يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"Péptidos con alta capacidad de unión"', وقت الاستعلام: 0.59s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Cuy Chaparro, Laura Esperanza

    المساهمون: Patarroyo Gutiérrez, Manuel Alfonso, Moreno Pérez, Darwin Andrés, orcid:0000-0002-2016-2117

    وصف الملف: [v], 36 páginas; application/pdf

    Relation: Singh B, Varikuti S, Halsey G, Volpedo G, Hamza OM, Satoskar AR. Host-directed therapies for parasitic diseases. Future Med Chem. 2019;11(15):1999-2018.; Hunfeld K, Hildebrandt A, Gray J. Babesiosis: Recent insights into an ancient disease. Int J Parasitol. 2008;38(11):1219-37.; Bock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of catle. Parasitology. 2004;129(S1):S247-69.; Gray JS. Identity of the causal agents of human babesiosis in Europe. Int J Med Microbiol. 2006;296:131-6.; Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180(1-2):109-25.; Rittpornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jitapalapong S, et al. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. Infect Genet Evol. 2017;54:447-54.; Bram RA, George JE, Reichard RE, Tabachnick WJ. Threat of Foreign Arthropod-Borne Pathogens to Livestock in the United States. J Med Entomol. 2002;39(3):405-16.; Gray JS, Estrada-Peña A, Zintl A. Vectors of Babesiosis. Annu Rev Entomol. 2019;64(1):149-65.; He L, Bastos RG, Sun Y, Hua G, Guan G, Zhao J, et al. Babesiosis as a potential threat for bovine production in China. Parasit Vectors. 2021;14(1):460.; Satti RA, Awadelkareem EA, Suganuma K, Salim B, Inoue N, Xuan X, et al. Catle anaplasmosis and babesiosis: Major tick-borne diseases affecting the catle industry in Khartoum State, Sudan. Vet Parasitol Reg Stud Rep. 2021;26:100632.; Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol. 2019;49(2):183-97.; Vial HJ, Gorenflot A. Chemotherapy against babesiosis. Vet Parasitol. 2006;138(1- 2):147-60.; Nari A. Strategies for the control of one-host ticks and relationship with tick-borne diseases in South America. Vet Parasitol. marzo de 1995;57(1-3):153-65.; Andreotti R, Guerrero FD, Soares MA, Barros JC, Miller RJ, Léon AP de. Acaricide resistance of Rhipicephalus (Boophilus) microplus in State of Mato Grosso do Sul, Brazil. Rev Bras Parasitol Veterinária. 2011;20(2):127-33.; Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnitger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014;141(12):1563-92.; de Waal DT, Combrink MP. Live vaccines against bovine babesiosis. Vet Parasitol. 2006;138(1-2):88-96.; Gimenez AM, Françoso KS, Ersching J, Icimoto MY, Oliveira V, Rodriguez AE, et al. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells. Parasit Vectors. 2016;9(1):577.; Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit- Based Vaccine Development. Chem Rev. 2011;111(5):3459-507.; López C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? Front Immunol. 2017;8.; Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy. 2017;9(2):131-55.; OIE. World Organization for Animal Health. 2019; ICA. Enfermedades de declaración obligatoria en Colombia. 2019.; OIE. World Organization for Animal Health. 2022.; ICA. Censo pecuario. 2018.; Calderon Alfonso, Maryinez Nicolás, Iguarán Haydée. Bovine hemoparasites frequency from colombian caribbean region. Revista UDCA Actualidad & Divulgación Cienyifica. 2016;19(1):131-8.; Instituto Colombiano Agropecuario - ICA. Boletin Sanidad Animal. 2016.; Vecino JAC, Echeverri JAB, Cárdenas JA, Herrera LAP. Distribución de garrapatas Rhipicephalus (Boophilus) microplus en bovinos y fincas del Altiplano cundiboyacense (Colombia). Cienc Tecnol Agropecu. 2010;11(1):73-84.; Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37.; Vannier EG, Diuk-Wasser MA, Ben Mamoun C, Krause PJ. Babesiosis. Infect Dis Clin North Am. 2015;29(2):357-70.; Kivaria FM. Estimated direct economic costs associated with tick-borne diseases on catle in Tanzania. Trop Anim Health Prod. 2006;38(4):291-9.; Homer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH. Babesiosis. Clin Microbiol Rev. 2000;13(3):451-69.; Jalovecka M, Sojka D, Ascencio M, Schnitger L. Babesia Life Cycle – When Phylogeny Meets Biology. Trends Parasitol. 2019;35(5):356-68.; Ueti MW, Johnson WC, Kappmeyer LS, Herndon DR, Mousel MR, Reif KE, et al. Comparative analysis of gene expression between Babesia bovis blood stages and kinetes allowed by improved genome annotation. Int J Parasitol. 2021;51(2-3):123- 36.; Hutchings CL, Li A, Fernandez KM, Fletcher T, Jackson LA, Molloy JB, et al. New insights into the altered adhesive and mechanical properties of red blood cells parasitized by Babesia bovis. Mol Microbiol. 2007;65(4):1092-105.; Lobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion: Curr Opin Hematol. 2012;19(3):170-5.; Jalovecka M, Bonsergent C, Hajdusek O, Kopacek P, Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors. 2016;9(1):439.; Jalovecka M, Hajdusek O, Sojka D, Kopacek P, Malandrin L. The Complexity of Piroplasms Life Cycles. Front Cell Infect Microbiol. 2018;8:248.; Mehlhorn H, Schein E. The Piroplasms: Life Cycle and Sexual Stages. En: Advances in Parasitology [Internet]. Elsevier; 1985: 37-103.; Howell JM, Ueti MW, Palmer GH, Scoles GA, Knowles DP. Transovarial Transmission Efficiency of Babesia bovis Tick Stages Acquired by Rhipicephalus ( Boophilus ) microplus during Acute Infection. J Clin Microbiol. 2007;45(2):426-31.; Bargieri D, Lagal V, Andenmaten N, Tardieux I, Meissner M, Ménard R. Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum. PLoS Pathog. 2014;10(9):e1004273.; Yokoyama N, Okamura M, Igarashi I. Erythrocyte invasion by Babesia parasites: Current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet Parasitol. 2006;138(1- 2):22-32.; Dubremetz JF, Garcia-Réguet N, Conseil V, Fourmaux MN. Invited review Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol.1998;28(7):1007-13.; Hines S, Mcelwain T, Buening G, Palmer G. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected catle. Mol Biochem Parasitol.1989;37(1):1-9.; Goff WL, Davis WC, Palmer GH, McElwain TF, Johnson WC, Bailey JF, etal. Identification of Babesia bovis merozoite surface antigens by using immune bovine sera and monoclonal antibodies. Infect Immun.1988;56(9):2363-8.; Hines SA, Palmer GH, Jasmer DP, Goff WL, McElwain TF. Immunization of catle with recombinant Babesia bovis merozoite surface antigen-1. Infect Immun. 1995;63(1):349-52.; Hines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol. 1992;55(1-2):85-94.; Genis AD, Mosqueda JJ, Borgonio VM, Falcón A, Alvarez A, Camacho M, et al. Phylogenetic Analysis of Mexican Babesia bovis Isolates Using msa and ssrRNA Gene Sequences. Ann N Y Acad Sci. 2008;1149(1):121-5.; Deitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. 2009;7(7):493-503.; Hines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol.1992;55(1-2):85-94.; Suarez CE, Florin-Christensen M, Hines SA, Palmer GH, Brown WC, McElwain TF. Characterization of Allelic Variation in the Babesia bovis Merozoite Surface Antigen 1 (MSA-1) Locus and Identification of a Cross-Reactive Inhibition-Sensitive MSA-1 Epitope. Petri WA, editor. Infect Immun. 