يعرض 1 - 9 نتائج من 9 نتيجة بحث عن '"Olga N. Titova"', وقت الاستعلام: 0.88s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المساهمون: The article was published with the support of PLC “AstraZeneca Pharmaceuticals”, Статья опубликована при поддержке компании ОOO «АстраЗенека Фармасьютикалз».

    المصدر: PULMONOLOGIYA; Том 31, № 5 (2021); 628-634 ; Пульмонология; Том 31, № 5 (2021); 628-634 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/2882/2286; Alzaabi A., Idrees M., Behbehani N. Cross-sectional study on asthma insights and man-agement in the Gulf and Russia. Allergy Asthma Proc. 2018; 39 (6): 430–436. DOI:10.2500/aap.2018.39.4180.; Hekking P.P.W., Wener R.R., Amelink M. et al. The prevalence of severe refractory asthma. J. Allergy Clin. Immunol. 2015; 135 (4): 896–902. DOI:10.1016/j.jaci.2014.08.042.; Padilla-Galo A., Levy-Abitbol R.C., Olveira C. et al. Real-life experience with benralizumab during 6 months. BMC Pulm. Med. 2020; 20 (1): 184. DOI:10.1186/s12890-020-01220-9.; Levy M.L. The national review of asthma deaths: what did we learn and what needs to change? Breathe. 2015; 11 (1): 14–24. DOI:10.1183/20734735.008914.; Pavord I.D. Eosinophilic phenotypes of airway disease. Ann. Am. Thorac. Soc. 2013; 10 (Suppl.): S143–149. DOI:10.1513/AnnalsATS.201306-168AW.; Колобовникова Ю.В., Уразова О.И., Новицкий В.В. и др. Эозинофил: современный взгляд на кинетику, структуру и функцию. Гематология и трансфузиология. 2012; 57 (1): 30–36. Доступно на: https://cyberleninka.ru/article/n/eozinofil-sovremennyy-vzglyad-nakinetiku-strukturu-i-funktsiyu/viewer; Wenzel S.E. Inflammation, leukotrienes and the pathogenesis of the late asthmatic response. Clin. Exp. Allergy. 1999; 29 (1): 1–3. DOI:10.1046/j.1365-2222.1999.00486.x.; Wen T., Rothenberg M.E. The regulatory function of eosinophils. Microbiol. Spectr. 2016; 4 (5). DOI:10.1128/microbiolspec.MCHD-0020-2015.; Matuchi A., Maggi E., Vultaggio A. Eosinophils, the IL-5/IL-5Ra axis, and the biologic effects of benralizumab in severe asthma. Respir. Med. 2019; 160: 105819. DOI:10.1016/j.rmed.2019.105819.; Hillas G., Fouka E., Papaioannou A.I. Antibodies targeting the interleukin- 5 signaling pathway used as add-on therapy for patients with severe eosinophilic asthma: a review of the mechanism of action, efficacy, and safety of the subcutaneously administered agents, mepolizumab and benralizumab. Expert Rev. Respir. Med. 2020; 14 (4): 353–365. DOI:10.1080/17476348.2020.1718495.; Patel S.S., Casale T.B., Cardet J.C. Biological therapies for eosinophilic asthma. Expert Opin. Biol. Ther. 2018; 18 (7): 747–754. DOI:10.1080/14712598.2018.1492540.; Bakakos A., Rovina N., Bakakos P. Treatment challenges in severe eosinophilic asthma: differential response to anti-IL-5 and anti- IL-5R therapy. Int. J. Mol. Sci. 2021; 22 (8): 3969. DOI:10.3390/ijms22083969.; Hambly N., Nair P. Monoclonal antibodies for the treatment of refractory asthma. Curr. Opin. Pulm. Med. 2014; 20 (1): 87–94. DOI:10.1097/MCP.0000000000000007.; Bleecker E.R., FitzGerald J.M., Chanez P. et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016; 388 (10056): 2115–2127. DOI:10.1016/S0140-6736(16)31324-1.; FitzGerald J.M., Bleecker E.R., Nair P. et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016; 388 (10056): 2128–2141. DOI:10.1016/S0140-6736(16)31322-8.; Ghazi A., Trikha A., Calhoun W.J. Benralizumab – a humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity – a novel approach for the treatment of asthma. Expert Opin. Biol. Ther. 2012; 12 (1): 113–118. DOI:10.1517/14712598.2012.642359.; Pham T.H., Damera G., Newbold P., Ranade K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir. Med. 2016; 111: 21–29. DOI:10.1016/j.rmed.2016.01.003.; Castro M., Wenzel S.E., Bleecker E.R. et al. Benralizumab, an anti-interleukin 5 receptor α monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir. Med. 2014; 2 (11): 879–890. DOI:10.1016/S2213-2600(14)70201-2.; Pelaia C., Busceti M.T., Vatrella A. et al. Real-life rapidity of benralizumab effects in patients with severe allergic eosinophilic asthma: Assessment of blood eosinophils, symptom control, lung function and oral corticosteroid intake after the first drug dose. Pulm. Pharmacol. Ther. 2019; 58: 101830. DOI:10.1016/j.pupt.2019.101830.; Renner A., Marth K., Patocka K. et al. Benralizumab rapidly improves asthma control in Austrian real-life severe eosinophilic asthmatics. Allergy. 2020; 75 (12): 3272–3275. DOI:10.1111/all.14441.; Kavanagh J.E., Hearn A.P., Dhariwal J. et al. Real-world effectiveness of benralizumab in severe eosinophilic asthma. Chest. 2021; 159 (2): 496–506. DOI:10.1016/j.chest.2020.08.2083.; Nair P., Wenzel S., Rabe K.F. et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N. Engl. J. Med. 2017; 376 (25): 2448–2458. DOI:10.1056/NEJMoa1703501.; Liu W., Ma X., Zhou W. Adverse events of benralizumab in moderate to severe eosinophilic asthma: A meta-analysis. Medicine (Baltimore). 2019; 98 (22): e15868. DOI:10.1097/MD.0000000000015868.; Busse W.W., Bleecker E.R., FitzGerald J.M. et al. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir. Med. 2019; 7 (1): 46–59. DOI:10.1016/S2213-2600(18)30406-5.; Bourdin A., Shaw D., Menzies-Gow A. et al. Two-year integrated steroid-sparing analysis and safety of benralizumab for severe asthma. J. Asthma. 2021; 58 (4): 514–522. DOI:10.1080/02770903.2019.1705333.; Scioscia G., Carpagnano G.E., Quarato C.M.I. et al. Effectiveness of benralizumab in improving the quality of life of severe eosinophilic asthmatic patients: our real-life experience. Front. Pharmacol. 2021; 12: 631660. DOI:10.3389/fphar.2021.631660.; Poznanski S.M., Mukherjee M., Zhao N. et al. Asthma exacerbations on benralizumab are largely non-eosinophilic. Allergy. 2021; 76 (1): 375–379. DOI:10.1111/all.14514.; Jackson D.J., Korn S., Mathur S.K. et al. Safety of eosinophil-depleting therapy for severe, eosinophilic asthma: focus on benralizumab. Drug Saf. 2020; 43 (5): 409–425. DOI:10.1007/s40264-020-00926-3.; https://journal.pulmonology.ru/pulm/article/view/2882

  5. 5
    Academic Journal

    المصدر: PULMONOLOGIYA; Том 31, № 5 (2021); 588-597 ; Пульмонология; Том 31, № 5 (2021); 588-597 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/2879/2283; Hamming I., Timens W., Bulthuis M.L.C. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004; 203 (2): 631–637. DOI:10.1002/path.1570.; Chen L., Li X., Chen M. et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 2020; 116 (6): 1097–1100. DOI:10.1093/cvr/cvaa078.; Bombardini T., Picano E. Angiotensin-converting enzyme 2 as the molecular bridge between epidemiologic and clinical features of COVID-19. Can. J. Cardiol. 2000; 36 (5): 784.e1–784.e2. DOI:10.1016/j.cjca.2020.03.026.; Li X.C., Zhang J., Zhuo J.L. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol. Res. 2017; 125 (Pt A): 21–38. DOI:10.1016/j.phrs.2017.06.005.; Zhang H., Penninger J.M., Li Y. et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46 (4): 586–590. DOI:10.1007/s00134-020-05985-9.; Hoffmann M., Kleine-Weber H., Schroeder S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271–280.e278. DOI:10.1016/j.cell.2020.02.052.; Raj V.S. Mou H., Smits S.L. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495 (7440): 251–254. DOI:10.1038/nature12005.; Huertas A., Montani D., Savale L. et al. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur. Respir. J. 2020; 56 (1): 2001634. DOI:10.1183/13993003.01634-2020.; Петрищев Н.Н., Халепо О.В., Вавиленкова Ю.А., Власов Т.Д. COVID-19 и сосудистые нарушения (обзор литературы). Регионарное кровообращение и микроциркуляция. 2020; 19 (3): 90–98. DOI:10.24884/1682-6655-2020-19-3-90-98.; Teuwen L.A., Geldhof V., Pasut A., Carmeliet P. COVID-19: the vasculature unleashed. Nat. Rev. Immunol. 2020; 20 (7): 389–391. DOI:10.1038/s41577-020-0343-0.; Xu P., Zhou Q., Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 2020; 99 (6): 1205–1208. DOI:10.1007/s00277-020-04019-0.; Воробьев П.А., Момот А.П., Зайцев А.А. и др. Синдром диссеминированного внутрисосудистого свертывания крови при инфекции COVID-19. Терапия. 2020; (5): 25–34. DOI:10.18565/therapy.2020.5.25-34.; Галстян Г.М. Коагулопатия при COVID-19. Пульмонология. 2020; 30 (5): 645–657. DOI:10.18093/0869-0189-2020-30-5-645-657.; Hunt B., Retter A., McClintock C. Practical guidance for the prevention of thrombosis and management of coagulopathy and disseminated intravascular coagulation of patients infected with COVID-19. Thrombosis UK. March 25, 2020. Available at: https://thrombosisuk.org/downloads/T&H%20and%20COVID.pdf; Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 2020; 383 (2): 120–128. DOI:10.1056/NEJMoa2015432.; Устюжанин Д.В., Белькинд М.Б., Гаман С.А. и др. КТ-кар- тина коронавирусной болезни: результаты по итогам работы COVID-центра на базе НМИЦ кардиологии. Российский электронный журнал лучевой диагностики. 2020; 10 (2): 27–38. DOI:10.21569/2222-7415-2020-10-2-27-38.; Agricola E., Beneduce A., Esposito A. et al. Heart and lung multimodality imaging in COVID-19. JACC Cardiovasc. Imaging. 2020; 13 (8): 1792–1808. DOI:10.1016/j.jcmg.2020.05.017.; Shi H., Han X., Jiang N. et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 2020; 20 (4): 425–434. DOI:10.1016/S1473- 3099(20)30086-4.; Петриков С.С., Попова И.Е., Муслимов Р.Ш. и др. Возможности компьютерной томографии в оценке степени поражения легких у больных COVID-19 в условиях динамического наблюдения. Российский электронный журнал лучевой диагностики. 2020; 10 (2): 14–26. DOI:10.21569/2222-7415-2020-10-2-14-26.; Martini R. The compelling arguments for the need of microvascular investigation in COVID-19 critical patients. Clin. Hemorheol. Microcirc. 2020; 75 (1): 27–34. DOI:10.3233/CH-200895.; Goshua G., Pine A.B., Meizlish M.L. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020; 7 (8): e575–582. DOI:10.1016/S2352-3026(20)30216-7.; Sun P., Qie S., Liu Z. et al. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: A single arm meta-analysis. J. Med. Virol. 2020; 92 (6): 612–617. DOI:10.1002/jmv.25735.; Ngai J.C., Ko F.W., Ng S.S. et al. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. 2010; 15 (3): 543–550. DOI:10.1111/j.1440-1843.2010.01720.x.; Hui D.S., Joynt G.M., Wong K.T. et al. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax. 2005; 60 (5): 401–409. DOI:10.1136/thx.2004.030205.; Tilocca B., Soggiu A., Sanguinetti M. et al. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes. Infect. 2020; 22 (4-5): 188–194. DOI:10.1016/j.micinf.2020.04.002.; Zuo W., Zhao X., Chen Y.G. SARS coronavirus and lung fibrosis. In: Lal S. (ed.). Molecular biology of the SARS-coronavirus. Berlin, Heidelberg: Springer; 2010: 247–258. DOI:10.1007/978-3-642-03683-5_15.; Bell T.J., Brand O.J., Morgan D.J. et al. Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol. 2019; 80: 14–28. DOI:10.1016/j.matbio.2018.06.006.; Wang J., Wang B.J., Yang J.C. et al. [Research advances in the mechanism of pulmonary fibrosis induced by coronavirus disease 2019 and the corresponding therapeutic measures]. Zhonghua Shao Shang Za Zhi. 2020; 36 (8): 691–697. DOI:10.3760/cma.j.cn501120-20200307-00132 (in Chinese).; He X., Zhang L., Ran Q. et al. Integrative bioinformatics analysis provides insight into the molecular mechanisms of 2019-nCoV. MedRxiv. 2020 [Preprint. Posted: February 05, 2020]. DOI:10.1101/2020.02.03.20020206.; https://journal.pulmonology.ru/pulm/article/view/2879

  6. 6
  7. 7
  8. 8
  9. 9