-
1Academic Journal
المؤلفون: Jasmine Saini, Ajay Kumar, Amit Kumar Goyal
المصدر: Photonics, Vol 11, Iss 12, p 1173 (2024)
مصطلحات موضوعية: linear grading, biosensor, photonic crystal, optical thickness grading, photonic resonator, Applied optics. Photonics, TA1501-1820
وصف الملف: electronic resource
-
2
المؤلفون: Pirinen, Aleksis, Abid, Nosheen, Agues Paszkowsky, Nuria, Ohlson Timoudas, Thomas, Scheirer, Ronald, Ceccobello, Chiara, Kovács, György, Persson, Anders
المصدر: Remote Sensing. 16(4)
مصطلحات موضوعية: Mapping, Optical properties, Optical remote sensing, Cloud detection, Cloud masks, Cloud optical thickness, Dataset, Earth observations, Machine learning methods, Machine-learning, Multispectral imagery, Synthetic datasets, Thickness estimation, Machine learning
وصف الملف: print
-
3Academic Journal
المؤلفون: H. Yahyazadeh, M. Gorji
المصدر: Case Studies in Thermal Engineering, Vol 59, Iss , Pp 104533- (2024)
مصطلحات موضوعية: Experimental Solar Collector, Filling gas, Optical thickness, Tilt angle, Heat lost, Efficiency, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
4Academic Journal
المصدر: Frontiers in Remote Sensing, Vol 5 (2024)
مصطلحات موضوعية: cloud optical thickness, cloud remote sensing, retrieval correction, 3D radiative effects, nadir reflectance, cloud aspect ratio, Geophysics. Cosmic physics, QC801-809, Meteorology. Climatology, QC851-999
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: Nakayama Ryosuke, Saito Sohei, Tanaka Takuo, Kubo Wakana
المصدر: Nanophotonics, Vol 13, Iss 8, Pp 1361-1368 (2024)
مصطلحات موضوعية: metasurface, thermoelectric conversion, plasmonic local heat, conductive heat propagation, carbon black, optical thickness, Physics, QC1-999
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2192-8614
-
6Conference
مصطلحات موضوعية: Physical Geography and Environmental Geoscience not elsewhere classified, Earth Sciences not elsewhere classified, Photogrammetry and Remote Sensing, cloud optical thickness, cloud remote sensing, retrieval correction, 3D radiative effects, nadir reflectance, cloud aspect ratio
-
7Academic Journal
المؤلفون: Yun-Bo Lu, Lun-Che Wang, Jiao-Jiao Zhou, Zi-Geng Niu, Ming Zhang, Wen-Min Qin
المصدر: Advances in Climate Change Research, Vol 14, Iss 5, Pp 720-731 (2023)
مصطلحات موضوعية: WRF-Solar, Solar radiation simulation, Cloud optical thickness, Aerosol optical depth, Dependency analysis, Meteorology. Climatology, QC851-999, Social sciences (General), H1-99
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: Mikhailov, Ilya Nicolaevich, Nikulin, Yuri Vasil'evich, Volchkov, Sergei Sergeevich, Vasilkov, Mikhail Yu., Malofeeva, Natalya A., Kosobudsky, Igor D., Ushakov, Nickolai Mikhailovich
المصدر: Известия Саратовского университета. Новая серия Серия: Физика, Vol 23, Iss 3, Pp 209-220 (2023)
مصطلحات موضوعية: porous anodic alumina, membrane, silver film, light interference, ammonia gas flow, effective optical thickness, affine interactions, Physics, QC1-999
وصف الملف: electronic resource
-
9Academic Journal
المؤلفون: Jie Wang, Yongzhi Zhao, Baocun Geng
المصدر: Photonics, Vol 11, Iss 9, p 818 (2024)
مصطلحات موضوعية: space debris laser ranging, atmospheric transmittance, optical thickness, Applied optics. Photonics, TA1501-1820
وصف الملف: electronic resource
-
10Academic Journal
المؤلفون: Xuepeng Zhao, James Frech, Michael J. Foster, Andrew K. Heidinger
المصدر: Remote Sensing, Vol 16, Iss 13, p 2487 (2024)
مصطلحات موضوعية: aerosol indirect effect (AIE), aerosol optical thickness (AOT), deep convective cloud (DCC), aerosol-cloud interaction (ACI), satellite observation, machine learning (ML), Science
وصف الملف: electronic resource
-
11Academic Journal
المؤلفون: Fanming Xu, Biao Song, Jianhua Chen, Runda Guan, Rongjie Zhu, Jiayu Liu, Zhongfeng Qiu
المصدر: Remote Sensing, Vol 16, Iss 12, p 2136 (2024)
مصطلحات موضوعية: cloud optical thickness, convolutional neural network, retrieval, prediction, Science
وصف الملف: electronic resource
-
12Academic Journal