2000;68(12):6865-70.; Mosqueda J, McElwain TF, Stiller D, Palmer GH. Babesia bovis Merozoite Surface Antigen 1 and Rhoptry-Associated Protein 1 Are Expressed in Sporozoites, and Specific Antibodies Inhibit Sporozoite Atachment to Erythrocytes. Infect Immun. 2002;70(3):1599-603.; Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, et al. The RON2-AMA1 Interaction is a Critical Step in Moving Junction-Dependent Invasion by Apicomplexan Parasites. PLoS Pathog. 2011;7(2):e1001276.; Mital J, Meissner M, Soldati D, Ward GE. Conditional Expression of Toxoplasma gondii Apical Membrane Antigen-1 (TgAMA1) Demonstrates That TgAMA1 Plays a Critical Role in Host Cell Invasion. Mol Biol Cell. 2005;16(9):4341-9.; Yap A, Azevedo MF, Gilson PR, Weiss GE, O’Neill MT, Wilson DW, et al. Conditional expression of apical membrane antigen 1 in P lasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol. 2014;16(5):642-56.; Bilgic HB, Hacilarlioglu S, Bakirci S, Kose O, Unlu AH, Aksulu A, et al. Comparison of protectiveness of recombinant Babesia ovis apical membrane antigen 1 and B. ovis- infected cell line as vaccines against ovine babesiosis. Ticks Tick-Borne Dis. 2020;11(1):101280.; Tyler JS, Boothroyd JC. The C-Terminus of Toxoplasma RON2 Provides the Crucial Link between AMA1 and the Host-Associated Invasion Complex. PLoS Pathog. 2011;7(2):e1001282.; Delgadillo RF, Parker ML, Lebrun M, Boulanger MJ, Douguet D. Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PLOS ONE. 2016;11(1):e0144764.; Hidalgo-Ruiz M, Suarez CE, Mercado-Uriostegui MA, Hernandez-Ortiz R, Ramos JA, Galindo-Velasco E, et al. Babesia bovis RON2 contains conserved B-cell epitopes that induce an invasion-blocking humoral immune response in immunized catle. Parasit Vectors. 2018;11(1):575.; Gardiner DL, Spielmann T, Dixon MWA, Hawthorne PL, Ortega MR, Anderson KL, et al. CLAG-9 is located in the rhoptries of Plasmodium falciparum. Parasitol Res. 2004;93(1):64-7.; Shen B, Sibley LD. The moving junction, a key portal to host cell invasion by apicomplexan parasites. Curr Opin Microbiol. 2012;15(4):449-55.; Brown WC, Norimine J, Knowles DP, Goff WL. Immune control of Babesia bovis infection. Vet Parasitol. 2006;138(1-2):75-87.; Goff WL, Johnson WC, Parish SM, Barrington GM, Tuo W, Valdez RA. The age-related immunity in catle to Babesia bovis infection involves the rapid induction of interleukin-12, interferon-γ and inducible nitric oxide synthase mRNA expression in the spleen: Type-1 atributes of innate immunity in calves to B. bovis. Parasite Immunol. 2001;23(9):463-71.; Goff WL, Johnson WC, Horn RH, Barrington GM, Knowles DP. The innate immune response in calves to Boophilus microplus tick transmited Babesia bovis involves type-1 cytokine induction and NK-like cells in the spleen. Parasite Immunol. 2003;25(4):185-8.; Torina A, Blanda V, Villari S, Piazza A, La Russa F, Grippi F, et al. Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. Int J Mol Sci. 2020;21(22).; Brown WC, Zhao S, Woods VM, Dobbelaere DAE, Rice Ficht AC. Des clones de cellules T CD4+ spécifiques pour Babesia bovis, de bovins immunisés, expriment le profil de cytokines des cellules Th0 ou des Th1. Rev D’élevage Médecine Vét Pays Trop. 1993;46(1-2):65-9.; Shkap Varda, de Vos Albertus J, Zweygarth Erich, Jongejan Frans. Atenuated vaccines for tropical theileriosis, babesiosis and heartwater: the continuing necessity. Trends in Parasitology. 2007;23(9):420-6.; Alvarez JA, Rojas C, Figueroa JV. An Overview of Current Knowledge on in vitro Babesia Cultivation for Production of Live Atenuated Vaccines for Bovine Babesiosis in Mexico. Front Vet Sci. 2020;7:364.; Jorge S, Dellagostin OA. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnol Res Innov. 2017;1(1):6-13.; Bagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, et al. Designing the Next Generation of Vaccines for Global Public Health. OMICS J Integr Biol. 2011;15(9):545-66.; Rappuoli R. Reverse Vaccinology and Genomics. Science. 2003;302(5645):602-602.; Rappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine. 2001;19(17-19):2688-91.; Bambini S, Rappuoli R. The use of genomics in microbial vaccine development. Drug Discov Today. 2009;14(5-6):252-60.; Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci. 2014;111(34):12288-93.; Patarroyo MA, Arévalo-Pinzón G, Moreno-Pérez DA. From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines. 2020;19(2):195-207.; Patarroyo ME, Arevalo-Pinzon G, Reyes C, Moreno-Vranich A, Patarroyo MA. Malaria Parasite Survival Depends on Conserved Binding Peptides’ Critical Biological Functions. Curr Issues Mol Biol. 2016;18:57-78.; Vera-Bravo R, Torres E, Valbuena JJ, Ocampo M, Rodríguez LE, Puentes Á, et al. Characterising Mycobacterium tuberculosis Rv1510c protein and determining its sequences that specifically bind to two target cell lines. Biochem Biophys Res Commun. 2005;332(3):771-81.; Patarroyo ME, Alba MP, Reyes C, Rojas-Luna R, Patarroyo MA. The Malaria Parasite’s Achilles’ Heel: Functionally-relevant Invasion Structures. Curr Issues Mol Biol. 2016;18:11-9.; Cubillos M, Salazar LM, Torres L, Patarroyo ME. Protection against experimental P falciparum malaria is associated with short AMA-1 peptide analogue alpha-helical structures. Biochimie. 2002;84(12):1181-8.; Berens SJ, Brayton KA, Molloy JB, Bock RE, Lew AE, McElwain TF. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats. Infect Immun. 2005;73(11):7180-9.; Suarez CE, Laughery JM, Bastos RG, Johnson WC, Norimine J, Asenzo G, et al. A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed by Babesia bovis merozoites. Parasitology. 2011;138(7):809-18.; Yokoyama N, Suthisak B, Hirata H, Matsuo T, Inoue N, Sugimoto C, et al. Cellular Localization of Babesia bovis Merozoite Rhoptry-Associated Protein 1 and Its Erythrocyte-Binding Activity. Infect Immun. 2002;70(10):5822-6.; Terkawi MA, Rathanophart J, Salama A, AbouLaila M, Asada M, Ueno A, et al. Molecular Characterization of a New Babesia bovis Thrombospondin-Related Anonymous Protein (BbTRAP2). PLoS ONE. 2013;8(12):e83305.; Flores DA, Rodriguez AE, Tomazic ML, Torioni de Echaide S, Echaide I, Zamorano P, et al. Characterization of GASA-1, a new vaccine candidate antigen of Babesia bovis. Vet Parasitol. 2020;287:109275.; Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte Invasion by Babesia bovis Merozoites Is Inhibited by Polyclonal Antisera Directed against Peptides Derived from a Homologue of Plasmodium falciparum Apical Membrane Antigen 1. Infect Immun. 2004;72(5):2947-55.; Antonio Alvarez J, Lopez U, Rojas C, Borgonio VM, Sanchez V, Castañeda R, et al. Immunization of Bos taurus Steers with Babesia bovis Recombinant Antigens MSA-1, MSA-2c and 12D3: Recombinant Proteins Immunization and Babesia bovis. Transbound Emerg Dis. 2010;57(1-2):87-90.; Fish L, Leibovich B, Krigel Y, McElwain T, Shkap V. Vaccination of catle against B. bovis infection with live atenuated parasites and non-viable immunogens. Vaccine. 2008;26:G29-33.; Norimine J, Suarez CE, McElwain TF, Florin-Christensen M, Brown WC. Immunodominant Epitopes in Babesia bovis Rhoptry-Associated Protein 1 That Elicit Memory CD4+-T-Lymphocyte Responses in B. bovis-Immune Individuals Are Located in the Amino-Terminal Domain. Infect Immun. 2002;70(4):2039-48.; Lanzavecchia A, Frühwirth A, Perez L, Corti D. Antibody-guided vaccine design: identification of protective epitopes. Curr Opin Immunol. 2016;41:62-7.; Food and Agriculture Organization of the United Nations.; Yusuf JJ. Review on Bovine Babesiosis and its Economical Importance. J Vet Med Res. 2017;4 (5):1090.; Tonkin ML, Roques M, Lamarque MH, Pugnière M, Douguet D, Crawford J, et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science. 2011;333(6041):463-7.; Nielsen R. Molecular Signatures of Natural Selection. Annu Rev Genet. 2005;39(1):197-218.; Camargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen (pvrbsa). Front Genet. 2018;9:372.; Baquero LA, Moreno-Pérez DA, Garzón-Ospina D, Forero-Rodríguez J, Ortiz-Suárez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasit Vectors. 2017;10(1):251.; Treeck M, Zacherl S, Herrmann S, Cabrera A, Kono M, Struck NS, et al. Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process. PLoS Pathog. 2009;5(3):e1000322.; Brown WC, Norimine J, Goff WL, Suarez CE, Mcelwain TF. Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunol. 2006;28(7):315-27.; Tonkin ML, Boulanger MJ. The shear stress of host cell invasion: exploring the role of biomolecular complexes. PLoS Pathog. 2015;11(1):e1004539.; Baldwin MR, Li X, Hanada T, Liu SC, Chishti AH. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood. 2015;125(17):2704-11.; Li X, Chen H, Oo TH, Daly TM, Bergman LW, Liu SC, et al. A Co-ligand Complex Anchors Plasmodium falciparum Merozoites to the Erythrocyte Invasion Receptor Band 3. J Biol Chem. 2004;279(7):5765-71.; Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480(7378):534-7.; Chitnis CE, Chaudhuri A, Horuk R, Pogo AO, Miller LH. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J Exp Med. 1996;184(4):1531-6.; Gruszczyk J, Kanjee U, Chan LJ, Menant S, Malleret B, Lim NTY, et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science. 2018;359(6371):48-55.; Gaffar FR, Franssen FFJ, de Vries E. Babesia bovis merozoites invade human, ovine, equine, porcine and caprine erythrocytes by a sialic acid-dependent mechanism followed by developmental arrest after a single round of cell fission. Int J Parasitol. 2003;33(14):1595-603.; Takabatake N, Okamura M, Yokoyama N, Okubo K, Ikehara Y, Igarashi I. Involvement of a Host Erythrocyte Sialic Acid Content in Babesia bovis Infection. J Vet Med Sci. 2007;69(10):999-1004.; Patarroyo MA, Molina-Franky J, Gómez M, Arévalo-Pinzón G, Patarroyo ME. Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. Int J Mol Sci. 2020;21(13):4729.; Silvie O, Franetich JF, Charrin S, Mueller MS, Siau A, Bodescot M, et al. A Role for Apical Membrane Antigen 1 during Invasion of Hepatocytes by Plasmodium falciparum Sporozoites. J Biol Chem. 2004;279(10):9490-6.; Bai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, et al. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc Natl Acad Sci. 2005;102(36):12736-41.; Arévalo-Pinzón G, Bermúdez M, Hernández D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017;7(1):9616.; https://repositorio.unal.edu.co/handle/unal/85498; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co