يعرض 1 - 20 نتائج من 331 نتيجة بحث عن '"Omelyanchik, A."', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Report

    المصدر: Journal of Magnetism and Magnetic Materials 522, 167491 (2021)

    مصطلحات موضوعية: Condensed Matter - Materials Science

  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Report
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المساهمون: The study was supported by Siberian State Medical University development program Priority 2030, Исследование выполнено при финансовой поддержке Сибирского государственного медицинского университета в рамках Программы стратегического академического лидерства «Приоритет – 2030».

    المصدر: Bulletin of Siberian Medicine; Том 22, № 1 (2023); 96-102 ; Бюллетень сибирской медицины; Том 22, № 1 (2023); 96-102 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-1

    وصف الملف: application/pdf

    Relation: https://bulletin.ssmu.ru/jour/article/view/5139/3354; Farjadian F., Ghasemi A., Gohari O., Roointan A., Karimi M., Hamblin M.R. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2019;14(1):93–126. DOI:10.2217/nnm-2018-0120.; Halwani A.A. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics. 2022;14(1):106. DOI:10.3390/pharmaceutics14010106.; Al-Anazi A. Iron-based magnetic nanomaterials in environmental and energy applications: a short review. Current Opinion in Chemical Engineering. 2022;36:100794. DOI:10.1016/j.coche.2022.100794.; Kabir E., Kumar V., Kim K.H., Yip A.C.K., Sohn J.R. Environmental impacts of nanomaterials. J. Environ. Manage. 2018;225:261–271. DOI:10.1016/j.jenvman.2018.07.087.; Nel A., Xia T., Mädler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627. DOI:10.1126/science.1114397.; Widdrat M., Kumari M., Tompa Е. Keeping nanoparticles fully functional: Long-term storage and alteration of magnetite. Chem. Plus Chem. 2014;79(8):1225–1233. DOI:10.1002/cplu.201402032.; Sedoi V.S., Ivanov Yu.F., Osmonaliev M.N. Study of ultra-fine powders produced by the exploding wire method. In book: DeLuca L.T., Galfetti L., Pesce-Rodriguez R.A. (ed). Novel Energetic Materials and Applications. Grafiche G.S.S., 24040 Arzago d’Adda, BG, Italy; 2004:1–10. DOI:10.1002/prep.200300019.; Khlusov I.A., Omelyanchik A.S., Rodionova V.V. Granulocyte-macrophage progenitor cells response to magnetite nanoparticles in a static magnetic field. J. Magn. Magn. Mater. 2018;459:84–91. DOI:10.1016/j.jmmm.2017.12.017.; Omelyanchik A., Varvaro G., Gorshenkov M. High-quality α-Fe nanoparticles synthesized by the electric explosion of wires. J. Magn. Magn. Mater. 2019;484:196–200. DOI:10.1016/j.jmmm.2019.03.109.; Kurlyandskaya G.V., Litvinova L.S., Safronov A.P. Water-based suspensions of iron oxide nanoparticles with electrostatic or steric stabilization by chitosan: Fabrication, characterization and biocompatibility. Sensors. 2017;17(11):2605. DOI:10.3390/s17112605.; Muscas G., Yaacoub N., Concas G. Evolution of the magnetic structure with chemical composition in spinel iron oxide nanoparticles. Nanoscale. 2015;7(32):13576–13585. DOI:10.1039/c5nr02723c.; Frison R., Cernuto G., Cervellino A. Magnetite-maghemite nanoparticles in the 5–15 nm range: Correlating the core–shell composition and the surface structure to the magnetic properties. A total scattering study. ChemMater. 2013;25(23):4820– 4827. DOI:10.1021/cm403360f.; Sandler S., Fellows B.D., Mefford O.T. Best practices for characterization of magnetic nanoparticles for biomedical applications. Anal. Chem. 2019;91:4159–14169. DOI:10.1021/acs.analchem.9b03518.; Teja A.S., Koh P.Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009;55(1–2): 22–45. DOI:10.1016/j.pcrysgrow.2008.08.003.; Feoktystov A. Mechanism of magnetization reduction in iron oxide nanoparticles. Nanoscale. 2021;13(14):6965–6976. DOI:10.1039/D0NR08615K.; Omelyanchik A. Effect of citric acid on the morpho-structural and magnetic properties of ultra small iron oxide nanoparticle. J. Alloys Compd. 2021;883:160779. DOI:10.1016/j.jallcom.2021.160779.; https://bulletin.ssmu.ru/jour/article/view/5139

  15. 15
  16. 16
    Periodical
  17. 17
    Conference

    المساهمون: Casale, Michael, Omelyanchik, Aleksandr, Slimani, Sawssen, Peddis, Davide, Colombara, Diego, Piccinni, Marco

    وصف الملف: ELETTRONICO

    Relation: ispartofbook:Book of abstract; SCI2024; firstpage:1; lastpage:2; numberofpages:2; https://hdl.handle.net/11567/1208135

  18. 18
    Academic Journal

    المساهمون: Piotto, V., Litti, L., Omelyanchik, A., Martucci, A., Riello, P., Peddis, D., Meneghetti, M.

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000755247300001; volume:10; issue:10; firstpage:3819; lastpage:3825; numberofpages:7; journal:JOURNAL OF MATERIALS CHEMISTRY. C; https://hdl.handle.net/11577/3443464; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85127528897

  19. 19
    Academic Journal
  20. 20