-
1Academic Journal
المؤلفون: Margarita Y. Pervakova, Alexandra V. Mazing, Sergey V. Lapin, Olga Y. Tkachenko, Anna I. Budkova, Elena A. Surkova, Vladimir L. Emanuel, Olga N. Titova
المصدر: Pulmonary Medicine, Vol 2020 (2020)
مصطلحات موضوعية: Diseases of the respiratory system, RC705-779
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Anatoliy N. Fedin, Elena S. Lebedeva, Ivetta V. Dvorakovskaya, Nataliya A. Kuzubova, Olga N. Titova
المصدر: Journal of Smooth Muscle Research. 2017, 53:90
-
3Academic Journal
المؤلفون: Anatoliy N. Fedin, Elena S. Lebedeva, Ivetta V. Dvorakovskaya, Nataliya A. Kuzubova, Olga N. Titova, Tatiana N. Preobrazhenskaya
المصدر: Journal of Smooth Muscle Research. 2013, 49:46
-
4Academic Journal
المؤلفون: Olga N. Titova, Natalia A. Kuzubova, Daria B. Sklyarova, Maria A. Petrova, О. Н. Титова, Н. А. Кузубова, Д. Б. Склярова, М. А. Петрова
المساهمون: The article was published with the support of PLC “AstraZeneca Pharmaceuticals”, Статья опубликована при поддержке компании ОOO «АстраЗенека Фармасьютикалз».
المصدر: PULMONOLOGIYA; Том 31, № 5 (2021); 628-634 ; Пульмонология; Том 31, № 5 (2021); 628-634 ; 2541-9617 ; 0869-0189
مصطلحات موضوعية: бенрализумаб, eosinophilic inflammation, biological therapy, benralizumab, эозинофильное воспаление, биологическая терапия
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/2882/2286; Alzaabi A., Idrees M., Behbehani N. Cross-sectional study on asthma insights and man-agement in the Gulf and Russia. Allergy Asthma Proc. 2018; 39 (6): 430–436. DOI:10.2500/aap.2018.39.4180.; Hekking P.P.W., Wener R.R., Amelink M. et al. The prevalence of severe refractory asthma. J. Allergy Clin. Immunol. 2015; 135 (4): 896–902. DOI:10.1016/j.jaci.2014.08.042.; Padilla-Galo A., Levy-Abitbol R.C., Olveira C. et al. Real-life experience with benralizumab during 6 months. BMC Pulm. Med. 2020; 20 (1): 184. DOI:10.1186/s12890-020-01220-9.; Levy M.L. The national review of asthma deaths: what did we learn and what needs to change? Breathe. 2015; 11 (1): 14–24. DOI:10.1183/20734735.008914.; Pavord I.D. Eosinophilic phenotypes of airway disease. Ann. Am. Thorac. Soc. 2013; 10 (Suppl.): S143–149. DOI:10.1513/AnnalsATS.201306-168AW.; Колобовникова Ю.В., Уразова О.И., Новицкий В.В. и др. Эозинофил: современный взгляд на кинетику, структуру и функцию. Гематология и трансфузиология. 2012; 57 (1): 30–36. Доступно на: https://cyberleninka.ru/article/n/eozinofil-sovremennyy-vzglyad-nakinetiku-strukturu-i-funktsiyu/viewer; Wenzel S.E. Inflammation, leukotrienes and the pathogenesis of the late asthmatic response. Clin. Exp. Allergy. 1999; 29 (1): 1–3. DOI:10.1046/j.1365-2222.1999.00486.x.; Wen T., Rothenberg M.E. The regulatory function of eosinophils. Microbiol. Spectr. 2016; 4 (5). DOI:10.1128/microbiolspec.MCHD-0020-2015.; Matuchi A., Maggi E., Vultaggio A. Eosinophils, the IL-5/IL-5Ra axis, and the biologic effects of benralizumab in severe asthma. Respir. Med. 2019; 160: 105819. DOI:10.1016/j.rmed.2019.105819.; Hillas G., Fouka E., Papaioannou A.I. Antibodies targeting the interleukin- 5 signaling pathway used as add-on therapy for patients with severe eosinophilic asthma: a review of the mechanism of action, efficacy, and safety of the subcutaneously administered agents, mepolizumab and benralizumab. Expert Rev. Respir. Med. 2020; 14 (4): 353–365. DOI:10.1080/17476348.2020.1718495.; Patel S.S., Casale T.B., Cardet J.C. Biological therapies for eosinophilic asthma. Expert Opin. Biol. Ther. 2018; 18 (7): 747–754. DOI:10.1080/14712598.2018.1492540.; Bakakos A., Rovina N., Bakakos P. Treatment challenges in severe eosinophilic asthma: differential response to anti-IL-5 and anti- IL-5R therapy. Int. J. Mol. Sci. 2021; 22 (8): 3969. DOI:10.3390/ijms22083969.; Hambly N., Nair P. Monoclonal antibodies for the treatment of refractory asthma. Curr. Opin. Pulm. Med. 2014; 20 (1): 87–94. DOI:10.1097/MCP.0000000000000007.; Bleecker E.R., FitzGerald J.M., Chanez P. et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016; 388 (10056): 2115–2127. DOI:10.1016/S0140-6736(16)31324-1.; FitzGerald J.M., Bleecker E.R., Nair P. et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016; 388 (10056): 2128–2141. DOI:10.1016/S0140-6736(16)31322-8.; Ghazi A., Trikha A., Calhoun W.J. Benralizumab – a humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity – a novel approach for the treatment of asthma. Expert Opin. Biol. Ther. 2012; 12 (1): 113–118. DOI:10.1517/14712598.2012.642359.; Pham T.H., Damera G., Newbold P., Ranade K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir. Med. 2016; 111: 21–29. DOI:10.1016/j.rmed.2016.01.003.; Castro M., Wenzel S.E., Bleecker E.R. et al. Benralizumab, an anti-interleukin 5 receptor α monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir. Med. 2014; 2 (11): 879–890. DOI:10.1016/S2213-2600(14)70201-2.; Pelaia C., Busceti M.T., Vatrella A. et al. Real-life rapidity of benralizumab effects in patients with severe allergic eosinophilic asthma: Assessment of blood eosinophils, symptom control, lung function and oral corticosteroid intake after the first drug dose. Pulm. Pharmacol. Ther. 2019; 58: 101830. DOI:10.1016/j.pupt.2019.101830.; Renner A., Marth K., Patocka K. et al. Benralizumab rapidly improves asthma control in Austrian real-life severe eosinophilic asthmatics. Allergy. 2020; 75 (12): 3272–3275. DOI:10.1111/all.14441.; Kavanagh J.E., Hearn A.P., Dhariwal J. et al. Real-world effectiveness of benralizumab in severe eosinophilic asthma. Chest. 2021; 159 (2): 496–506. DOI:10.1016/j.chest.2020.08.2083.; Nair P., Wenzel S., Rabe K.F. et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N. Engl. J. Med. 2017; 376 (25): 2448–2458. DOI:10.1056/NEJMoa1703501.; Liu W., Ma X., Zhou W. Adverse events of benralizumab in moderate to severe eosinophilic asthma: A meta-analysis. Medicine (Baltimore). 2019; 98 (22): e15868. DOI:10.1097/MD.0000000000015868.; Busse W.W., Bleecker E.R., FitzGerald J.M. et al. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir. Med. 2019; 7 (1): 46–59. DOI:10.1016/S2213-2600(18)30406-5.; Bourdin A., Shaw D., Menzies-Gow A. et al. Two-year integrated steroid-sparing analysis and safety of benralizumab for severe asthma. J. Asthma. 2021; 58 (4): 514–522. DOI:10.1080/02770903.2019.1705333.; Scioscia G., Carpagnano G.E., Quarato C.M.I. et al. Effectiveness of benralizumab in improving the quality of life of severe eosinophilic asthmatic patients: our real-life experience. Front. Pharmacol. 2021; 12: 631660. DOI:10.3389/fphar.2021.631660.; Poznanski S.M., Mukherjee M., Zhao N. et al. Asthma exacerbations on benralizumab are largely non-eosinophilic. Allergy. 2021; 76 (1): 375–379. DOI:10.1111/all.14514.; Jackson D.J., Korn S., Mathur S.K. et al. Safety of eosinophil-depleting therapy for severe, eosinophilic asthma: focus on benralizumab. Drug Saf. 2020; 43 (5): 409–425. DOI:10.1007/s40264-020-00926-3.; https://journal.pulmonology.ru/pulm/article/view/2882
-
5Academic Journal
المؤلفون: Valentina P. Zolotnitskaya, Olga N. Titova, Nataliya A. Kuzubova, Olga V. Amosova, Aleksandra A. Speranskaya, В. П. Золотницкая, О. Н. Титова, Н. А. Кузубова, О. В. Амосова, А. А. Сперанская
المصدر: PULMONOLOGIYA; Том 31, № 5 (2021); 588-597 ; Пульмонология; Том 31, № 5 (2021); 588-597 ; 2541-9617 ; 0869-0189
مصطلحات موضوعية: однофотонная эмиссионная компьютерная томография легких, endothelial dysfunction, microcirculation, single-photon emission computed tomography of the lungs, дисфункция эндотелия, микроциркуляция
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/2879/2283; Hamming I., Timens W., Bulthuis M.L.C. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004; 203 (2): 631–637. DOI:10.1002/path.1570.; Chen L., Li X., Chen M. et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 2020; 116 (6): 1097–1100. DOI:10.1093/cvr/cvaa078.; Bombardini T., Picano E. Angiotensin-converting enzyme 2 as the molecular bridge between epidemiologic and clinical features of COVID-19. Can. J. Cardiol. 2000; 36 (5): 784.e1–784.e2. DOI:10.1016/j.cjca.2020.03.026.; Li X.C., Zhang J., Zhuo J.L. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol. Res. 2017; 125 (Pt A): 21–38. DOI:10.1016/j.phrs.2017.06.005.; Zhang H., Penninger J.M., Li Y. et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46 (4): 586–590. DOI:10.1007/s00134-020-05985-9.; Hoffmann M., Kleine-Weber H., Schroeder S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271–280.e278. DOI:10.1016/j.cell.2020.02.052.; Raj V.S. Mou H., Smits S.L. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495 (7440): 251–254. DOI:10.1038/nature12005.; Huertas A., Montani D., Savale L. et al. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur. Respir. J. 2020; 56 (1): 2001634. DOI:10.1183/13993003.01634-2020.; Петрищев Н.Н., Халепо О.В., Вавиленкова Ю.А., Власов Т.Д. COVID-19 и сосудистые нарушения (обзор литературы). Регионарное кровообращение и микроциркуляция. 2020; 19 (3): 90–98. DOI:10.24884/1682-6655-2020-19-3-90-98.; Teuwen L.A., Geldhof V., Pasut A., Carmeliet P. COVID-19: the vasculature unleashed. Nat. Rev. Immunol. 2020; 20 (7): 389–391. DOI:10.1038/s41577-020-0343-0.; Xu P., Zhou Q., Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 2020; 99 (6): 1205–1208. DOI:10.1007/s00277-020-04019-0.; Воробьев П.А., Момот А.П., Зайцев А.А. и др. Синдром диссеминированного внутрисосудистого свертывания крови при инфекции COVID-19. Терапия. 2020; (5): 25–34. DOI:10.18565/therapy.2020.5.25-34.; Галстян Г.М. Коагулопатия при COVID-19. Пульмонология. 2020; 30 (5): 645–657. DOI:10.18093/0869-0189-2020-30-5-645-657.; Hunt B., Retter A., McClintock C. Practical guidance for the prevention of thrombosis and management of coagulopathy and disseminated intravascular coagulation of patients infected with COVID-19. Thrombosis UK. March 25, 2020. Available at: https://thrombosisuk.org/downloads/T&H%20and%20COVID.pdf; Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 2020; 383 (2): 120–128. DOI:10.1056/NEJMoa2015432.; Устюжанин Д.В., Белькинд М.Б., Гаман С.А. и др. КТ-кар- тина коронавирусной болезни: результаты по итогам работы COVID-центра на базе НМИЦ кардиологии. Российский электронный журнал лучевой диагностики. 2020; 10 (2): 27–38. DOI:10.21569/2222-7415-2020-10-2-27-38.; Agricola E., Beneduce A., Esposito A. et al. Heart and lung multimodality imaging in COVID-19. JACC Cardiovasc. Imaging. 2020; 13 (8): 1792–1808. DOI:10.1016/j.jcmg.2020.05.017.; Shi H., Han X., Jiang N. et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 2020; 20 (4): 425–434. DOI:10.1016/S1473- 3099(20)30086-4.; Петриков С.С., Попова И.Е., Муслимов Р.Ш. и др. Возможности компьютерной томографии в оценке степени поражения легких у больных COVID-19 в условиях динамического наблюдения. Российский электронный журнал лучевой диагностики. 