibre: A comprehensive review. Polymers, 15(3), 520. https://doi.org/10.3390/polym15030520 Goh, K. J., Wong, C. K., & Ng, P. H. C. (2017). Oil palm. In Elsevier (Eds.) Encyclopedia of Applied Plant Sciences (pp. 382-390). Elsevier. https://doi.org/10.1016/B978-0-12-394807-6.00176-3 Hamada, H. M., Shi, J., Al Jawahery, M. S., Majdi, A., Yousif, S. T., & Kaplan, G. (2023). Application of natural fibres in cement concrete: A critical review. Materials Today Communications, 35, 105833. https://doi.org/10.1016/j.mtcomm.2023.105833 Hasan, K. M. F., Horváth, P. G., & Alpár, T. (2022). Lignocellulosic fiber cement compatibility: A state of the art review. Journal of Natural Fibers, 19(13), 5409-5434. https://doi.org/10.1080/15440478.2021.1875380 Ishak, M. R., Leman, Z., Sapuan, S. M., Rahman, M. Z. A., & Anwar, U. M. K. (2013). Chemical composition and FT-IR spectra of sugar palm (Arenga pinnata) fibers obtained from different heights. Journal of Natural Fibers, 10(2), 83-97. https://doi.org/10.1080/15440478.2012.733517 Jamshaid, H., Mishra, R. K., Raza, A., Hussain, U., Rahman, Md. L., Nazari, S., Chandan, V., Muller, M., & Choteborsky, R. (2022). Natural cellulosic fiber reinforced concrete: Influence of fiber type and loading percentage on mechanical and water absorption performance. Materials, 15(3), 874. https://doi.org/10.3390/ma15030874 Jiang, D., Lv, S., Jiang, D., Xu, H., Kang, H., Song, X., & He, S. (2023). Effect of modification methods on water absorption and strength of wheat straw fiber and its cement-based composites. Journal of Building Engineering, 71, 106466. https://doi.org/10.1016/j.jobe.2023.106466 Junta Nacional de Palma Aceitera (JUNPALMA) (Ed.) (2022). Palma aceitera en el Perú: Reporte estadístico 2021. JUNPALMA. https://junpalmaperu.org/publicaciones/palma-aceitera-en-el-peru-2021/ Kareche, A., Agoudjil, B., Haba, B., & Boudenne, A. (2020). Study on the durability of new construction materials based on mortar reinforced with date palm fibers wastes. Waste and Biomass Valorization, 11(7), 3801-3809. https://doi.org/10.1007/s12649-019-00669-y Khorami, M., & Ganjian, E. (2011). Comparing flexural behaviour of fibre–cement composites reinforced bagasse: Wheat and eucalyptus. Construction and Building Materials, 25(9), 3661-3667. https://doi.org/10.1016/j.conbuildmat.2011.03.052 Komuraiah, A., Kumar, N. S., & Prasad, B. D. (2014). Chemical composition of natural fibers and its influence on their mechanical properties. Mechanics of Composite Materials, 50(3), 359-376. https://doi.org/10.1007/s11029-014-9422-2 Kriker, A., Debicki, G., Bali, A., Khenfer, M. M., & Chabannet, M. (2005). Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cement and Concrete Composites, 27(5), 554-564. https://doi.org/10.1016/j.cemconcomp.2004.09.015 La Rosa Salazar, M. A. (2021). Preocupaciones y cambios de política: ¿hacia la sostenibilidad de la palma aceitera en la Amazonía? Economía Agraria y Recursos Naturales, 21(1), 59. https://doi.org/10.7201/earn.2021.01.03 Lertwattanaruk, P., & Suntijitto, A. (2015). Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Building Materials, 94, 664-669. https://doi.org/10.1016/j.conbuildmat.2015.07.154 Liu, K., Wen, Z., Zheng, Y., Xu, Y., Yu, J., Ye, J., Zhang, W., Zhong, W., Gao, X., & Liu, H. (2023). Microstructural feature of cellulose fibre in cement-based composites at different curing temperature. Journal of Building Engineering, 63, 105569. https://doi.org/10.1016/j.jobe.2022.105569 Momoh, E. O., & Osofero, A. I. (2020). Recent developments in the application of oil palm fibers in cement composites. Frontiers of Structural and Civil Engineering, 14(1), 94-108. https://doi.org/10.1007/s11709-019-0576-9 Neyra-Vasquez, J. Y., Panduro-Pisco, G., Díaz-Zúñiga, E. J., & Iannacone, J. (2022). Caracterización física y química: Biomasa residual de la palma (Elaeis guineensis Jacq.) en la Amazonia peruana. Agronomía Mesoamericana, 33(3), 48170. https://doi.org/10.15517/am.v33i3.48170 Pacheco-Torgal, F., & Jalali, S. (2011). Cementitious building materials reinforced with vegetable fibres: A review. Construction and Building Materials, 25(2), 575-581. https://doi.org/10.1016/j.conbuildmat.2010.07.024 Ramírez Contreras, N. E., Arévalo, A., & García Núñez, J. A. (2015). Inventario de la biomasa disponible en plantas de beneficio para aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Revista Palmas, 36(4), 41-54. Raut, A. N., & Gomez, C. P. (2016). Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. Construction and Building Materials, 126, 476-483. https://doi.org/10.1016/j.conbuildmat.2016.09.034 Ritchie, H., & Roser, M. (2021). Palm oil. Our World in Data. https://ourworldindata.org/palm-oil RStudio Team (2023). RStudio: Integrated Development for R version 4.2.3 [Software]. RStudio Team. http://www.R-project.org Savastano, H., Agopyan, V., Nolasco, A. M., & Pimentel, L. (1999). Plant fibre reinforced cement components for roofing. Construction and Building Materials, 13(8), 433-438. https://doi.org/10.1016/S0950-0618(99)00046-X Savastano, H., Warden, P. G., & Coutts, R. S. P. (2005). Microstructure and mechanical properties of waste fibre–cement composites. Cement and Concrete Composites, 27(5), 583-592. https://doi.org/10.1016/j.cemconcomp.2004.09.009 Technical Association of the Pulp and Paper Industry (TAPPI) (1993). T. 211. Om-93. Ash in Wood, pulp, paper and papercomposite: Combustion at 525°C. TAPPI. Technical Association of the Pulp and Paper Industry (TAPPI) (1997). T. 204. Cm-97. Solvent extractives of wood and pulp. TAPPI. Technical Association of the Pulp and Paper Industry (TAPPI) (1998). T. 222. Om-98. Acid-insoluble lignin in wood and pulp. TAPPI. Technical Association of the Pulp and Paper Industry (TAPPI). (1999). T. 207. Cm-99. Water solubility of wood and pulp. TAPPI. Van Dam, J. (2016). Subproductos de la palma de aceite como materias primas de biomasa. Revista Palmas, 37(Special Issue), 149-156. https://publicaciones.fedepalma.org/index.php/palmas/article/view/11930 Vargas, E., & Zumbado, M. (2003). Composición de los subproductos de la industrialización de la palma africana utilizados en la alimentación animal en Costa Rica. Agronomía Costarricense, 27(1), 7-18. Wahab, R., Sulaiman, M. S., Ghani, R. S. M., & Mokhtar, N. (2019). Properties of composite boards properties from Elaeis guineensis empty fruit bunch. Borneo Journal of Sciences and Technology, 1(1), 53-61. https://doi.org/10.35370/bjost.2019.1.1-11; https://revistas.udistrital.edu.co/index.php/colfor/article/view/21457

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
  10. 10
    Academic Journal

    المصدر: Informes de la Construcción; Vol. 75 No. 571 (2023); e506 ; Informes de la Construcción; Vol. 75 Núm. 571 (2023); e506 ; 1988-3234 ; 0020-0883 ; 10.3989/ic.2023.v75.i571

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6205/7852; https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6205/7853; https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6205/7854; Green Building Council España, Asociación Sostenibilidad y Arquitectura and Centro Complutense de Estudios e Información Ambiental. (2010). Cambio global España 2020-2050. Sector Edificación. La imprescindible reconversión del sector frente al reto de la sostenibilidad. Cambio Global España 2020/50. Sector Edificación, abril. Recuperado de https://gbce.es/archivos/ckfinderfiles/Investigacion/CGE_Edificacion_baja.pdf.; Cândido L., Kindlein W., Demori R., Carli L., Mauler R. and Oliveira R. (2011). The recycling cycle of materials as a design project tool. J. Clean. Prod., 19(13), 1438-1445. https://doi.org/10.1016/j.jclepro.2011.04.017; González Vallejo P., Solís Guzmán J., Llácer Pantión R. and Marrero Méndez M. (2015). La construcción de edificios residenciales en España en el período 2007-2010 y su impacto según el indicador Huella Ecológica. Informes de la Construcción, 67(539), e111. https://doi.org/10.3989/ic.14.017; Ley 10/1998, de 21 de abril, de residuos. BOE 96, (1998). Jefatura del Estado. Recuperado de https://www.boe.es/buscar/doc.php?id=BOE-A-1998-9478.; Giesekam J., Barrett J., Taylor P., Owen A. (2014). The greenhouse gas emissions and mitigation options for materials used in UK construction. Energy Build., 78, 202-214. https://doi.org/10.1016/j.enbuild.2014.04.035; Briga-Sá A., Nascimento D., Teixeira N., Pinto J., Caldeira F., Varum H. and Paiva A. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155-160. https://doi.org/10.1016/j.conbuildmat.2012.08.037; Ellen Macarthur Foundation and Circular Fibres Initiative (16 de enero de 2022). A new textiles economy: Redesigning fashion's future. Recuperado de http://www.ellenmacarthurfoundation.org/publications.; Global Fashion Agenda (5 de febrero de 2022). Copenhagen Fashion Summit. Presented ad Global Fashion Agenda. Recuperado de: https://www.globalfashionagenda.com/.; Sandin G. and Peters G.M. (2018). Environmental impact of textile reuse and recycling - A review. Journal of Cleaner Production, 184, 353-365. https://doi.org/10.1016/j.jclepro.2018.02.266; Textile Exchange (2018). Textile Sustainability united in action: Accelerating Sustainability in Textiles & Fashion. Presentado en Textile Sustainability Conference.; International Energy Agency. (2016). Energy, Climate Change & Environment: 2016 insights. pp. 113. https://www.iea.org/reports/energy-climate-change-and-environment-2016-insights. https://doi.org/10.1787/9789264266834-en; Steffen W., Richardson K., Rockström J., Cornell S.E., Fetzer I., Bennett E.M., Biggs R., Carpenter S.R., De Vries W., De Wit C.A. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223). https://doi.org/10.1126/science.1259855 PMid:25592418; Lee Y. (2013). Sound absorption properties of recycled polyester fibrous assembly absorbers. AUTEX Research Journal, 3(2), Recuperado de http://www.autexrj.com/cms/zalaczone_pliki/5-03-2.pdf.; Rubino C., Stefanizzi P. (2018). Textile wastes in building sector: A review. Modelling, Measurement and Control B, 87(3), 172-179. https://doi.org/10.18280/mmc_b.870309; Carolina B., Saeys W., Lambrechts A. (2019). Hyperspectral imaging for textile sorting in the visible-near infrared range. Journal of Spectral Imaging, 8, ID-a17.; Koopera (25 de marzo de 2022). Reutilización y reciclaje Koopera. Recuperado de https://www.koopera.org/preparacion-para-la-reutilizacion/.; De Araújo M. (2011). 1 - Natural and man-made fibres: Physical and mechanical properties. Fibrous and Conposite Materials for Civil Engineering Applications, 3-28. https://doi.org/10.1533/9780857095583.1.3; Peña-Pichardo P., Martínez-Barrera G., Martínez-López M., Ureña-Núñez F. and dos Reis, João Marciano Laredo. (2018). Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete. Construction and Building Materials, 177, 409-416. https://doi.org/10.1016/j.conbuildmat.2018.05.137; Silva, G., Kim, S., Aguilar, R., Nakamatsu, J. (2020). Natural fibers as reinforcement additives for geopolymers - A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132. https://doi.org/10.1016/j.susmat.2019.e00132; Alomayri T., Shaikh F.U.A., Low I.M (2013). Characterisation of cotton fibre-reinforced geopolymer composites. Composites Part B: Engineering, 50, 1-6. https://doi.org/10.1016/j.compositesb.2013.01.013; Alomayri T., Shaikh F.U.A., Low I.M. (2013). Thermal and mechanical properties of cotton fabric-reinforced geopolymer composites. J. Mater. Sci., 48(19), 6746-6752, https://doi.org/10.1007/s10853-013-7479-2; Alomayri T., Shaikh F.U.A., Low I.M. (2014). Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites. Materials & Design, 57, 360-365. https://doi.org/10.1016/j.matdes.2014.01.036; Barbero-Barrera, M.d.M., Pombo, O., Navacerrada, M.Á. (2016). Textile fibre waste bindered with natural hydraulic lime. Composites Part B: Engineering, 94, 26-33. https://doi.org/10.1016/j.compositesb.2016.03.013; Rajput, D., Bhagade, S.S., Raut, S.P., Ralegaonkar, R.V., Mandavgane, S.A. (2012). Reuse of cotton and recycle paper mill waste as building material. Construction and Building Materials, 34, 470-475. https://doi.org/10.1016/j.conbuildmat.2012.02.035; Hassan, T., & Jamshaid, H. (2020). Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste. Polymers, 12(3), 654. https://doi.org/10.3390/polym12030654 PMid:32183033 PMCid:PMC7183085; Silva G., Kim S., Aguilar R. and Nakamatsu J. (2020). Natural fibers as reinforcement additives for geopolymers - A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132. https://doi.org/10.1016/j.susmat.2019.e00132; Alzeer, M., MacKenzie, K.J.D. (2012). Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres. Journal of Materials Science, 47(19), 6958-6965. https://doi.org/10.1007/s10853-012-6644-3; Özen, M.; Demircan, G., Kisa, M., İlik, Z. (2020). Investigation of usability of waste textile fabrics in composites. Emerging Materials Research, 9(1), 18-23. https://doi.org/10.1680/jemmr.18.00106; S. Spadea, I. Farina, A. Carrafiello, F. Fraternali (2015). Recycled nylon fibers as cement mortar reinforcement. Constr. Build. Mater., 80, 200-209. https://doi.org/10.1016/j.conbuildmat.2015.01.075; Habib, A., Begum, R., Alam, M. (2013). Mechanical properties of synthetic fibers reinforced mortars. International Journal of Scientific & Engineering Research, 4(4). https://www.researchgate.net/publication/235936125; Olivito, R.S., Cevallos, O.A., Carrozzini, A. (2014). Development of durable cementitious composites using sisal and flax fabrics for reinforcement of masonry structures. Materials & Design, 57, 258-268. https://doi.org/10.1016/j.matdes.2013.11.023; Assaedi, H., Alomayri, T., Shaikh, F. U., Low, I. (2015). Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. Journal of Advanced Ceramics, 4(4), 272-281. https://doi.org/10.1007/s40145-015-0161-1; Kalkan Ş. (2017). Technical investigation for the use of textile waste fiber types in new generation composite plasters. M.S. thesis, Univ. İzmir Katip Çelebi Üniversitesi., Turquía.; Vasconcelos G., Lourenço P.B., Camões A., Martins A. and Cunha S. (2015). Evaluation of the performance of recycled textile fibres in the mechanical behaviour of a gypsum and cork composite material. Cement and Concrete Composites, 58, 29-39. https://doi.org/10.1016/j.cemconcomp.2015.01.001; Tasán Cruz D.M. (2011). Caracterización de morteros de yeso reforzados con fibras recuperadas de eslingas textiles de un solo uso. M.S. thesis, Universidad Politécnica de Madrid., Madrid. Recuperado de http://oa.upm.es/10836/; Ramírez, A.O., Santos, A.G., González, F.J.N. (2011). Caracterización física y mecánica de placas de yeso con materiales de cambio de fase incorporados para almacenamiento de energía térmica mediante calor latente. Materiales de Construcción, 61(303), 465-484. https://doi.org/10.3989/mc.2011.53309; Santos, A.G. (2009). Escayola reforzada con fibras de polipropileno y aligerada con perlas de poliestireno expandido Escayola reforzada con fibras de polipropileno y aligerada con perlas de poliestireno expandido. Materiales de Construcción, 59(293), 105-124. https://doi.org/10.3989/mc.2009.41107; UNE-EN (2009). UNE-EN 13279-1: 2009 Yesos de construcción y conglomerantes a base de yeso para la construcción. Parte 1: Definiciones y especificaciones. UNE Normalización Española.; UNE-EN (2014). UNE-EN 13279-2:2014 Yesos de construcción y conglomerantes a base de yeso para la construcción. Parte 2: Métodos de ensayo. UNE Normalización Española.; RILEM (1980). TC 25-PEM. Protection et erosion des monuments: Recommandés pour mesurer I'artération des pierres et évaluer I'efficacité des méthodes de traitement. Matériaux et Constructions. International Union of Laboratories and Experts in Construction Materials, Systems and Structures.; https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6205

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المصدر: Anales de Edificación; Vol. 8, Núm. 3 (2022): Septiembre - Diciembre; 19-26 ; 2444-1309 ; 10.20868/ade.2022.3

    وصف الملف: application/pdf

    Relation: http://polired.upm.es/index.php/anales_de_edificacion/article/view/5092/5315; AENOR,"Yesos de construcción y conglomerantes a base de yeso para la construcción. Parte 1: Definiciones y especificaciones. UNE-EN 13279-1: 2009."Madrid: AENOR: 2009.; AENOR,"Yesos de construcción y conglomerantes a base de yeso para la construcción. Parte 2: Métodos de ensayo. UNE-EN 13279-2:2014." Madrid: AENOR: 2014.; T. Alomayri, F.U.A. Shaikh and I.M. Low, ,"Characterisation of cotton fibre-reinforced geopolymer composites,". Composites Part B: Engineering, vol. 50, pp. 1-6. http://www.sciencedirect.com/science/article/pii/S135983681300019X.; T. Alomayri, F.U.A. Shaikh and I.M. Low, "Thermal and mechanical properties of cotton fabric-reinforced geopolymer composites," J.Mater.Sci., 2013. vol. 48, no. 19, pp. 6746-6752, DOI:10.1007/s10853-013-7479-2. [Online]. Available: https://doi.org/10.1007/s10853-013-7479-2.; T. Alomayri, F.U.A. Shaikh and I.M. Low, "Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites," Mater Des, 2014. vol. 57, pp. 360-365, DOI: https://doi.org/10.1016/j.matdes.2014.01.036. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0261306914000557.; M.d.M. Barbero-Barrera, O. Pombo and Navacerrada, María de los Ángeles, "Textile fibre waste bindered with natural hydraulic lime," Composites Part B: Engineering, 2016. vol. 94, pp. 26-33, DOI: https://doi.org/10.1016/j.compositesb.2016.03.013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1359836816300373.; Briga-Sá, D. Nascimento, N. Teixeira, J. Pinto, F. Caldeira, H. Varum and A. Paiva, ,"Textile waste as an alternative thermal insulation building material solution,". Construction and Building Materials, vol. 38, pp. 155-160. http://www.sciencedirect.com/science/article/pii/S0950061812006332.; L. Cândido, W. Kindlein, R. Demori, L. Carli, R. Mauler and R. Oliveira, "The recycling cycle of materials as a design project tool," J.Clean.Prod., 2011. vol. 19, no. 13, pp. 1438-1445, DOI: https://doi.org/10.1016/j.jclepro.2011.04.017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0959652611001521.; B. Carolina, W. Saeys and A. Lambrechts, "Hyperspectral imaging for textile sorting in the visible–near infrared range," Journal of Spectral Imaging, 2019. vol. 8 DOI:10.1255/jsi.2019.a17.; M. De Araújo,"1 - Natural and man-made fibres: Physical and mechanical properties,". , pp. 3-28. http://www.sciencedirect.com/science/article/pii/B9781845695583500016. 11. Díaz Lucía, (2019). Copenhagen Fashion Summit. Presented ad Global Fashion Agenda. [Online]. Available: https://www.globalfashionagenda.com/.; J. Giesekam, J. Barrett, P. Taylor and A. Owen, "The greenhouse gas emissions and mitigation options for materials used in UK construction," Energy Build., 2014. vol. 78, pp. 202-214, DOI: https://doi.org/10.1016/j.enbuild.2014.04.035. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378778814003570.; P. González Vallejo, J. Solís Guzmán, R. Llácer Pantión and M. Marrero Méndez, "La construcción de edificios residenciales en España en el período 2007-2010 y su impacto según el indicador Huella Ecológica," Informes de la Construcción, 2015. vol. 67, no. 539, pp. 1-13, DOI: http://dx.doi.org/10.3989/ic.14.017. [Online]. Available: http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/4455/5165.; Green Building Council España, Asociación Sostenibilidad y Arquitectura and Centro Complutense de Estudios e Información Ambiental, "Cambio global España 2020-2050. Sector Edificación. La imprescindible reconversión del sector frente al reto de la sostenibilidad,". Cambio Global España 2020/50. Sector Edificación, Abril, https://gbce.es/archivos/ckfinderfiles/Investigacion/CGE_Edificacion_baja.pdf.; T. Hassan and H. Jamshaid, "Acoustic, mechanical and thermal properties of green composites reinforced with Natural Fibers waste," Polymers, 2020. vol. 12, no. 3DOI: https://doi.org/10.3390/polym12030654. [Online]. Available: https://www.mdpi.com/2073-4360/12/3/654.; International Energy Agency, "Energy, Climate Change & Environment: 2016 insights,"., pp. 113. https://www.iea.org/reports/energy-climate-change-and-environment-2016-insights.; Jefatura del Estado, " Ley 10/1998, de 21 de abril, de residuos. BOE 96,"1998[Online]. Available: https://www.boe.es/buscar/doc.php?id=BOE-A-1998-9478.; Koopera, "Reutilización y reciclaje Koopera," (accessed Jul, 2020)., no. Jul,.; Y. Lee, "Sound absorption properties of recycled polyester fibrous assembly absorbers," AUTEX Research Journal, 2003. vol. 3, no. 2[Online]. Available: http://www.autexrj.com/cms/zalaczone_pliki/5-03-2.pdf.; Ellen Macarthur Foundation and Circular fibres initiative, "A new textiles economy: Redesigning fashion's future,". Ellen MacArthur Foundation http://www.ellenmacarthurfoundation.org/publications.; P. Peña-Pichardo, G. Martínez-Barrera, M. Martínez-López, F. Ureña-Núñez and dos Reis, João Marciano Laredo, ,"Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete,". Construction and Building Materials, vol. 177, pp. 409-416. http://www.sciencedirect.com/science/article/pii/S0950061818312121.; http://polired.upm.es/index.php/anales_de_edificacion/article/view/5092

  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal

    المصدر: Anales de Edificación; Vol. 7, Núm. 2 (2021): Mayo - Agosto; 13-20 ; 2444-1309 ; 10.20868/ade.2021.2

    وصف الملف: application/pdf

    Relation: http://polired.upm.es/index.php/anales_de_edificacion/article/view/4898/5098; Agrela, F., Diaz López, J.L., Rosales, J., Cuenca, G.M., Cabrera, M. (2020). Environmental assessment, mechanical behavior and new leaching impact proposal of mixed recycled aggregates to be used in road construction. Journal of Cleaner Production, 280, part 2.; Canal de Isabel II. Informe Anual Sobre la Calidad del Agua en Madrid; Canal de Isabel II: Madrid, Spain, 2012.; Cheng, Z., Yan, W., Sui, Z., Tang, J., Yuan, C., Chu, L., Feng, H.(2021). Effect of Fiber Content on the MechanicalProperties of Engineered Cementitious Composites withRecycled Fine Aggregate from Clay Brick. Materials. 202,;14(12):3272.; Cristiano, S., Ghisellini, P., D´Ambrosio, G., Xue, J., Nestico, A., Gonella, F., Ulgiati, S. (2021). Construction and demolition waste in the Metropolitan City of Naples, Italy: State of the art, circular design, and sustainable planning opportunities. Journal of Cleaner Production, 293.; Cortina, M., Villanueva, L. (2002). Aired4ime and chamotte hydraulic mortars. Materiales de Construcción, vol. 5, no 266, 65-76.; García López de la Osa, G. (2020). Análisis de la adherencia entre morteros y piezas cerámicas. Tesis (Doctoral), E.T.S. de Edificación (UPM).; García Morales, S. (1995). Metodología de diagnóstico de humedades de capilaridad ascendente y condensación higroscópica, en edificios históricos. Tesis (Doctoral), E.T.S. Arquitectura (UPM).; Giosuè, C., Pierpaoli, M., Mobili, A., Ruello, M.L., Tittarelli, F.(2017). Influence of Binders and Lightweight Aggregateson the Properties of Cementitious Mortars: FromTraditional Requirements to Indoor Air QualityImprovement. Materials, 10, 978; Hoornweg, D., Bhada-Tata, P., (2012). What a Waste: A Global Review of Solid Waste Management.; Jímenez, J.L., Ayuso, J.; López, M., Fernández, J.M., de Brito, J.(2013). Use of fine recycled aggregates from ceramicwaste in masonry mortar manufacturing. Construction andBuilding Materials, 40, 679-690.; Li, J., Zuo, J., Cai, H., Zillante, G., 2018. Construction waste reduction behavior of contractor employees: an extended theory of planned behavior model approach. J. Clean. Prod. 172, 1399–1408.; Liu, J., Wu, P., Jiang, Y.; Wang, X. (2021). Explore potential barriers of applying circular economy in construction and demolition waste recycling. Journal of Cleaner Production, 326.; Lozano-Cutanda, B.; Alli.Turrillas, J.C. Administración y Legislación Ambiental, Dykinson, 11º Edition, Madrid, Spain, 2020.; Ma, G., Wang, A., Li, N., Gu, L., Ai, Q., (2014). Improved critical chain project management framework for scheduling construction projects. J. Constr. Eng. Manag. 140 (12) 10.1061/(ASCE)CO.1943-7862.0000908, 04014055; Mahpour, A. (2018). Prioritizing barriers to adopt circular economy in construction and demolition waste management. Resources, Conservation and Recycling, 134, 216-227.; Morón, A., Ferrández, D., Saiz, P., Atanes-Sánchez, E., Morón, C.(2021). Study of the properties of lime and cementmortars made from recycled ceramic aggregate andreinforced with fibers. Journal of Building Engineering, 35.; Morón, A., Ferrández, D., Saiz, P., Morón, C. (2021). Experimental Study with Cement Mortars Made with Recycled Concrete Aggregate and Reinforced with Aramid Fibers. Applied Science, 11, 7791.; Morón, C., Saiz, P., Ferrández, D., García-Fuentevilla, L. (2017). New System of Shrinkage Measurement through Cement Mortars Drying. Sensors, 17, 522.; Ngoc-Tra, M., Nguyen, D.T., Nguyen, D.L. (2021). Potential use of clay brick waste powder and ceramic waste aggregate in mortar. Construction and Building Materials, 313.; Ray, S., Haque, M., Sakib, M.N., Ferdous, A., Rahman, M.D.M., Tanmoy, B.B. (2021). Use of ceramic wastes asaggregates in concrete production: A review. Journal ofBuilding Engineering, 43.; Rosell, J.R., Catalapiedra, I.R. (2011). Simple method of dynamic Young’s modulus determination in lime and cement mortars. Materiales de Construcción, 61(301), 39-48.; Sáiz Martínez, P. (2015). Utilización de arenas procedentes de Residuos de Construcción y Demolición, RCD, en la fabricación de morteros de albañilería. Tesis (Doctoral),E.T.S. de Edificación (UPM).; Saiz, P., González, M., Fernández, F. (2015). Characterization and influence of fine recycled aggregates on masonry mortars properties. Materiales de Construcción, 65, 319.; Sáiz Martínez, P., González Cortina, M., Fernández Martínez, Francisco., Rodríguez Sánchez, A. (2016). Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. Journal of Cleaner Production, 118, 162-169.; Saiz, P.; Ferrández, D., Morón, C., Payan de Tejada, A. (2018). Comparative study of the influence of three types of fibre in the shrinkage of recycled mortar. Materiales de Construcción, 68 (332), 1-12.; Shooshtarian, S., Maqsood, T., Caldera, S., Ryley, T. (2022). Transformation towards a circular economy in the Australian construction and demolition waste management system. Sustainable Production and Consumption, 30, 89-106.; Villoria, P., Porras, C., del Rio, M. (2015). New quantification proposal for construction waste generation in new residential constructions. Journal of Cleaner Production, 102, 58-65.; Wang, Y., Li, J., Ueda, T., Zhang, D., Deng, J. (2021). Meso-scale mechanical deterioration of mortar subjected to freeze thaw cycles and sodium chloride attack. Cement and Concrete Composites, 117, 103906; Wu, H., Wang, C., Ma, Z. (2022). Drying shrinkage, mechanical and transport properties of sustainable mortar with both recycled aggregate and powder from concrete waste. Journal of Building Engineering, 49.; Xiao, J., Zhou, S., Ding, T., Duan, Z., Liu, Q. (2021). Fiber-reinforced mortar with 100% recycled fine aggregates: A cleaner perspective on 3D printing. Journal of Cleaner Production, 319.; Xu, F., Lin, X., Zhou, A., Liu, Q. (2022). Effects of recycled ceramic aggregates on internal curing of high performance concrete. Construction and Building Materials, 322.; Yedra, E., Ferrández, D., Morón, C., Saiz, P. (2022). New test methods to determine water absorption by capillarity. Experimental study in masonry mortars. Construction and Building Materials, 319, 125988.; Zairul, M. (2021). The recent trends on prefabricated buildings with circular economy (CE) approach. Cleaner Engineering and Technology, 4.; Zhang, C.; Hu, M.; Di Maio, F.; Sprecher, B.; Yang, X.; Tukker, A. (2022). An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Science of the Total Environ., 803.; http://polired.upm.es/index.php/anales_de_edificacion/article/view/4898

  19. 19
    Academic Journal
  20. 20
    Academic Journal