يعرض 1 - 15 نتائج من 15 نتيجة بحث عن '"Ortega Portilla, Carolina"', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: 20; 1391; 13; Metals; Castillo Gutiérrez, D.E.; Angarita Moncaleano, I.I.; Rodríguez Baracaldo, R. Microstructural and mechanical characterization of dual phase steels (ferrite-martensite), obtained by thermomechanical processes. Ingeniare Rev. Chil. Ing. 2018, 26, 430–439. [Google Scholar] [CrossRef]; Arenas, W.; Martínez, O. Roughness and hardness optimization of 12L-14 steel using the response surface methodology. Ing. Ind. 2019, 37, 125–151. [Google Scholar] [CrossRef]; Ageev, E.; Khardikov, S. Processing of Graphic Information in the Study of the Microhardness ofthe Sintered Sample of Chromium-containing Waste. In Proceedings of the CEUR Workshop, Pescaia, Italy, 16–19 June 2019; pp. 252–255. [Google Scholar] [CrossRef]; Koch, M.; Ebersbach, U. Experimental study of chromium PVD coatings on brass substrates for the watch industry. Surf. Eng. 1997, 13, 157–164. [Google Scholar] [CrossRef]; ASTM E384-99; Standard Test Method for Microindentation Hardness of Materials. ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–40. [CrossRef]; ASTM E92-17; Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–27. [CrossRef]; Buehler. Pruebas de Dureza Vickers. Available online: https://www.buehler.com/es/blog/pruebas-de-dureza-vickers/ (accessed on 23 June 2023).; Tanaka, Y.; Seino, Y.; Hattori, K. Automated Vickers hardness measurement using convolutional neural networks. Int. J. Adv. Manuf. Technol. 2020, 109, 1345–1355. [Google Scholar] [CrossRef]; Dominguez-Nicolas, S.M.; Wiederhold, P. Indentation image analysis for vickers hardness testing. In Proceedings of the 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2018), Mexico City, Mexico, 5–7 September 2018; pp. 1–6. [Google Scholar] [CrossRef]; Sugimoto, T.; Kawaguchi, T. Development of an automatic Vickers hardness testing system using image processing technology. IEEE Trans. Ind. Electron. 1997, 44, 696–702. [Google Scholar] [CrossRef]; Polanco, J.D.; Jacanamejoy-Jamioy, C.; Mambuscay, C.L.; Piamba, J.F.; Forero, M.G. Automatic Method for Vickers Hardness Estimation by Image Processing. J. Imaging 2023, 9, 8. [Google Scholar] [CrossRef] [PubMed]; Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed][Green Version]; Satat, G.; Tancik, M.; Gupta, O.; Heshmat, B.; Raskar, R. Object classification through scattering media with deep learning on time resolved measurement. Opt. Express 2017, 25, 17466–17479. [Google Scholar] [CrossRef] [PubMed][Green Version]; Salazar Guerrero, J.E. Implementación de un Prototipo de Sistema Autónomo de Visión Artificial para la Detección de Objetos en Vídeo Utilizando Técnicas de Aprendizaje Profundo. 2019. Available online: http://repositorio.espe.edu.ec/handle/21000/20995 (accessed on 23 June 2023).; Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef][Green Version]; Hussain, M.; Bird, J.J.; Faria, D.R. A Study on CNN Transfer Learning for Image Classification; Springer: Berlin/Heidelberg, Germany, 2019; Volume 840, pp. 191–202. [Google Scholar] [CrossRef]; Jalilian, E.; Uhl, A. Deep Learning Based Automated Vickers Hardness Measurement. In Proceedings of the Computer Analysis of Images and Patterns, Virtual Event, 28–30 September 2021; Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–13. [Google Scholar] [CrossRef]; Li, Z.; Yin, F. Automated measurement of Vickers hardness using image segmentation with neural networks. Measurement 2021, 186, 110200. [Google Scholar] [CrossRef]; Cheng, W.S.; Chen, G.Y.; Shih, X.Y.; Elsisi, M.; Tsai, M.H.; Dai, H.J. Vickers Hardness Value Test via Multi-Task Learning Convolutional Neural Networks and Image Augmentation. Appl. Sci. 2022, 12, 10820. [Google Scholar] [CrossRef]; Gonzalez-Carmona, J.M.; Mambuscay, C.L.; Ortega-Portilla, C.; Hurtado-Macias, A.; Piamba, J.F. TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions. Materials 2023, 16, 4531. [Google Scholar] [CrossRef] [PubMed]; Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]; Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]; He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]; Zhao, L.; Li, S. Object Detection Algorithm Based on Improved YOLOv3. Electronics 2020, 9, 537. [Google Scholar] [CrossRef][Green Version]; Ammar, A.; Koubaa, A.; Ahmed, M.; Saad, A.; Benjdira, B. Vehicle Detection from Aerial Images Using Deep Learning: A Comparative Study. Electronics 2021, 10, 820. [Google Scholar] [CrossRef]; Otomo, H.; Zhang, R.; Chen, H. Improved phase-field-based lattice Boltzmann models with a filtered collision operator. Int. J. Mod. Phys. 2018, 30, 1941009. [Google Scholar] [CrossRef][Green Version]; Gai, W.; Liu, Y.; Zhang, J.; Jing, G. An improved Tiny YOLOv3 for real-time object detection. Syst. Sci. Control. Eng. 2021, 9, 314–321. [Google Scholar] [CrossRef]; Tan, L.; Huangfu, T.; Wu, L.; Chen, W. Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification. BMC Med. Inform. Decis. Mak. 2021, 21, 324. [Google Scholar] [CrossRef] [PubMed]; ZwickRoell. Durómetro ZHVμ. Available online: https://www.zwickroell.com/es/productos/equipos-de-ensayos-de-dureza/durometros-vickers/zhvm/ (accessed on 15 May 2022).; Lloyd Instruments. Microhardness Testing—Minimizing Common Problems. AZoM. Available online: https://www.azom.com/article.aspx?ArticleID=10807 (accessed on 15 May 2022).; Ebatco. Microindentation. Available online: https://www.ebatco.com/laboratory-services/mechanical/microindentation/ (accessed on 10 May 2022).; https://hdl.handle.net/20.500.12313/3843

  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المؤلفون: Mambuscay, Claudia Lorena1,2 (AUTHOR) claudialorena0524@gmail.com, Ortega-Portilla, Carolina3 (AUTHOR) iortega@posgrado.cidesi.edu.mx, Piamba, Jeferson Fernando1,2 (AUTHOR) jeferson.piamba@unibague.edu.co, Forero, Manuel Guillermo1 (AUTHOR) mgforero@yahoo.es

    المصدر: Materials (1996-1944). May2024, Vol. 17 Issue 10, p2235. 12p.

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Conference
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Electronic Resource