2020; 10 (2): 14–26. DOI:10.21569/2222-7415-2020-10-2-14-26.; Martini R. The compelling arguments for the need of microvascular investigation in COVID-19 critical patients. Clin. Hemorheol. Microcirc. 2020; 75 (1): 27–34. DOI:10.3233/CH-200895.; Goshua G., Pine A.B., Meizlish M.L. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020; 7 (8): e575–582. DOI:10.1016/S2352-3026(20)30216-7.; Sun P., Qie S., Liu Z. et al. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: A single arm meta-analysis. J. Med. Virol. 2020; 92 (6): 612–617. DOI:10.1002/jmv.25735.; Ngai J.C., Ko F.W., Ng S.S. et al. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. 2010; 15 (3): 543–550. DOI:10.1111/j.1440-1843.2010.01720.x.; Hui D.S., Joynt G.M., Wong K.T. et al. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax. 2005; 60 (5): 401–409. DOI:10.1136/thx.2004.030205.; Tilocca B., Soggiu A., Sanguinetti M. et al. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes. Infect. 2020; 22 (4-5): 188–194. DOI:10.1016/j.micinf.2020.04.002.; Zuo W., Zhao X., Chen Y.G. SARS coronavirus and lung fibrosis. In: Lal S. (ed.). Molecular biology of the SARS-coronavirus. Berlin, Heidelberg: Springer; 2010: 247–258. DOI:10.1007/978-3-642-03683-5_15.; Bell T.J., Brand O.J., Morgan D.J. et al. Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol. 2019; 80: 14–28. DOI:10.1016/j.matbio.2018.06.006.; Wang J., Wang B.J., Yang J.C. et al. [Research advances in the mechanism of pulmonary fibrosis induced by coronavirus disease 2019 and the corresponding therapeutic measures]. Zhonghua Shao Shang Za Zhi. 2020; 36 (8): 691–697. DOI:10.3760/cma.j.cn501120-20200307-00132 (in Chinese).; He X., Zhang L., Ran Q. et al. Integrative bioinformatics analysis provides insight into the molecular mechanisms of 2019-nCoV. MedRxiv. 2020 [Preprint. Posted: February 05, 2020]. DOI:10.1101/2020.02.03.20020206.; https://journal.pulmonology.ru/pulm/article/view/2879
-
6
المؤلفون: Valery D. Kulikov, Olga A. Sukhovskaya, Maria A. Smirnova, Nataly A. Kuzubova, Olga N. Titova
المصدر: Pediatrician (St. Petersburg). 13:75-82
مصطلحات موضوعية: General Medicine
-
7
المؤلفون: Vasily V. Afanasjev, Olga N. Titova, Nikita S. Vinokurov
المصدر: Russian Journal of Dentistry. 25:113-118
مصطلحات موضوعية: stomatognathic diseases, stomatognathic system, General Engineering, Energy Engineering and Power Technology
-
8
المؤلفون: AlevtinA v . BogdAnovA, TSyrendorzhi v . zAndAkov, MAriA M. goloBorod'ko, olgA n. titovA, evgenijA v . BojtSovA
المصدر: The Bulletin of Contemporary Clinical Medicine. 8:43-50
مصطلحات موضوعية: Pediatrics, medicine.medical_specialty, business.industry, Epidemiology, medicine, General Medicine, Disease, Bronchial tubes, business
-
9
المصدر: Respiratory Medicine. (8):1217-1221
مصطلحات موضوعية: Pulmonary and Respiratory Medicine, Adult, Male, medicine.medical_specialty, Pathology, Genotype, Peptidyl-Dipeptidase A, Pulmonary Artery, Gastroenterology, Pulmonary Disease, Chronic Obstructive, medicine.artery, Internal medicine, Chronic obstructive lung disease, medicine, Humans, Ankle Brachial Index, Arterial Pressure, Vascular Diseases, Endothelial dysfunction, Aged, Aged, 80 and over, COPD, Polymorphism, Genetic, biology, business.industry, Gene polymorphism, Angiotensin-converting enzyme, Odds ratio, Middle Aged, medicine.disease, Obstructive lung disease, respiratory tract diseases, Blood pressure, Case-Control Studies, Pulmonary artery, biology.protein, Endothelium, Vascular, business, Dilatation, Pathologic