المؤلفون: Calì Quaglia, Filippo, Muscari, Giovanni, Meloni, Daniela, Di Bernardino, Annalisa, Di Iorio, Tatiana, Pace, Giandomenico, Schmidt, Sebastian K, di Sarra, Alcide
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#
مصطلحات موضوعية: Cloud optical thickness, Thule High Arctic Atmospheric Observatory, Zenith radiance, UV-Vis-NIR spectra, libRadtran RTM, 01.01. Atmosphere
وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document
Relation: Journal of Quantitative Spectroscopy & Radiative Transfer; /326 (2024); [1] J.C. Barnard, C.N. Long, E.I. Kassianov, S.A. McFarlane, J.M. Comstock, M. Freer, G.M. McFarquhar Development and evaluation of a simple algorithm to find cloud optical depth with emphasis on thin ice clouds Open Atmospheric Sci J, 2 (1) (2008), pp. 46-55, 10.2174/1874282300802010046 View at publisher Google Scholar [2] James C. Barnard, C.N. Long A simple empirical equation to calculate cloud optical thickness using shortwave broadband measurements J Appl Meteorol, 43 (7) (2004), pp. 1057-1066, 10.1175/1520-0450(2004)0432.0.CO;2 View at publisher View in Scopus Google Scholar [3] B.A. Baum, P. Yang, A.J. Heymsfield, S. Platnick, M.D. King, Y.-X. Hu, S.T. Bedka Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models J Appl Meteorol, 44 (12) (2005), pp. 1896-1911, 10.1175/JAM2309.1 View at publisher View in Scopus Google Scholar [4] R. Bennartz, M.D. Shupe, D.D. Turner, V.P. Walden, K. Steffen, C.J. Cox, et al. July 2012 Greenland melt extent enhanced by low-level liquid clouds Nature, 496 (7443) (2013), pp. 83-86, 10.1038/nature12002 View at publisher Your institution provides access to this article. View in Scopus Google Scholar [5] E. Bierwirth, A. Ehrlich, M. Wendisch, J.-F. Gayet, C. Gourbeyre, R. Dupuy, et al. Optical thickness and effective radius of Arctic boundary-layer clouds retrieved from airborne nadir and imaging spectrometry Atmos Meas Tech, 6 (5) (2013), pp. 1189-1200, 10.5194/amt-6-1189-2013 View at publisher View in Scopus Google Scholar [6] R. Bintanja, F. Krikken Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing Sci Rep, 6 (1) (2016), p. 38287, 10.1038/srep38287 View at publisher This article is free to access. View in Scopus Google Scholar [7] M. Brückner, B. Pospichal, A. Macke, M. Wendisch A new multispectral cloud retrieval method for ship-based solar transmissivity measurements J Geophys Res: Atmospheres, 119 (19) (2014), p. 11, 10.1002/2014JD021775 ,338-11,354 View at publisher This article is free to access. View in Scopus Google Scholar [8] The impact of very high S/N spectroscopy on stellar physics: proceedings of the Cayrel de Strobel R. (Ed.), 132nd Symposium of the International Astronomical Union held in Paris, France, June 29-July 3, 1987, Kluwer Academic Publishers, Dordrecht; Boston (1988) Google Scholar [9] P. Ceppi, F. Brient, M.D. Zelinka, D.L. Hartmann Cloud feedback mechanisms and their representation in global climate models WIREs Climate Change, 8 (4) (2017), p. e465, 10.1002/wcc.465 View at publisher Your institution provides access to this article. View in Scopus Google Scholar [10] J.C. Chiu, A. Marshak, Y. Knyazikhin, W.J. Wiscombe Spectrally-invariant behavior of zenith radiance around cloud edges simulated by radiative transfer Atmos Chem Phys, 10 (22) (2010), pp. 11295-11303, 10.5194/acp-10-11295-2010 View at publisher View in Scopus Google Scholar [11] J.Christine Chiu, A. Marshak, Y. Knyazikhin, W.J. Wiscombe, H.W. Barker, J.C. Barnard, Y Luo Remote sensing of cloud properties using ground-based measurements of zenith radiance J Geophys Res, 111 (D16) (2006), p. D16201, 10.1029/2005JD006843 View at publisher This article is free to access. View in Scopus Google Scholar [12] J.C. Chiu, J.A. Holmes, R.J. Hogan, E.J O'Connor The interdependence of continental warm cloud properties derived from unexploited solar background signals in ground-based lidar measurements Atmos Chem Phys, 14 (16) (2014), pp. 8389-8401, 10.5194/acp-14-8389-2014 View at publisher View in Scopus Google Scholar [13] O.M. Coddington, P. Pilewskie, T. Vukicevic The Shannon information content of hyperspectral shortwave cloud albedo measurements: quantification and practical applications J Geophys Res: Atmospheres, 117 (D4) (2012), 10.1029/2011JD016771 View at publisher This article is free to access. Google Scholar [14] J.A. Curry, E.E. Ebert Sensitivity of the thickness of arctic sea ice to the optical properties of clouds Ann Glaciol, 14 (1990), pp. 43-46, 10.3189/S0260305500008235 View at publisher View in Scopus Google Scholar [15] P. Chylek, V. Ramaswamy Simple approximation for infrared emissivity of water clouds J Atmos Sci (1981) Google Scholar [16] A. Dahlback, K. Stamnes A new spherical model for computing the radiation field available for photolysis and heating at twilight Planetary Space Sci, 39 (5) (1991), pp. 671-683, 10.1016/0032-0633(91)90061-E View PDF View article View in Scopus Google Scholar [17] C. Di Biagio, A. di Sarra, P. Eriksen, S.E. Ascanius, G. Muscari, B. Holben Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic Clim Dyn, 39 (3–4) (2012), pp. 953-969, 10.1007/s00382-011-1280-1 View at publisher Your institution provides access to this article. View in Scopus Google Scholar [18] T. Di Iorio, A. di Sarra, G. Pace, D. Meloni, G. Muscari, L. Di Liberto, et al. Cloud base height at the thule high arctic atmospheric observatory (THAAO_CBH) Agenzia Nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA) (2022), 10.13127/THAAO/CBH View at publisher Google Scholar [19] B.N. Duncan, L.E. Ott, J.B. Abshire, L. Brucker, M.L. Carroll, J. Carton, et al. Space-based observations for understanding changes in the arctic-boreal zone Rev Geophys, 58 (1) (2020), 10.1029/2019RG000652 View at publisher This article is free to access. Google Scholar [20] C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, et al. The libRadtran software package for radiative transfer calculations (version 2.0.1) Geosci Model Dev, 9 (5) (2016), pp. 1647-1672, 10.5194/gmd-9-1647-2016 View at publisher View in Scopus Google Scholar [21] M.F. Fitzpatrick, R.E. Brandt, S.G. Warren Transmission of solar radiation by clouds over snow and ice surfaces: a parameterization in terms of optical depth, solar zenith angle, and surface albedo J Climate, 17 (2004), pp. 266-275, 10.1175/1520-0442(2004)0172.0.CO;2 View at publisher View in Scopus Google Scholar [22] M.R. Gallagher, M.D. Shupe, N.B. Miller Impact of atmospheric circulation on temperature, clouds, and radiation at Summit Station, Greenland, with self-organizing maps J Climate, 31 (21) (2018), pp. 8895-8915, 10.1175/JCLI-D-17-0893.1 View at publisher View in Scopus Google Scholar [23] B.G. Gardiner Solar radiation transmitted to the ground through cloud in relation to surface albedo J Geophys Res, 92 (D4) (1987), p. 4010, 10.1029/JD092iD04p04010 View at publisher Your institution provides access to this article. Google Scholar [24] A.S. Gardner, M.J. Sharp A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization J Geophys Res, 115 (F1) (2010), p. F01009, 10.1029/2009JF001444 View at publisher This article is free to access. View in Scopus Google Scholar [25] D.M. Giles, A. Sinyuk, M.G. Sorokin, J.S. Schafer, A. Smirnov, I. Slutsker, et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements Atmos Meas Tech, 12 (1) (2019), pp. 169-209, 10.5194/amt-12-169-2019 View at publisher View in Scopus Google Scholar [26] T.C. Grenfell, S.G. Warren Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation J Geophys Res: Atmospheres, 104 (D24) (1999), pp. 31697-31709, 10.1029/1999JD900496 View at publisher This article is free to access. View in Scopus Google Scholar [27] B.N. Holben, T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, et al. AERONET—a federated instrument network and data archive for aerosol characterization Remote Sens Environ, 66 (1) (1998), pp. 1-16, 10.1016/S0034-4257(98)00031-5 View PDF View article View in Scopus Google Scholar [28] Y. Hu, S. Rodier, K. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, D. Josset Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements J Geophys Res: Atmospheres, 115 (D4) (2010), Article 2009JD012384, 10.1029/2009JD012384 View at publisher This article is free to access. Google Scholar [29] T. Jung, N.D. Gordon, P. Bauer, D.H. Bromwich, M. Chevallier, J.J. Day, et al. Advancing polar prediction capabilities on daily to seasonal time scales Bull Am Meteorol Soc, 97 (9) (2016), pp. 1631-1647, 10.1175/BAMS-D-14-00246.1 View at publisher View in Scopus Google Scholar [30] P. Khatri, H. Iwabuchi, T. Hayasaka, H. Irie, T. Takamura, A. Yamazaki, et al. Retrieval of cloud properties from spectral zenith radiances observed by sky radiometers Atmos Meas Tech, 12 (11) (2019), pp. 6037-6047, 10.5194/amt-12-6037-2019 View at publisher View in Scopus Google Scholar [31] N. Kikuchi, T. Nakajima, H. Kumagai, H. Kuroiwa, A. Kamei, R. Nakamura, T.Y. Nakajima Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements: Comparison with cloud radar observations J Geophys Res, 111 (D7) (2006), p. D07205, 10.1029/2005JD006363 View at publisher This article is free to access. View in Scopus Google Scholar [32] M.D. King, S. Platnick, P. Yang, G.T. Arnold, M.A. Gray, J.C. Riedi, et al. Remote sensing of liquid water and ice cloud optical thickness and effective radius in the arctic: application of airborne multispectral MAS data J Atmos Ocean Technol, 21 (6) (2004), pp. 857-875, 10.1175/1520-0426(2004)0212.0.CO;2 View at publisher View in Scopus Google Scholar [33] R.L. Kurucz Synthetic Infrared Spectra Presented at the Infrared Solar Physics, 154 (1994), p. 523 Google Scholar [34] S.E. LeBlanc, P. Pilewskie, K.S. Schmidt, O.M. Coddington A spectral method for discriminating thermodynamic phase and retrieving cloud optical thickness and effective radius using transmitted solar radiance spectra Atmos Meas Tech, 8 (3) (2015), pp. 1361-1383, 10.5194/amt-8-1361-2015 View at publisher View in Scopus Google Scholar [35] E. Leontyeva, K. Stamnes Estimations of cloud optical thickness from ground-based measurements of incoming solar radiation in the arctic J Climate, 7 (4) (1994), pp. 566-578, 10.1175/1520-0442(1994)0072.0.CO;2 View at publisher View in Scopus Google Scholar [36] A. Marshak, Y. Knyazikhin, A.B. Davis, W.J. Wiscombe, P. Pilewskie Cloud-vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness Geophys Res Lett, 27 (12) (2000), pp. 1695-1698, 10.1029/1999GL010993 View at publisher This article is free to access. View in Scopus Google Scholar [37] Alexander Marshak, Y. Knyazikhin, K.D. Evans, W.J. Wiscombe The “RED versus NIR” plane to retrieve broken-cloud optical depth from ground-based measurements J Atmos Sci, 61 (15) (2004), pp. 1911-1925, 10.1175/1520-0469(2004)0612.0.CO;2 View at publisher View in Scopus Google Scholar [38] B. Mayer, A. Kylling Technical note: the libRadtran software package for radiative transfer calculations—description and examples of use Atmos Chem Phys, 5 (7) (2005), pp. 1855-1877, 10.5194/acp-5-1855-2005 View at publisher View in Scopus Google Scholar [39] P.J. McBride, K.S. Schmidt, P. Pilewskie, A.S. Kittelman, D.E. Wolfe A spectral method for retrieving cloud optical thickness and effective radius from surface-based transmittance measurements Atmos Chem Phys, 11 (14) (2011), pp. 7235-7252, 10.5194/acp-11-7235-2011 View at publisher View in Scopus Google Scholar [40] D. Meloni, F. Calì Quaglia, V. Ciardini, A. Di Bernardino, T. Di Iorio, A. Iaccarino, G. Muscari, G. Pace, C. Scarchilli, A. di Sarra Shortwave and longwave components of the surface radiation budget measured at the thule high arctic atmospheric observatory, Northern Greenland Earth Syst Sci Data, 16 (1) (2024), pp. 543-566, 10.5194/essd-16-543-2024 View at publisher View in Scopus Google Scholar [41] D. Meloni, A. di Sarra, T. Di Iorio, G. Pace, G. Muscari, A. Iaccarino, F. Calì Quaglia Downward shortwave irradiance at the thule high arctic atmospheric observatory (THAAO_DSI) a Agenzia Nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA) (2022), 10.13127/THAAO/DSI View at publisher Google Scholar [42] D. Meloni, A. di Sarra, T. Di Iorio, G. Pace, G. Muscari, A. Iaccarino, F. Calì Quaglia Upward shortwave irradiance at the thule high arctic atmospheric observatory (THAAO_USI) b Agenzia Nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA) (2022), 10.13127/THAAO/USI View at publisher Google Scholar [43] Q. Min, L.C. Harrison Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP Site Geophys Res Lett, 23 (13) (1996), pp. 1641-1644, 10.1029/96GL01488 View at publisher Your institution provides access to this article. View in Scopus Google Scholar [44] T. Nakajima, M.D. King Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: theory J Atmos Sci, 47 (15) (1990), pp. 1878-1893, 10.1175/1520-0469(1990)0472.0.CO;2 View at publisher View in Scopus Google Scholar [45] E.R. Niple, H.E. Scott, J.A. Conant, S.H. Jones, F.J. Iannarilli, W.E. Pereira Application of oxygen A-band equivalent width to disambiguate downwelling radiances for cloud optical depth measurement Atmos Meas Tech, 9 (9) (2016), pp. 4167-4179, 10.5194/amt-9-4167-2016 View at publisher View in Scopus Google Scholar [46] M.S. Norgren, J. Wood, K.S. Schmidt, B. van Diedenhoven, S.A. Stamnes, L.D. Ziemba, et al. Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral irradiances measured by a total-diffuse radiometer Atmos Meas Tech, 15 (5) (2022), pp. 1373-1394, 10.5194/amt-15-1373-2022 View at publisher View in Scopus Google Scholar [47] Y. Peng, U. Lohmann, R. Leaitch, C. Banic, M. Couture The cloud albedo-cloud droplet effective radius relationship for clean and polluted clouds from race and fire.ace: evidence for indirect aerosol effect J Geophys Res: Atmospheres, 107 (D11) (2002), 10.1029/2000JD000281 AAC 1-1-AAC 1-6 View at publisher This article is free to access. Google Scholar [48] S. Platnick, J.Y. Li, M.D. King, H. Gerber, P.V. Hobbs A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surfaces J Geophys Res: Atmospheres, 106 (D14) (2001), pp. 15185-15199, 10.1029/2000JD900441 View at publisher This article is free to access. View in Scopus Google Scholar [49] J. Quaas, A. Arola, B. Cairns, M. Christensen, H. Deneke, A.M.L. Ekman, et al. Constraining the Twomey effect from satellite observations: issues and perspectives Atmos Chem Phys, 20 (23) (2020), pp. 15079-15099, 10.5194/acp-20-15079-2020 View at publisher View in Scopus Google Scholar [50] M. Rantanen, A.Yu. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, et al. The Arctic has warmed nearly four times faster than the globe since 1979 Commun Earth Environ, 3 (1) (2022), p. 168, 10.1038/s43247-022-00498-3 View at publisher This article is free to access. View in Scopus Google Scholar [51] S. Schmidt, L. Boisvert-McPartland, P. Taylor, A. Bucholtz, G. Cesana, P. DeMott, et al. Arctic radiation-cloud-aerosol-surface interaction experiment ARCSIX (2021), p. 40 Google Scholar [52] E.P. Shettle Models of aerosols, clouds, and precipitation for atmospheric propagation studies AGARD (1990) Google Scholar [53] M.D. Shupe Clouds at arctic atmospheric observatories. Part II: thermodynamic phase characteristics J Appl MeteorolJ Appl Meteorol Climatol, 50 (3) (2011), pp. 645-661, 10.1175/2010JAMC2468.1 View at publisher View in Scopus Google Scholar [54] M.D. Shupe, M. Rex, B. Blomquist, P.O.G. Persson, J. Schmale, T. Uttal, et al. Overview of the MOSAiC expedition: atmosphere Elementa: Sci Anthropocene, 10 (1) (2022), p. 00060, 10.1525/elementa.2021.00060 View at publisher View in Scopus Google Scholar [55] K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media Appl Opt, 27 (12) (1988), p. 2502, 10.1364/AO.27.002502 View at publisher View in Scopus Google Scholar [56] A. Sinyuk, B.N. Holben, T.F. Eck, D.M. Giles, I. Slutsker, S. Korkin, J.S. Schafer, A. Smirnov, M. Sorokin, A. Lyapustin The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2 Atmos Meas Tech, 13 (6) (2020), pp. 3375-3411, 10.5194/amt-13-3375-2020 View at publisher View in Scopus Google Scholar [57] S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds J Atmos Sci, 34 (7) (1977), pp. 1149-1152, 10.1175/1520-0469(1977)0342.0.CO;2 View at publisher Google Scholar [58] T. Uttal, U.S. Army, N. Hampshire, Q. City Surface Heat Budget of the Arctic Ocean Bull Am Meteorol Soc, 83 (2) (2002), pp. 255-276, 10.1175/1520-0477(2002)0832.3.CO;2 View at publisher View in Scopus Google Scholar [59] B. van Diedenhoven, A.S. Ackerman, A.M. Fridlind, B. Cairns, J. Riedi Global statistics of ice microphysical and optical properties at tops of optically thick ice clouds J Geophys Res: Atmospheres, 125 (2020), Article e2019JD031811, 10.1029/2019JD031811 View at publisher This article is free to access. View in Scopus Google Scholar [60] A. Voigt, N. Albern, P. Ceppi, K. Grise, Y. Li, B. Medeiros Clouds, radiation, and atmospheric circulation in the present-day climate and under climate change WIREs Climate Change, 12 (2) (2021), 10.1002/wcc.694 View at publisher This article is free to access. Google Scholar [61] M. Wendisch, M. Brückner, S. Crewell, A. Ehrlich, J. Notholt, C. Lüpkes, et al. Atmospheric and surface processes, and feedback mechanisms determining arctic amplification: a review of first results and prospects of the (AC)3 project Bull Am Meteorol Soc, 104 (1) (2023), pp. E208-E242, 10.1175/BAMS-D-21-0218.1 View at publisher This article is free to access. View in Scopus Google Scholar [62] R. Wood, D.L. Hartmann Spatial variability of liquid water path in marine low cloud: the importance of mesoscale cellular convection Journal of Climate, 19 (9) (2006), pp. 1748-1764, 10.1175/JCLI3702.1 View at publisher View in Scopus Google Scholar [63] Ping Yang, K.N. Liou, Klaus Wyser, David Mitchell Parameterization of the scattering and absorption properties of individual ice crystals J Geophys Res: Atmospheres, 105 (D4) (2000), pp. 4699-4718, 10.1029/1999JD900755 View at publisher This article is free to access. Google Scholar [64] B. Yin, Q. Min Climatology of aerosol and cloud optical properties at the atmospheric radiation measurements climate research facility barrow and atqasuk sites J Geophys Res: Atmospheres, 119 (4) (2014), pp. 1820-1834, 10.1002/2013JD020296 View at publisher This article is free to access. View in Scopus Google Scholar [65] Y. Zhou, Y. Yang, M. Gao, P.-W. Zhai Cloud detection over snow and ice with oxygen A- and B-band observations from the Earth Polychromatic Imaging Camera (EPIC) Atmos Meas Tech, 13 (3) (2020), pp. 1575-1591, 10.5194/amt-13-1575-2020 View at publisher View in Scopus Google Scholar [66] G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, A. Reinart In situ determination of the remote sensing reflectance: an inter-comparison Ocean Sci, 8 (4) (2012), pp. 567-586, 10.5194/os-8-567-2012 View at publisher View in Scopus Google Scholar [67] T. Zinner, P. Hausmann, F. Ewald, L. Bugliaro, C. Emde, B. Mayer Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere Atmos Meas Tech, 9 (9) (2016), pp. 4615-4632, 10.5194/amt-9-4615-2016 View at publisher View in Scopus Google Scholar [68] T. Zinner, U. Schwarz, T. Kölling, F. Ewald, E. Jäkel, B. Mayer, M. Wendisch Cloud geometry from oxygen-A-band observations through an aircraft side window Atmos Meas Tech, 12 (2) (2019), pp. 1167-1181, 10.5194/amt-12-1167-2019
-
13Academic Journal
المؤلفون: Calì Quaglia, Filippo, Meloni, Daniela, Muscari, Giovanni, Becagli, Silvia, Di Bernardino, Annalisa, Di Iorio, Tatiana, Pace, Giandomenico, Klinger, C, Schmidt, S, di Sarra, Alcide
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#
مصطلحات موضوعية: cloud optical thickness, Thule High Arctic Atmospheric Observatory, 01.01. Atmosphere
وصف الملف: application/pdf
Relation: AIP Conference Proceedings; /2988 (2024); 1. B. Mayer and A. Kylling, ‘Technical note: The libRadtran software package for radiative transfer calculations - Description and examples of use’, Atmospheric Chem. Phys., vol. 5, no. 7, pp. 1855–1877, 2005, doi:10.5194/acp-5-1855-2005. 2. C. Emde et al., ‘The libRadtran software package for radiative transfer calculations (version 2.0.1)’, Geosci. Model Dev., vol. 9, no. 5, pp. 1647–1672, 2016, doi:10.5194/gmd-9-1647-2016. 3. E. P. Shettle, ‘Models of aerosols, clouds, and precipitation for atmospheric propagation studies’, AGARD, Mar. 1990. 4. D. M. Giles et al., ‘Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements’, Atmospheric Meas. Tech., vol. 12, no. 1, pp. 169–209, 2019, doi:10.5194/amt-12-169-2019. 5. B. N. Holben et al., ‘AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization’, Remote Sens. Environ., vol. 66, no. 1, pp. 1–16, 1998, doi: https://doi.org/10.1016/S0034- 4257(98)00031-5. 6. Muscari G., di Sarra A., Di Iorio T., Pace G., Meloni D., Sensale G., Calì Quaglia F., Iaccarino A. (2018). Meteorological data at the Thule High Arctic Atmospheric Observatory (THAAO_Met). Agenzia Nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (ENEA), doi:10.13127/thaao/met. 7. Meloni D., di Sarra A., Di Iorio T., Pace G., Muscari G., Iaccarino A., Calì Quaglia F. (2021). Downward Shortwave Irradiance at the Thule High Arctic Atmospheric Observatory during MACMAP (THAAO_DSI_MACMAP) [Data set]. Agenzia Nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (ENEA), doi:10.13127/thaao/dsi_macmap. 8. J. C. Barnard and C. N. Long, ‘A Simple Empirical Equation to Calculate Cloud Optical Thickness Using Shortwave Broadband Measurements’, J. Appl. Meteorol., vol. 43, no. 7, pp. 1057–1066, Jul. 2004, doi:10.1175/1520-0450(2004)0432.0.CO;2. 9. R. L. Kurucz, ‘Synthetic Infrared Spectra’, vol. 154, p. 523, Jan. 1994. 10. J. C. Chiu et al., ‘Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations’, J. Geophys. Res., vol. 115, no. D14, p. D14202, Jul. 2010, doi:10.1029/2009JD013121. 11. M. Brückner, B. Pospichal, A. Macke, and M. Wendisch, ‘A new multispectral cloud retrieval method for shipbased solar transmissivity measurements’, J. Geophys. Res. Atmospheres, vol. 119, no. 19, p. 11,338-11,354, Oct. 2014, doi:10.1002/2014JD021775. 12. T. Zinner, P. Hausmann, F. Ewald, L. Bugliaro, C. Emde, and B. Mayer, ‘Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere’, Atmospheric Meas. Tech., vol. 9, no. 9, pp. 4615–4632, Sep. 2016, doi:10.5194/amt-9-4615-2016. 13. M. S. Norgren et al., ‘Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral irradiances measured by a total-diffuse radiometer’, Atmospheric Meas. Tech., vol. 15, no. 5, pp. 1373–1394, Mar. 2022, doi:10.5194/amt-15-1373-2022. 14. P. Chylek and V. Ramaswamy, ‘Simple Approximation for Infrared Emissivity of Water Clouds’, J. Atmospheric Sci., 1981.
-
14Academic Journal
المؤلفون: Vanhellemont, Quinten, Dogliotti, Ana, Doxaran, David, Goyens, Clémence, Ruddick, Kevin, Vansteenwegen, Dieter
المصدر: INTERNATIONAL JOURNAL OF REMOTE SENSING ; ISSN: 0143-1161 ; ISSN: 1366-5901
مصطلحات موضوعية: Biology and Life Sciences, VIIRS, ACOLITE, l2gen, atmospheric correction, aquatic applications, turbid waters, hyperspectral, AEROSOL OPTICAL-THICKNESS, LEAVING REFLECTANCE, SATELLITE DATA, VALIDATION, RETRIEVAL, PRODUCTS, SPECTRUM, SEAWIFS, IMAGERY
وصف الملف: application/pdf
Relation: https://biblio.ugent.be/publication/01JD4VYPWZ442P7GFVT2D64TVX; http://doi.org/10.1080/01431161.2024.2407559; https://biblio.ugent.be/publication/01JD4VYPWZ442P7GFVT2D64TVX/file/01JD7J7M8V306R308GHZWDS4RE
-
15Academic Journal
المؤلفون: Nikezić, Dušan P., Radivojević, Dušan S., Mirkov, Nikola S., Lazović, Ivan, Miljojčić, Tatjana
المصدر: Symmetry
مصطلحات موضوعية: symmetric U-Net model, FOX metaheuristic algorithm, aerosol optical thickness, distance and time domain criteria
Relation: info:eu-repo/grantAgreement/MESTD/inst-2020/200017/RS//; H2020 VIDIS [Grant Agreement 952433]; https://vinar.vin.bg.ac.rs/handle/123456789/13280
-
16Academic Journal
المؤلفون: Nikezić, Dušan P., Radivojević, Dušan S., Lazović, Ivan, Mirkov, Nikola S., Marković, Zoran J.
المصدر: Mathematics
مصطلحات موضوعية: transfer learning, ResNet3D-101, aerosol optical thickness, distance and time domain criteria, early warning system
Relation: info:eu-repo/grantAgreement/MESTD/inst-2020/200017/RS//; https://vinar.vin.bg.ac.rs/handle/123456789/12988
-
17Academic Journal
المؤلفون: Ansmann, Albert, Ohneiser, Kevin, Engelmann, Ronny, Radenz, Martin, Griesche, Hannes, Hofer, Julian, Althausen, Dietrich, Creamean, Jessie M., Boyer, Matthew C., Knopf, Daniel A., Dahlke, Sandro, Maturilli, Marion, Gebauer, Henriette, Bühl, Johannes, Jimenez, Cristofer, Seifert, Patric, Wandinger, Ulla
المساهمون: Institute for Atmospheric and Earth System Research (INAR)
مصطلحات موضوعية: Ice-nucleating particle, Crystal number concentration, Black carbon, Polarization lidar, Wildfire smoke, Optical-thickness, Atlantic-ocean, Dust particles, Mineral dust, Mixed-phase, Physical sciences
وصف الملف: application/pdf
Relation: Data used in this article were produced as part of MOSAiC. The authors would like to acknowledge everyone who contributed to the measurements used here . Radiosonde data were obtained through a partnership between the leading Alfred Wegener Institute; the ARM user facility, a US DOE facility managed by the Biological and Environmental Research Program; and the German Weather Service (DWD). We would like to thank the Polarstern crew for their perfect logistical support during the 1-year MOSAiC expedition.; Ansmann , A , Ohneiser , K , Engelmann , R , Radenz , M , Griesche , H , Hofer , J , Althausen , D , Creamean , J M , Boyer , M C , Knopf , D A , Dahlke , S , Maturilli , M , Gebauer , H , Bühl , J , Jimenez , C , Seifert , P & Wandinger , U 2023 , ' Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019-2020 - light-extinction, CCN, and INP levels from the boundary layer to the tropopause ' , Atmospheric Chemistry and Physics , vol. 23 , no. 19 , pp. 12821-12849 . https://doi.org/10.5194/acp-23-12821-2023; http://hdl.handle.net/10138/572357; 78bfadca-ba1c-4010-a357-d81ac5d7c2b7; 85178081039; 001162347300001
الاتاحة: http://hdl.handle.net/10138/572357
-
18Academic Journal
المؤلفون: Tianci Li, Xiaozhou Xin, Hailong Zhang, Shanshan Yu, Li Li, Zhiqiang Ye, Qinhuo Liu, He Cai
المصدر: Remote Sensing, Vol 16, Iss 5, p 791 (2024)
مصطلحات موضوعية: downward shortwave radiation, Tibetan Plateau, CERES-SYN, ERA5, cloud optical thickness, aerosol optical depth, Science
Relation: https://www.mdpi.com/2072-4292/16/5/791; https://doaj.org/toc/2072-4292; https://doaj.org/article/b58009065165461680746e09f12b443c
-
19Academic Journal
المؤلفون: Subhash Utadiya, Vismay Trivedi, Kevin Bhanderi, Mugdha Joglekar, Chaitanya Limberkar, Kireet Patel, Gyanendra Sheoran, Humberto Cabrera, Bahram Javidi, Arun Anand
المصدر: Applied Surface Science Advances, Vol 18, Iss , Pp 100484- (2023)
مصطلحات موضوعية: Digital holographic microscopy, Quantitative phase imaging, Surface profile, Optical thickness, Materials of engineering and construction. Mechanics of materials, TA401-492, Industrial electrochemistry, TP250-261
وصف الملف: electronic resource
-
20Academic Journal
المؤلفون: Nikola S. Mirkov, Dušan S. Radivojević, Ivan M. Lazović, Uzahir R. Ramadani, Dušan P. Nikezić
المصدر: Vojnotehnički Glasnik, Vol 71, Iss 1, Pp 66-83 (2023)
مصطلحات موضوعية: aerosol optical thickness, nasa earth observations, convlstm2d, covid-19, particulate matter dispersion, Military Science, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource