يعرض 1 - 20 نتائج من 61 نتيجة بحث عن '"Organosolv Process"', وقت الاستعلام: 0.55s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    Relation: info:eu-repo/grantAgreement/EC/H2020/731101/EU; info:eu-repo/grantAgreement/FCT/9444 - RNIIIE/PINFRA%2F22059%2F2016/PT; https://doi.org/10.35633/inmateh-71-44; Găgeanu, Iuliana. et.al - Lignin utilization for the removal of microplastic particles from water. In: Inmateh-Agricultural Engineering, 2023, vol.71 (3), p. 511-521; http://hdl.handle.net/10400.9/4241

  3. 3
    Academic Journal

    Relation: info:eu-repo/grantAgreement/FCT/9444 - RNIIIE/PINFRA%2F22059%2F2016/PT; https://doi.org/10.3390/chemengineering7020035; Fialho, João. [et.al.] - Green Fractionation Approaches for the Integrated Upgrade of Corn Cobs. In: Chemengineering, 2023, vol. 7 (2), article nº 35; http://hdl.handle.net/10400.9/4063

  4. 4
    Academic Journal
  5. 5
    Dissertation/ Thesis
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Conference

    مصطلحات موضوعية: Lignocellulosic biomass, Biorefinery, Organosolv process

    Relation: BIOFABXXI - POlisboa-01-0247-FEDER-017661; BBRI - Biomass and Bioenergy Research Infrastructure - LISBOA-01-0145-FEDER-022059; https://doi.org/10.34637/cies2020.2.3143; Sampaio, B. [et.al.] - Avaliação do potencial de valorização de sobrantes agroflorestais por um processo organosolv baseado em propilenoglicol. In: CIES2020: As Energias Renováveis na Transição Energética: Livro de Comunicações do XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia Solar. Helder Gonçalves, Manuel Romero (Ed.). Lisboa, Portugal: LNEG, 3-5 Novembro, 2020, p. 1211-1216; http://hdl.handle.net/10400.9/3482

  10. 10
    Academic Journal

    Relation: info:eu-repo/grantAgreement/FCT/DL 57%2F2016/DL 57%2F2016%2FCP1382%2FCT0007/PT; https://doi.org/10.3390/en14041127; Alves-Ferreira, Júnia. [et.al.] - Delignification of Cistus ladanifer Biomass by Organosolv and Alkali Processes. In: Energies, 2021, Vol. 14(4), article nº1127; http://hdl.handle.net/10400.9/3621

  11. 11
    Conference

    المساهمون: Mateo, S., Fabbrizi, G., Robles, E., Nicolini, A., Moya, A. J., Sánchez, S.

    وصف الملف: ELETTRONICO

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-88-89407-23-3; ispartofbook:EUBCE 2023 Proceedings; 31st European Biomass Conference and Exhibition; firstpage:552; lastpage:554; numberofpages:3; https://hdl.handle.net/11391/1560293; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85174637853

  12. 12
    Academic Journal

    المساهمون: Guerrero Fajardo, Carlos Alberto, Aprovechamiento energético de recursos naturales - APRENA

    وصف الملف: application/pdf

    Relation: Abdelaziz, O. Y., Brink, D. P., Prothmann, J., Ravi, K., Sun, M., García-Hidalgo, J., … Gorwa-Grauslund, M. F. (2016). Biological valorization of low molecular weight lignin. Biotechnology Advances, 34(8), 1318–1346. https://doi.org/10.1016/j.biotechadv.2016.10.001; Alayoubi, R., Mehmood, N., Husson, E., Kouzayha, A., Tabcheh, M., Chaveriat, L., … Gosselin, I. (2020). Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renewable Energy, 145, 1808–1816. https://doi.org/10.1016/j.renene.2019.07.091; Alinia, R., Zabihi, S., Esmaeilzadeh, F., & Kalajahi, J. F. (2010). Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosystems Engineering, 107(1), 61–66. https://doi.org/10.1016/j.biosystemseng.2010.07.002; Amiri, H., Karimi, K., & Zilouei, H. (2014). Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresource Technology, 152, 450–456. https://doi.org/10.1016/j.biortech.2013.11.038; An, S., Li, W., Liu, Q., Xia, Y., Zhang, T., Huang, F., … Chen, L. (2019). Combined dilute hydrochloric acid and alkaline wet oxidation pretreatment to improve sugar recovery of corn stover. Bioresource Technology, 271(August 2018), 283–288. https://doi.org/10.1016/j.biortech.2018.09.126; Arévalo Celis, L. del P. (2006). Implementación del código de conducta florverde en los niveles 1 y 2 de los programas de manejo de suelos y residuos en Flores San Juan S.A.,C.I.; Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344. https://doi.org/10.1016/j.biortech.2016.12.073; Asociación Colombiana de Exportadores de Flores. (2010). Reporte GRI Global Reporting Initiative del sector floricultor colombiano asociado en Asocolflores. Retrieved from http://cecodes.org.co/reportes/archivos/asocolflores/ReporteGRIAsocolflores.pdf; Asociación Colombiana de Exportadores de Flores. (2018). Boletín estadístico Enero 2018. Bogotá D.C.; Asociación Colombiana de Exportadores de Flores. (2019). Boletín de exportación de flores cortadas enero - junio 2019. Retrieved from https://asocolflores.org/es/ya-se-encuentran-disponibles-los-boletines-a-junio-2019/; ASTM INTERNATIONAL. (2013). Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels (Vol. 1998). https://doi.org/10.1520/E0872-82R13.2; Banerjee, S., Sen, R., Pandey, R. A., Chakrabarti, T., Satpute, D., Giri, B. S., & Mudliar, S. (2009). Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass and Bioenergy, 33(12), 1680–1686. https://doi.org/10.1016/j.biombioe.2009.09.001; Bär, J., Phongpreecha, T., Singh, S. K., Kral Yilmaz, M., Foster, C. E., Crowe, J. D., & Hodge, D. B. (2018). Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation. Biomass Conversion and Biorefinery, 8(4), 813–824. https://doi.org/10.1007/s13399-018-0330-x; Bensah, E. C., Kádár, Z., & Mensah, M. Y. (2019). Alkali and glycerol pretreatment of West African biomass for production of sugars and ethanol. Bioresource Technology Reports, 6(January), 123–130. https://doi.org/10.1016/j.biteb.2019.02.013; Borand, M. N., & Karaosmanoǧlu, F. (2018). Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. Journal of Renewable and Sustainable Energy, 10(3), 033104. https://doi.org/10.1063/1.5025876; Brosse, N., Hazwan Hussin, M., & Abdul Rahim, A. (2017). Organosolv Processes. In Advances in biochemical engineering/biotechnology (Vol. 166, pp. 153–176). https://doi.org/10.1007/10; Cai, D., Li, P., Luo, Z., Qin, P., Chen, C., Wang, Y., … Tan, T. (2016). Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation. Bioresource Technology, 211, 117–124. https://doi.org/10.1016/j.biortech.2016.03.076; Chang, K. L., Thitikorn-amorn, J., Hsieh, J. F., Ou, B. M., Chen, S. H., Ratanakhanokchai, K., … Chen, S. T. (2011). Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass and Bioenergy, 35(1), 90–95. https://doi.org/10.1016/j.biombioe.2010.08.027; Chávez-Sifontes, M. (2019). La biomasa: fuente alternativa de combustibles y compuestos químicos. Anales de Química - RSEQ, 115(5), 399–407. Retrieved from http://analesdequimica.com/115-5/1155-chavez.pdf; Cheng, J., Su, H., Zhou, J., Song, W., & Cen, K. (2011). Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. International Journal of Hydrogen Energy, 36(3), 2093–2101. https://doi.org/10.1016/j.ijhydene.2010.11.021; Choi, J. H., Jang, S. K., Kim, J. H., Park, S. Y., Kim, J. C., Jeong, H., … Choi, I. G. (2019). Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renewable Energy, 130, 952–960. https://doi.org/10.1016/j.renene.2018.05.052; Chundawat, S. P. S., Chang, L., Gunawan, C., Balan, V., McMahan, C., & Dale, B. E. (2012). Guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment. Industrial Crops and Products, 37(1), 486–492. https://doi.org/10.1016/j.indcrop.2011.07.025; Cybulska, I., Brudecki, G. P., Zembrzuska, J., Schmidt, J. E., Lopez, C. G. B., & Thomsen, M. H. (2017). Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates. Applied Energy, 185, 1040–1050. https://doi.org/10.1016/j.apenergy.2016.01.094; Dahunsi, S. O., Adesulu-Dahunsi, A. T., Osueke, C. O., Lawal, A. I., Olayanju, T. M. A., Ojediran, J. O., & Izebere, J. O. (2019). Biogas generation from Sorghum bicolor stalk: Effect of pretreatment methods and economic feasibility. Energy Reports, 5, 584–593. https://doi.org/10.1016/j.egyr.2019.04.002; de la Torre, M. J., Moral, A., Hernandez, D. M., Cabeza, E., & Tijero, A. (2013). Organosolv lignin for biofuel. Industrial Crops & Products, 45, 58–63. https://doi.org/10.1016/j.indcrop.2012.12.002; Ebrahimi, M., Villaflores, O. B., Ordono, E. E., & Caparanga, A. R. (2017). Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production. Bioresource Technology, 228, 264–271. https://doi.org/10.1016/j.biortech.2016.12.106; El Hage, R., Brosse, N., Sannigrahi, P., & Ragauskas, A. (2010). Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polymer Degradation and Stability, 95(6), 997–1003. https://doi.org/10.1016/j.polymdegradstab.2010.03.012; Ferreira, J. A., & Taherzadeh, M. J. (2020). Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresource Technology, 299(December 2019), 122695. https://doi.org/10.1016/j.biortech.2019.122695; Figueiredo, P., Lintinen, K., Hirvonen, J. T., Kostiainen, M. A., & Santos, H. A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 93, 233–269. https://doi.org/10.1016/j.pmatsci.2017.12.001; Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800. https://doi.org/10.1016/j.biortech.2010.01.088; Goh, C. S., Tan, H. T., Lee, K. T., & Brosse, N. (2011). Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy, 35(9), 4025–4033. https://doi.org/10.1016/j.biombioe.2011.06.034; Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. https://doi.org/10.1016/j.rser.2013.06.033; Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., & Templeton, D. (2008). Preparation of Samples for Compositional Analysis. Golden, Colorado.; Hesami, S. M., Zilouei, H., Karimi, K., & Asadinezhad, A. (2015). Enhanced biogas production from sunflower stalks using hydrothermal and organosolv pretreatment. Industrial Crops and Products, 76, 449–455. https://doi.org/10.1016/j.indcrop.2015.07.018; Hochegger, M., Cottyn-Boitte, B., Cézard, L., Schober, S., & Mittelbach, M. (2019). Influence of Ethanol Organosolv Pulping Conditions on Physicochemical Lignin Properties of European Larch. International Journal of Chemical Engineering, 2019, 10 pages. https://doi.org/10.1155/2019/1734507; Hu, H., Zhang, Y., Liu, X., Huang, Z., Chen, Y., Yang, M., … Feng, Z. (2014). Structural changes and enhanced accessibility of natural cellulose pretreated by mechanical activation. Polymer Bulletin, 71(2), 453–464. https://doi.org/10.1007/s00289-013-1070-5; Jang, M. O., & Choi, G. (2018). Techno-economic analysis of butanol production from lignocellulosic biomass by concentrated acid pretreatment and hydrolysis plus continuous fermentation. Biochemical Engineering Journal, 134, 30–43. https://doi.org/10.1016/j.bej.2018.03.002; Jang, S. K., Kim, H. Y., Jeong, H. S., Kim, J. Y., Yeo, H., & Choi, I. G. (2016). Effect of ethanol organosolv pretreatment factors on enzymatic digestibility and ethanol organosolv lignin structure from Liriodendron tulipifera in specific combined severity factors. Renewable Energy, 87, 599–606. https://doi.org/10.1016/j.renene.2015.10.045; Jiang, Z., Zhao, P., & Hu, C. (2018). Controlling the cleavage of the inter- and intra-molecular linkages in lignocellulosic biomass for further biorefining: A review. Bioresource Technology, 256(January), 466–477. https://doi.org/10.1016/j.biortech.2018.02.061; Jing, Q., & Lu, X. (2007). Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water. Chinese Journal of Chemical Engineering, 15(5), 666–669. https://doi.org/10.1016/s1004-9541(07)60143-8; Joffres, B., Laurenti, D., Charon, N., Daudin, A., Quignard, A., & Geantet, C. (2013). Thermochemical Conversion of Lignin for Fuels and Chemicals: A Review. Oil and Gas Science and Technology, 68(4), 753–763. https://doi.org/10.2516/ogst/2013132; Karunanithy, C., & Muthukumarappan, K. (2011). Optimization of alkali soaking and extrusion pretreatment of prairie cord grass for maximum sugar recovery by enzymatic hydrolysis. Biochemical Engineering Journal, 54(2), 71–82. https://doi.org/10.1016/j.bej.2011.02.001; Kataria, R., Mol, A., Schulten, E., Happel, A., & Mussatto, S. I. (2017). Bench scale steam explosion pretreatment of acid impregnated elephant grass biomass and its impacts on biomass composition, structure and hydrolysis. Industrial Crops and Products, 106, 48–58. https://doi.org/10.1016/j.indcrop.2016.08.050; Kim, D. E., & Pan, X. (2010). Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Industrial and Engineering Chemistry Research, 49(23), 12156–12163. https://doi.org/10.1021/ie101671r; Kim, H. Y., Jeong, H. S., Lee, S. Y., Choi, J. W., & Choi, I. G. (2015). Pd-catalyst assisted organosolv pretreatment to isolate ethanol organosolv lignin retaining compatible characteristics for producing phenolic monomer. Fuel, 153, 40–47. https://doi.org/10.1016/j.fuel.2015.02.102; Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48. https://doi.org/10.1016/j.biortech.2015.08.085; Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). Cellulose : Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie, 44, 3358–3393. https://doi.org/10.1002/anie.200460587; Koo, B. W., Park, N., Jeong, H. S., Choi, J. W., Yeo, H., & Choi, I. G. (2011). Characterization of by-products from organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts. Journal of Industrial and Engineering Chemistry, 17(1), 18–24. https://doi.org/10.1016/j.jiec.2010.10.003; Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1). https://doi.org/10.1186/s40643-017-0137-9; Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(May 2017), 877–891. https://doi.org/10.1016/j.rser.2018.03.111; Larran, A., Jozami, E., Vicario, L., Feldman, S. R., Podestá, F. E., & Permingeat, H. R. (2015). Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresource Technology, 194, 320–325. https://doi.org/10.1016/j.biortech.2015.06.150; Lee, H. R., Lee, H. W., Lee, Y. W., Kazlauskas, R. J., & Park, T. H. (2017). Improved pretreatment of yellow poplar biomass using hot compressed water and enzymatically-generated peracetic acid. Biomass and Bioenergy, 105, 190–196. https://doi.org/10.1016/j.biombioe.2017.07.004; Lee, J. M., Jameel, H., & Venditti, R. A. (2010). A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology, 101(14), 5449–5458. https://doi.org/10.1016/j.biortech.2010.02.055; Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395–403. https://doi.org/10.1016/j.cej.2009.10.061; Li, M.-F., Sun, S.-N., Xu, F., & Sun, R.-C. (2012). Organosolv Fractionation of Lignocelluloses for Fuels, Chemicals and Materials: A Biorefinery Processing Perspective. In Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science (Vol. 9783642284, pp. 341–379). https://doi.org/10.1007/978-3-642-28418-2; Li, M. F., Yang, S., & Sun, R. C. (2016). Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresource Technology, 200, 971–980. https://doi.org/10.1016/j.biortech.2015.10.004; Lizasoain, J., Rincón, M., Theuretzbacher, F., Enguídanos, R., Nielsen, P. J., Potthast, A., … Bauer, A. (2016). Biogas production from reed biomass: Effect of pretreatment using different steam explosion conditions. Biomass and Bioenergy, 95, 84–91. https://doi.org/10.1016/j.biombioe.2016.09.021; Ma, H., Liu, W. W., Chen, X., Wu, Y. J., & Yu, Z. L. (2009). Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology, 100(3), 1279–1284. https://doi.org/10.1016/j.biortech.2008.08.045; Martín-Sampedro, R., Santos, J. I., Fillat, Ú., Wicklein, B., Eugenio, M. E., & Ibarra, D. (2019). Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis. International Journal of Biological Macromolecules, 126, 18–29. https://doi.org/10.1016/j.ijbiomac.2018.12.158; McDonough, T. (1993). The chemistry of organosolv delignification. TAPPI Journal, 76, 186–193.; McMillan, J. D. (1994). Pretreatment of Lignocellulosic Biomass. In Enzymatic Conversion of Biomass for Fuels Production (pp. 292–324). https://doi.org/10.1021/bk-1994-0566.ch015; Meng, X., Bhagia, S., Wang, Y., Zhou, Y., Pu, Y., Dunlap, J. R., … Yoo, C. G. (2020). Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Industrial Crops and Products, 146(August 2019), 112144. https://doi.org/10.1016/j.indcrop.2020.112144; Michelin, M., Liebentritt, S., Vicente, A. A., & Teixeira, J. A. (2018). Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: Physicochemical and antioxidant properties. International Journal of Biological Macromolecules, 120, 159–169. https://doi.org/10.1016/j.ijbiomac.2018.08.046; Miles-Barrett, D. M., Neal, A. R., Hand, C., Montgomery, J. R. D., Panovic, I., Ojo, O. S., … Westwood, N. J. (2016). The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins. Organic and Biomolecular Chemistry, 14(42), 10023–10030. https://doi.org/10.1039/c6ob01915c; Mittal, A., Chatterjee, S. G., Scott, G. M., & Amidon, T. E. (2009). Modeling xylan solubilization during autohydrolysis of sugar maple and aspen wood chips: Reaction kinetics and mass transfer. Chemical Engineering Science, 64(13), 3031–3041. https://doi.org/10.1016/j.ces.2009.03.011; Montané, D., Salvadó, J., Torras, C., & Farriol, X. (2002). High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass and Bioenergy, 22(4), 295–304. https://doi.org/10.1016/S0961-9534(02)00007-7; Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994. https://doi.org/10.1039/c0cs00108b; Morales De La Rosa, S. (2015). Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos (Universidad Autónoma de Madrid). Retrieved from http://digital.csic.es/bitstream/10261/132717/1/morales_de_la_rosa_silvia.pdf; Morone, A., Apte, M., & Pandey, R. A. (2015). Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews, 51, 548–565. https://doi.org/10.1016Zj/rser.2015.06.032; Mou, H., & Wu, S. (2016). Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification. Bioresource Technology, 220, 637–640. https://doi.org/10.1016/j.biortech.2016.08.072; Mulakhudair, A. R., Hanotu, J., & Zimmerman, W. (2017). Exploiting ozonolysis-microbe synergy for biomass processing: Application in lignocellulosic biomass pretreatment. Biomass and Bioenergy, 105, 147–154. https://doi.org/10.1016/j.biombioe.2017.06.018; Muurinen, E. (2000). Organosolv pulping- a review and distillation study related to peroxyacid pulping. https://doi.org/10.1016/0960-8524(91)90105-S; Ni, Y., & Hu, Q. (1995). Alcell® lignin solubility in ethanol–water mixtures. Journal of Applied Polymer Science, 57(12), 1441–1446. https://doi.org/10.1002/app.1995.070571203; Orduña Ortega, J., Mora Vargas, J. A., Perrone, O. M., Metzker, G., Gomes, E., da Silva, R., & Boscolo, M. (2020). Soaking and ozonolysis pretreatment of sugarcane straw for the production of fermentable sugars. Industrial Crops and Products, 145(October 2019), 111959. https://doi.org/10.1016/j.indcrop.2019.111959; Organization of the Petroleum Exporting Countries. (2019). World oil outlook 2040.; Orozco, A., Ahmad, M., Rooney, D., & Walker, G. (2007). Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Safety and Environmental Protection, 85(5 B), 446–449. https://doi.org/10.1205/psep07003; Ostovareh, S., Karimi, K., & Zamani, A. (2015). Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Industrial Crops and Products, 66(1), 170–177. https://doi.org/10.1016/j.indcrop.2014.12.023; Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., … Saddler, J. (2006). Bioconversion of Hybrid Poplar to Ethanol and Co-Products Using an Organosolv Fractionation Process: Optimization of Process Yields. Biotechnology and Bioengineering, 94(5), 851–861. https://doi.org/10.1002/bit.20905; Pan, X., Xie, D., Yu, R. W., Lam, D., & Saddler, J. N. (2007). Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Industrial and Engineering Chemistry Research, 46(8), 2609–2617. https://doi.org/10.1021/ie061576l; Pan, X., Xie, D., Yu, R. W., & Saddler, J. N. (2008). The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering, 101(1), 39–48. https://doi.org/10.1002/bit.21883; Park, Y. C., & Kim, J. S. (2012). Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy, 47(1), 31–35. https://doi.org/10.1016/j.energy.2012.08.010; Parlamento Europeo y Consejo de la Unión Europea. Directiva 2009/28/CE del Parlamento Europeo y del Consejo de 23 de abril de 2009. , Diario Oficial de la Unión Europea § (2009).; Pereira, L., Alves, L., Marabezi, K., & Da Silva, A. (2011). Delignification of sugarcane bagasse using glycerol – water mixtures to produce pulps for saccharification. 102, 10040–10046. https://doi.org/10.1016/j.biortech.2011.08.050; Pérez Jiménez, J. A. (2008). Estudio del pretratamiento con agua caliente en fase líquida de la paja de trigo para su conversión biológica a etanol. Universidad de Jaén.; Poletto, M., Pistor, V., & Zattera, A. J. (2013). Structural Characteristics and Thermal Properties of Native Cellulose. Intech, 25. https://doi.org/http://dx.doi.org/10.5772/50452; Procolombia. (2019). ¿Cómo funciona el sector floricultor en Colombia? Retrieved from https://www.colombiatrade.com.co/noticias/como-funciona-el-sector-floricultor-en-colombia#; Pronyk, C., & Mazza, G. (2010). Kinetic modeling of hemicellulose hydrolysis from triticale straw in a pressurized low polarity water flow-through reactor. Industrial and Engineering Chemistry Research, 49(14), 6367–6375. https://doi.org/10.1021/ie1003625; Quesada-Medina, J., López-Cremades, F. J., & Olivares-Carrillo, P. (2010). Organosolv extraction of lignin from hydrolyzed almond shells and application of the δ-value theory. Bioresource Technology, 101(21), 8252–8260. https://doi.org/10.1016/j.biortech.2010.06.011; Quevedo Hidalgo, B. E. (2011). Evaluación de la degradación de residuos de floricultura para la obtención de azúcares con el uso de tres hongos lignocelulolíticos. Universidad Nacional de Colombia.; Ravindran, R., & Jaiswal, A. K. (2016). A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresource Technology, 199, 92–102. https://doi.org/10.1016/j.biortech.2015.07.106; Romaní, A., Ruiz, H. A., Pereira, F. B., Domingues, L., & Teixeira, J. A. (2013). Fractionation of Eucalyptus globulus Wood by Glycerol−Water Pretreatmen: Optimization and Modeling. Industrial and Engineering Chemistry Research, 52, 14342–14352. https://doi.org/dx.doi.org/10.1021/ie402177f; Romaní, A., Ruiz, H. A., Teixeira, J. A., & Domingues, L. (2016). Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach. Renewable Energy, 95, 1–9. https://doi.org/10.1016/j.renene.2016.03.106; Romero, I., Ruiz, E., Castro, E., & Moya, M. (2010). Acid hydrolysis of olive tree biomass. Chemical Engineering Research and Design, 88(5–6), 633–640. https://doi.org/10.1016/j.cherd.2009.10.007; Salapa, I., Katsimpouras, C., Topakas, E., & Sidiras, D. (2017). Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass and Bioenergy, 100, 10–16. https://doi.org/10.1016/j.biombioe.2017.03.011; Sannigrahi, P., & Ragauskas, A. J. (2013). Fundamentals of Biomass Pretreatment by Fractionation. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, 201–222. https://doi.org/10.1002/9780470975831.ch10; Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review Of Plant Biology, 61, 263–289. https://doi.org/10.1146/annurev-arplant-042809-112315; Schmetz, Q., Maniet, G., Jacquet, N., Teramura, H., Ogino, C., Kondo, A., & Richel, A. (2016). Comprehension of an organosolv process for lignin extraction on Festuca arundinacea and monitoring of the cellulose degradation. Industrial Crops and Products, 94, 308–317. https://doi.org/10.1016/j.indcrop.2016.09.003; Schwiderski, M., Kruse, A., Grandl, R., & Dockendorf, D. (2014). Comparison of the influence of a Lewis acid AlCl3 and a Brønsted acid HCl on the organosolv pulping of beech wood. Green Chemistry, 16(3), 1569–1578. https://doi.org/10.1039/c3gc42050g; Semerci, I., & Güler, F. (2018). Protic ionic liquids as effective agents for pretreatment of cotton stalks at high biomass loading. Industrial Crops and Products, 125(August), 588–595. https://doi.org/10.1016/j.indcrop.2018.09.046; Shahabazuddin, M., Sarat Chandra, T., Meena, S., Sukumaran, R. K., Shetty, N. P., & Mudliar, S. N. (2018). Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization. Bioresource Technology, 263(February), 199–206. https://doi.org/10.1016/j.biortech.2018.04.027; Sifontes, C. &, & Domine, M. E. (2013). Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Avances En Ciencias e Ingenería, 4(4), 15–46. https://doi.org/http://www.exeedu.com/publishing.cl/av_cienc_ing/2013/Vol4/Nro4/3-ACI1184-13-full.pdf; Singh, P., Suman, A., Tiwari, P., Arya, N., Gaur, A., & Shrivastava, A. K. (2008). Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World Journal of Microbiology and Biotechnology, 24(5), 667–673. https://doi.org/10.1007/s11274-007-9522-4; Singh, Y. D., Mahanta, P., & Bora, U. (2017). Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renewable Energy, 103, 490–500. https://doi.org/10.1016/j.renene.2016.11.039; Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., … Wolfe, J. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. In National Renewable Energy Laboratory (NREL). https://doi.org/NREL/TP-510-42621; Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Ash in Biomass. In National Renewable Energy Laboratory (NREL). https://doi.org/NREL/TP-510-42619; Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of Structural Carbohydrates and Lignin in Biomass (Vol. 2011). https://doi.org/NREL/TP-510-42618; Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Extractives in Biomass. In Technical Report NREL/TP-510-42619. https://doi.org/NREL/TP-510-42621; Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nature Reviews Genetics, 9(6), 433–443. https://doi.org/10.1038/nrg2336; Studer, M. H., DeMartini, J. D., Davis, M. F., Sykes, R. W., Davison, B., Keller, M., … Wyman, C. E. (2011). Lignin content in natural populus variants affects sugar release. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 6300–6305. https://doi.org/10.1073/pnas.1009252108; Sun, D., Sun, S. C., Wang, B., Sun, S. F., Shi, Q., Zheng, L., … Sun, R. C. (2020). Effect of various pretreatments on improving cellulose enzymatic digestibility of tobacco stalk and the structural features of co-produced hemicelluloses. Bioresource Technology, 297(October 2019), 122471. https://doi.org/10.1016/j.biortech.2019.122471; Sun, F. F., Wang, L., Hong, J., Ren, J., Du, F., Hu, J., … Zhou, B. (2015). The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresource Technology, 187, 354–361. https://doi.org/10.1016/j.biortech.2015.03.051; Teramoto, Y., Lee, S. H., & Endo, T. (2008). Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 99(18), 8856–8863. https://doi.org/10.1016/j.biortech.2008.04.049; Thoresen, P. P., Matsakas, L., Rova, U., & Christakopoulos, P. (2020). Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future. Bioresource Technology, 306(March), 123189. https://doi.org/10.1016/j.biortech.2020.123189; Tsegaye, B., Balomajumder, C., & Roy, P. (2020). Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production. Renewable Energy, 148, 923–934. https://doi.org/10.1016/j.renene.2019.10.176; Unidad de Planeación Minero Energética. (2019). Plan Energetico Nacional 2020-2050. Retrieved from https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-2050.aspx; Vallejos, M. E., Zambon, M. D., Area, M. C., & da silva Curvelo, A. A. (2015). Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification. Industrial Crops and Products, 65, 349–353. https://doi.org/10.1016/j.indcrop.2014.11.018; Wang, B., Shen, X. J., Wen, J. L., Xiao, L., & Sun, R. C. (2017). Evaluation of organosolv pretreatment on the structural characteristics of lignin polymers and follow-up enzymatic hydrolysis of the substrates from Eucalyptus wood. International Journal of Biological Macromolecules, 97, 447–459. https://doi.org/10.1016/j.ijbiomac.2017.01.069; Weingarten, R., Cho, J., Conner, W. C., & Huber, G. W. (2010). Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry, 12(8), 1423–1429. https://doi.org/10.1039/c003459b; Wells, J. M., Drielak, E., Surendra, K. C., & Kumar Khanal, S. (2020). Hot water pretreatment of lignocellulosic biomass: Modeling the effects of temperature, enzyme and biomass loadings on sugar yield. Bioresource Technology, 300(December 2019), 122593. https://doi.org/10.1016/j.biortech.2019.122593; Wijaya, Y. P., Putra, R. D. D., Widyaya, V. T., Ha, J. M., Suh, D. J., & Kim, C. S. (2014). Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresource Technology, 164, 221–231. https://doi.org/10.1016/j.biortech.2014.04.084; Xu, F., Sun, J. X., Sun, R., Fowler, P., & Baird, M. S. (2006). Comparative study of organosolv lignins from wheat straw. Industrial Crops and Products, 23(2), 180–193. https://doi.org/10.1016/j.indcrop.2005.05.008; Yáñez-S, M., Matsuhiro, B., Nuñez, C., Pan, S., Hubbell, C. A., Sannigrahi, P., & Ragauskas, A. J. (2014). Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: Effect of extraction conditions on the molecular structure. Polymer Degradation and Stability, 110, 184–194. https://doi.org/10.1016/j.polymdegradstab.2014.08.026; Yang, B., & Wyman, C. E. (2008). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40. https://doi.org/10.1002/bbb.49; Yoo, J., Alavi, S., Vadlani, P., & Amanor-Boadu, V. (2011). Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technology, 102(16), 7583–7590. https://doi.org/10.1016/j.biortech.2011.04.092; Yuan, X., Duan, Y., He, L., Singh, S., Simmons, B., & Cheng, G. (2017). Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering. Bioresource Technology, 232, 113–118. https://doi.org/10.1016/j.biortech.2017.02.014; Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33. https://doi.org/10.1016/j.biortech.2015.08.102; Zhang, R., Lu, X., Sun, Y., Wang, X., & Zhang, S. (2011). Modeling and optimization of dilute nitric acid hydrolysis on corn stover. Journal of Chemical Technology and Biotechnology, 86(2), 306–314. https://doi.org/10.1002/jctb.2529; Zhang, Y. H. P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology, 35(5), 367–375. https://doi.org/10.1007/s10295-007-0293-6; Zhang, Z., Harrison, M. D., Rackemann, D. W., Doherty, W. O. S., & O’Hara, I. M. (2016). Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chemistry, 18(2), 360–381. https://doi.org/10.1039/c5gc02034d; Zhang, Z., Wong, H. H., Albertson, P. L., Doherty, W. O. S., & O’Hara, I. M. (2013). Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions. Bioresource Technology, 138, 14–21. https://doi.org/10.1016/j.biortech.2013.03.065; Zhao, M. jiao, Xu, Q. qin, Li, G. min, Zhang, Q. zhi, Zhou, D., Yin, J. zhong, & Zhan, H. shu. (2019). Pretreatment of agricultural residues by supercritical CO2 at 50–80 °C to enhance enzymatic hydrolysis. Journal of Energy Chemistry, 31, 39–45. https://doi.org/10.1016/j.jechem.2018.05.003; Zhao, X., Li, S., Wu, R., & Liu, D. (2017). Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels, Bioproducts and Biorefining, 11, 567–590. https://doi.org/10.1002/bbb.1768; Zhao, X., Zhou, Y., & Liu, D. (2012). Kinetic model for glycan hydrolysis and formation of monosaccharides during dilute acid hydrolysis of sugarcane bagasse. Bioresource Technology, 105, 160–168. https://doi.org/10.1016/j.biortech.2011.11.075; Zhou, Z., Lei, F., Li, P., & Jiang, J. (2018). Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnology and Bioengineering, 115(11), 2683–2702. https://doi.org/10.1002/bit.26788; Zhu, J. Y., Wang, G. S., Pan, X. J., & Gleisner, R. (2009). Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chemical Engineering Science, 64(3), 474–485. https://doi.org/10.1016/j.ces.2008.09.026; https://repositorio.unal.edu.co/handle/unal/78589

  13. 13
    Academic Journal

    المصدر: Molecules; Volume 25; Issue 15; Pages: 3428

    مصطلحات موضوعية: carbonization, extraction, organosolv process, porous carbon

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

  14. 14
    Academic Journal
  15. 15
  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal