يعرض 1 - 20 نتائج من 122 نتيجة بحث عن '"Ohtani, Shin"', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Ministry of Internal Affairs and Communications

    المصدر: Journal of Radiation Research ; volume 64, issue 2, page 250-260 ; ISSN 0449-3060 1349-9157

  3. 3
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Journal of Geophysical Research - Space Physics ; 2715-2726 ; 121 ; 3

    وصف الملف: application/pdf

    Relation: urn:issn:2169-9402; https://hdl.handle.net/1956/15350; https://doi.org/10.1002/2015ja022236; cristin:1366772; Journal of Geophysical Research - Space Physics 2016, 121(3):2715-2726

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: Weygand, James M.; Engebretson, Mark J.; Pilipenko, Viacheslav A.; Steinmetz, Erik S.; Moldwin, Mark B.; Connors, Martin G.; Nishimura, Yukitoshi; Lyons, Larry R.; Russell, Christopher T.; Ohtani, Shin‐Ichi; Gjerloev, Jesper (2021). "SECS Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada." Journal of Geophysical Research: Space Physics 126(11): n/a-n/a.; https://hdl.handle.net/2027.42/171034; Journal of Geophysical Research: Space Physics; Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local d Bdt variations during two geomagnetic storms. Space Weather, 16, 676 - 693. https://doi.org/10.1029/2018SW001911; Amm, O., & Viljanen, A. ( 1999 ). Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary currents systems. Earth Planets and Space, 51 ( 6 ), 431 - 440. https://doi.org/10.1186/BF03352247; Apatenkov, S. V., Pilipenko, V. A., Gordeev, E. I., Viljanen, A., Juusola, L., Belakhovsky, V. B., & Selivanov, V. N. ( 2020 ). Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophysical Research Letters, 47, e2019GL086677. https://doi.org/10.1029/2019GL086677; Apatenkov, S. V., Sergeev, V. A., Pirjola, R., & Viljanen, A. ( 2004 ). Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations. Annales Geophysicae, 22, 63 - 72. https://doi.org/10.5194/angeo-22-63-2004; Belakhovsky, V., Pilipenko, V., Engebretson, M., Sakharov, Y., & Selivanov, V. ( 2019 ). Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines. Journal of Space Weather and Space Climate, 9, A18. https://doi.org/10.1051/swsc/2019015; Chinkin, V. E., Soloviev, A. A., Pilipenko, V. A., Engebretson, M. J., & Sakharov, Y. ( 2021 ). Determination of vortex current structure in the high- latitude ionosphere with associated GIC bursts from ground magnetic data. Journal of Atmospheric and Solar- Terrestrial Physics, 212, 105514. https://doi.org/10.1016/j.jastp.2020.105514; Connors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. ( 2016 ). The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth Planets and Space, 68. https://doi.org/10.1186/s40623-015-0354-4; Dimmock, A. P., Rosenqvist, L., Hall, J.- O., Viljanen, A., Yordanova, E., Honkonen, I., et al. ( 2019 ). The GIC and geomagnetic response over Fennoscandia to the 7- 8 September 2017 geomagnetic storm. Space Weather, 17, 989 - 1010. https://doi.org/10.1029/2018SW002132; Dimmock, A. P., Welling, D. T., Rosenqvist, L., Forsyth, C., Freeman, M. P., Rae, I. J., et al. ( 2021 ). Modeling the geomagnetic response to the September 2017 space weather event over Fennoscandia using the Space Weather Modeling Framework: Studying the impacts of spatial resolution. Space Weather, 19 (5), e2020SW002683. https://doi.org/10.1029/2020SW002683; Engebretson, M. J., Ahmed, L. Y., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., et al. ( 2021b ). Superposed epoch analysis of nighttime magnetic perturbation events observed in Arctic Canada submitted to the. Journal of Geophysical Research: Space Physics, 19, 2021JA029465. https://doi.org/10.1029/2020sw002526; Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J., Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100, 19371 - 19386. https://doi.org/10.1029/95JA00768; Engebretson, M. J., Kirkevold, K. R., Steinmetz, E. S., Pilipenko, V. A., Moldwin, M. B., McCuen, B. A., et al. ( 2020 ). Interhemispheric comparisons of large nighttime magnetic perturbation events relevant to GICs. Journal of Geophysical Research: SpacePhysics, 125, e2020JA028128. https://doi.org/10.1029/2020JA028128; Engebretson, M. J., Pilipenko, V. A., Ahmed, L. Y., Posch, J. L., Steinmetz, E., Moldwin, E. M. B., et al. ( 2019a ). Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. Journal of Geophysical Research: Space Physics, 124, 7442 - 7458. https://doi.org/10.1029/2019JA026794; Engebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., Boteler, D. H., et al. ( 2021a ). Nighttime magnetic perturbation events observed in Arctic Canada: 3. Occurrence and amplitude as functions of magnetic latitude, local time, and magnetic disturbances. Space Weather, 19, e2020SW002526. https://doi.org/10.1029/2020SW002526; Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., et al. ( 2019b ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple- instrument observations. Journal of Geophysical Research: Space Physics, 124, 7459 - 7476. https://doi.org/10.1029/2019JA026797; Forsyth, C., Rae, I. J., Coxon, J. C., Freeman, M. P., Jackman, C. M., Gjerloev, J., & Fazakerley, A. N. ( 2015 ). A new technique for determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE). J. Geophys. Res. Space Physics, 120, 10,592 - 10,606. https://doi.org/10.1002/2015JA021343; Huttunen, K. E. J., Koskinen, H. E. J., Pulkkinen, T. I., Pulkkinen, A., Palmroth, M., Reeves, E. G. D., & Singer, H. J. ( 2002 ). April 2000 magnetic storm: Solar wind driver and magnetospheric response. Journal of Geophysical Research, 107 ( A12 ), 1440. https://doi.org/10.1029/2001JA009154; Mende, S. B., Harris, S. E., Frey, H. U., Angelopoulos, V., Russell, C. T., Donovan, E., et al. ( 2008 ). The THEMIS array of ground- based observatories for the study of auroral substorms. Space Science Reviews, 141, 357. https://doi.org/10.1007/978-0-387-89820-9_16; Newell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779; Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 - 494. https://doi.org/10.1002/2016SW001386; Nishimura, Y., Lyons, L. R., Gabrielse, C., Sivadas, N., Donovan, E. F., Varney, R. H., et al. ( 2020 ). Extreme magnetosphere- ionosphere- thermosphere responses to the 5 April 2010 Supersubstorm. Journal of Geophysical Research: Space Physics, 125 ( 4 ), A09218. https://doi.org/10.1029/2019JA027654; Ohtani, S., & Gjerloev, J. W. ( 2020 ). Is the substorm current wedge an ensemble of wedgelets?: Revisit to midlatitude positive bays. Journal of Geophysical Research: Space Physics, 125, e2020JA027902. https://doi.org/10.1029/2020JA027902; Pulkkinen, A., Thomson, A., Clarke, E., & McKay, A. ( 2003 ). April 2000 geomagnetic storm: Ionospheric drivers of large geomagnetically induced currents. Annales Geophysicae, 21 ( 3 ), 709 - 717. https://doi.org/10.5194/angeo-21-709-2003; Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 - 634. https://doi.org/10.1029/97GL00538; Viljanen, A., Nevanlinna, H., Pajunpää, K., & Pulkkinen, A. ( 2001 ). Time derivative of the horizontal geomagnetic field as an activity indicator. Annales Geophysicae, 19, 1107 - 1118. https://doi.org/10.5194/angeo-19-1107-2001; Viljanen, A., & Tanskanen, E. ( 2011 ). Climatology of rapid geomagnetic variations at high latitudes over two solar cycles. Annales Geophysicae, 29, 1783 - 1792. https://doi.org/10.5194/angeo-29-1783-2011; Viljanen, A., Tanskanen, E. I., & Pulkkinen, A. ( 2006 ). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Annales Geophysicae, 24, 725 - 733. https://doi.org/10.5194/angeo-24-725-2006; Weygand, J. M. ( 2009a ). Equivalent Ionospheric Currents (EICs) derived using the Spherical Elementary Currrent Systems (SECS) technique at 10 s Resolution in Geographic Coordinates. University of California. https://doi.org/10.21978/P8D62B; Weygand, J. M. ( 2009b ). Spherical Elementary Current (SEC) Amplitudes derived using the Spherical Elementary Currents Systems (SECS) technique at 10 sec Resolution in Geographic Coordinates. UCLA. https://doi.org/10.21978/P8PP8X; Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., et al. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116, A03305. https://doi.org/10.1029/2010JA016177; Weygand, J. M., Kivelson, M. G., Khurana, K. K., Schwarzl, H. K., Thompson, S. M., McPherron, R. L., et al. ( 2005 ). Plasma sheet turbulence observed by Cluster II. Journal of Geophysical Research, 110, A01205. https://doi.org/10.1029/2004JA010581; Weygand, J. M., Kivelson, M. G., Khurana, K. K., Schwarzl, H. K., Walker, R., Balogh, A., et al. ( 2006 ). Non- self similar scaling of plasma sheet and solar wind probability distribution functions of magnetic field fluctuations. Journal of Geophysical Research, 111, A11209. https://doi.org/10.1029/2006JA011820

  10. 10
    Academic Journal

    وصف الملف: application/pdf

    Relation: Engebretson, Mark J.; Ahmed, Lidiya Y.; Pilipenko, Viacheslav A.; Steinmetz, Erik S.; Moldwin, Mark B.; Connors, Martin G.; Boteler, David H.; Weygand, James M.; Coyle, Shane; Ohtani, Shin; Gjerloev, Jesper; Russell, Christopher T. (2021). "Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada." Journal of Geophysical Research: Space Physics 126(9): n/a-n/a.; https://hdl.handle.net/2027.42/169302; Journal of Geophysical Research: Space Physics; Pulkkinen, A., Klimas, A., Vassiliadis, D., Uritsky, V., & Tanskanen, E. ( 2006 ). Spatiotemporal scaling properties of the ground geomagnetic field variations. Journal of Geophysical Research, 111, A03305. https://doi.org/10.1029/2006JA01129410.1029/2005ja011294; Mukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. ( 2020 ). Conductance Model for Extreme Events: Impact of auroral conductance on space weather forecasts. Space Weather, 18, e2020SW002551. https://doi.org/10.1029/2020SW002551; Newell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779; Ngwira, C. M., & Pulkkinen, A. A. ( 2019 ). An introduction to geomagnetically induced currents (2019). In J. L. Gannon, A. Swidinsky, & Z. Xu (Eds.), Geomagnetically induced currents from the Sun to the power grid, geophysical monograph series (Vol. 244, pp. 3 – 13 ). American Geophysical Union. https://doi.org/10.1002/9781119434412.ch1; Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061; Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local d Bdt variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911; Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386; Nishimura, Y., Lyons, L. R., Gabrielse, C., Sivadas, N., Donovan, E. F., Varney, R. H., et al. ( 2020 ). Extreme magnetosphere‐ionosphere‐thermosphere responses to the 5 April 2010 Supersubstorm. Journal of Geophysical Research: Space Physics, 125 ( 4 ), A09218. https://doi.org/10.1029/2019JA027654; Oliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. ( 2018 ). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16, 636 – 647. https://doi.org/10.1029/2018SW001880; Oliveira, D. M., & Raeder, J. ( 2015 ). Impact angle control of interplanetary shock geoeffectiveness: A statistical study. Journal of Geophysical Research: Space Physics, 120, 4313 – 4323. https://doi.org/10.1002/2015JA021147; Pulkkinen, A., Bernabeu, E., Eichner, J., Viljanen, A., & Ngwira, C. M. ( 2015 ). Regional‐scale high‐latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth Planets and Space, 67. https://doi.org/10.1186/s40623-015-0255-6; Pulkkinen, A., Thomson, A., Clarke, E., & McKay, A. ( 2003 ). April 2000 geomagnetic storm: Ionospheric drivers of large geomagnetically induced currents. Annales Geophysicae, 21 ( 3 ), 709 – 717. https://doi.org/10.5194/angeo-21-709-2003; Richardson, J. D., & Paularena, K. I. ( 2001 ). Plasma and magnetic field correlations in the solar wind. Journal of Geophysical Research, 106, 239 – 251. https://doi.org/10.1029/2000JA000071; Rogers, N. C., Wild, J. A., Eastoe, E. F., Gjerloev, J. W., Thomson, A. W. P., & Thomson, A. W. P. ( 2020 ). A global climatological model of extreme geomagnetic field fluctuations. Journal of Space Weather and Space Climate, 10, 5. https://doi.org/10.1051/swsc/2020008; Søraas, F., Laundal, K. M., & Usanova, M. ( 2013 ). Coincident particle and optical observations of nightside subauroral proton precipitation. Journal of Geophysical Research: Space Physics, 118, 1112 – 1122. https://doi.org/10.1002/jgra.50172; Sugiura, M., & Poros, D. J. ( 1971 ). Hourly values of equatorial Dst for years 1957 to 1970, Rep. X‐645‐71‐278. Goddard Space Flight Center.; Tetrick, S. S., Engebretson, M. J., Posch, J. L., Olson, C. N., Smith, C. W., Denton, R. E., et al. ( 2017 ). Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 122, 4064 – 4088. https://doi.org/10.1002/2016JA023392; Usanova, M. E., Mann, I. R., Bortnik, J., Shao, L., & Angelopoulos, V. ( 2012 ). THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure. Journal of Geophysical Research, 117, A10218. https://doi.org/10.1029/2012JA018049; Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 – 634. https://doi.org/10.1029/97GL00538; Viljanen, A., Nevanlinna, H., Pajunpää, K., & Pulkkinen, A. ( 2001 ). Time derivative of thehorizontal geomagnetic field as an activity indicator. Annales Geophysicae, 19, 1107 – 1118. https://doi.org/10.5194/angeo-19-1107-2001; Viljanen, A., & Tanskanen, E. ( 2011 ). Climatology of rapid geomagnetic variations at high latitudes over two solar cycles. Annales Geophysicae, 29, 1783 – 1792. https://doi.org/10.5194/angeo-29-1783-2011; Viljanen, A., Tanskanen, E. I., & Pulkkinen, A. ( 2006 ). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Annales Geophysicae, 24, 725 – 733. https://doi.org/10.5194/angeo-24-725-2006; Villante, U., & Piersanti, M. ( 2012 ). Sudden Impulses in the Magnetosphere and at Ground. In M. Lazar, & IntechOpen (Eds.), Sudden impulses in the magnetosphere and at ground, exploring the solar wind (pp. 399 – 416 ). https://doi.org/10.5772/36770; Vorobev, A. V., Pilipenko, V. A., Sakharov, Y. A., & Selivanov, V. N. ( 2019 ). Statistical relationships between variations of the geomagnetic field, auroral electrojet and geomagnetically induced currents. Solar‐Terrestrial Physics, 5 ( 1 ), 35 – 42. https://doi.org/10.12737/stp-51201905; Walsh, B. M., Bhakyapaibul, T., & Zou, Y. ( 2019 ). Quantifying the uncertainty of using solar wind measurements for geospace inputs. Journal of Geophysical Research: Space Physics, 124, 3291 – 3302. https://doi.org/10.1029/2019JA026507; Wang, B., Nishimura, Y., Zou, Y., Lyons, L. R., Angelopoulos, V., Frey, H., & Mende, S. ( 2016 ). Investigation of triggering of poleward moving auroral forms using satellite‐imager coordinated observations. Journal of Geophysical Research: Space Physics, 121, 10929 – 10941. https://doi.org/10.1002/2016JA023128; Wanliss, J. A., & Showalter, K. M. ( 2006 ). High‐resolution global storm index: Dst versus SYM‐ H. Journal of Geophysical Research, 111, A02202. https://doi.org/10.1029/2005JA011034; Wei, D., Dunlop, M. W., Yang, J., Dong, X., Yu, Y., & Wang, T. ( 2021 ). Intense dB/dt variations driven by near‐Earth bursty bulk flows (BBFs): A case study. Geophysical Research Letters, 48, e2020GL091781. https://doi.org/10.1029/2020GL091781; Welling, D. T., Love, J. J., Rigler, E. J., Oliveira, D. M., Komar, C. M., & Morley, S. K. ( 2020 ). Numerical simulations of the geospace response to the arrival of an idealized perfect interplanetary coronal mass ejection. Space Weather, 18. https://doi.org/10.1029/2020SW002489; Wintoft, P., Wik, M., & Viljanen, A. ( 2015 ). Solar wind driven empirical forecast models of the time derivative of the ground magnetic field. Journal of Space Weather and Space Climate, 5 ( A7 ). https://doi.org/10.1051/swsc/2015008; Woodroffe, J. R., Morley, S. K., Jordanova, V. K., Henderson, M. G., Cowee, M. M., & Gjerloev, J. ( 2016 ). The latitudinal variation of geoelectromagnetic disturbances during large ( Dst ≤−100 nT) geomagnetic storms. Space Weather, 14, 668 – 681. https://doi.org/10.1002/2016SW001376; Yagova, N. V., Pilipenko, V. A., Fedorov, E. N., Lhamdon‐tong, A. D., & Gusev, Y. P. ( 2018 ). Geomagnetically induced currents and space weather: Pi3 pulsations and extreme values of the time derivatives of the horizontal components of the geomagnetic field, Izvestiya. Physics of the Solid Earth, 54, 749 – 763. https://doi.org/10.1134/S1069351318050130; Zhang, Y., Paxton, L. J., & Zheng, Y. ( 2008 ). Interplanetary shock induced ring current auroras. Journal of Geophysical Research, 113, A01212. https://doi.org/10.1029/2007JA012554; Zhang, Y., Paxton, L., Morrison, D., Wolven, B., Kil, H., & Wing, S. ( 2005 ). Nightside detached auroras due to precipitating protons/ions during intense magnetic storms. Journal of Geophysical Research, 110, A02206. https://doi.org/10.1029/2004JA010498; Anderson, B. J., & Hamilton, D. C. ( 1993 ). Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions. Journal of Geophysical Research, 98, 11369 – 11382. https://doi.org/10.1029/93JA00605; Apatenkov, S. V., Pilipenko, V. A., Gordeev, E. I., Viljanen, A., Juusola, L., Belakhovsky, V. B., et al. ( 2020 ). Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophysical Research Letters, 47, e2019GL086677. https://doi.org/10.1029/2019GL086677; Araki, T. ( 1994 ). A physical model of the geomagnetic sudden commencement, in solar wind sources of magnetospheric ultra‐low‐frequency waves. In M. J. Engebretson, K. Takahashi, & M. Scholer (Eds.), Geophysical. Monograph series (Vol. 81, pp. 183 – 200 ). https://doi.org/10.1029/GM081p0183; Belakhovsky, V. B., Sakharov, Y. A., Pilipenko, V. A., & Selivanov, V. N. ( 2018 ). Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems, Izvestiya. Physics of the Solid Earth, 54, 52 – 65. https://doi.org/10.1134/S1069351318010032; Bier, E. A., Owusu, N., Engebretson, M. J., Posch, J. L., Lessard, M. R., & Pilipenko, V. A. ( 2014 ). Investigating the IMF cone angle control of Pc3‐4 pulsations observed on the ground. Journal of Geophysical Research: Space Physics, 119, 1797 – 1813. https://doi.org/10.1002/2013JA019637; Borovsky, J. E. ( 2008 ). Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? Journal of Geophysical Research, 113, A08110. https://doi.org/10.1029/2007JA012684; Borovsky, J. E. ( 2017 ). The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar wind monitor at L1. Journal of Atmospheric and Solar‐Terrestrial Physics, 177, 2 – 11. https://doi.org/10.1016/j.jastp.2017.03.014; Boteler, D. H. ( 2001 ). Assessment of geomagnetic hazard to power systems in Canada. Natural Hazards, 23, 101 – 120. https://doi.org/10.1023/A:1011194414259; Boteler, D. H. ( 2019 ). A 21st century view of the March 1989 magnetic storm. Space Weather, 17, 1427 – 1441. https://doi.org/10.1029/2019SW002278; Boteler, D. H., Pirjola, R. J., & Nevanlinna, H. ( 1998 ). The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Advances in Space Research, 22, 17 – 27. https://doi.org/10.1016/S0273-1177(97)01096-X; Carrington, R. C. ( 1859 ). Description of a singular appearance seen in the Sun on September 1. Monthly Notices of the Royal Astronomical Society, 20, 13 – 15. https://doi.org/10.1093/mnras/20.1.13; Chree, C. ( 1913 ). Some phenomena of sunspots and of terrestrial magnetism at Kew observatory. Philosophical Transactions of the Royal Society of London. Series A, 212, 75 – 116. https://doi.org/10.1098/rsta.1913.0003; Connors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. ( 2016 ). The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth Planets and Space, 68. https://doi.org/10.1186/s40623-015-0354-4; Dimmock, A. P., Rosenqvist, L., Hall, J.‐O., Viljanen, A., Yordanova, E., Honkonen, I., et al. ( 2019 ). The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm. Space Weather, 17, 989 – 1010. https://doi.org/10.1029/2018SW002132; Dimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton, R. J., & Yordanova, E. ( 2020 ). On the regional variability of dB/dt and its significance to GIC. Space Weather, 18, e2020SW002497. https://doi.org/10.1029/2020SW002497; Drozdov, A. Y., Usanova, M. E., Hudson, M. K., Allison, H. J., & Shprits, Y. Y. ( 2020 ). The role of hiss, chorus, and EMIC waves in the modeling of the dynamics of the multi‐MeV radiation belt electrons. Journal of Geophysical Research: Space Physics, 125, e2020JA028282. https://doi.org/10.1029/2020JA028282; Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J., Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100, 19371 – 19386. https://doi.org/10.1029/95JA00768; Engebretson, M. J., Kirkevold, K. R., Steinmetz, E. S., Pilipenko, V. A., Moldwin, M. B., McCuen, B. A., et al. ( 2020 ). Interhemispheric comparisons of large nighttime magnetic perturbation events relevant to GICs. Journal of Geophysical Research: Space Physics, 125, e2020JA028128. https://doi.org/10.1029/2020JA028128; Engebretson, M. J., Pilipenko, V. A., Ahmed, L. Y., Posch, J. L., Steinmetz, E. S., Moldwin, M. B., et al. ( 2019a ). Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. Journal of Geophysical Research: Space Physics, 124, 7442 – 7458. https://doi.org/10.1029/2019JA026794; Engebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., Boteler, D. H., et al. ( 2021 ). Nighttime magnetic perturbation events observed in Arctic Canada: 3. Occurrence and amplitude as functions of magnetic latitude, local time, and magnetic disturbances. Space Weather, 19, e2020SW002526. https://doi.org/10.1029/2020SW002526; Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., et al. ( 2019b ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐ instrument observations. Journal of Geophysical Research: Space Physics, 124, 7459 – 7476. https://doi.org/10.1029/2019JA026797; Freeman, M. P., Forsyth, C., & Rae, I. J. ( 2019 ). The influence of substorms on extreme rates of change of the surface horizontal magnetic field in the United Kingdom. Space Weather, 17, 827 – 844. https://doi.org/10.1029/2018SW002148; Frey, H. U., Mende, S. B., Angelopoulos, V., & Donovan, E. F. ( 2004 ). Substorm onset observations by IMAGE‐FUV. Journal of Geophysical Research, 109, A10304. https://doi.org/10.1029/2004JA010607; Hapgood, M. ( 2019 ). The great storm of May 1921: An exemplar of a dangerous space weather event. Space Weather, 17, 950 – 975. https://doi.org/10.1029/2019SW002195; Honkonen, I., Kuvshinov, A., Rastätter, L., & Pulkkinen, A. ( 2018 ). Predicting global ground geoelectric field with coupled geospace and three‐dimensional geomagnetic induction models. Space Weather, 16, 1028 – 1041. https://doi.org/10.1029/2018SW001859; Huttunen, K. E. J., Koskinen, H. E. J., Pulkkinen, T. I., Pulkkinen, A., Palmroth, M., Reeves, E. G. D., & Singer, H. J. ( 2002 ). April 2000 magnetic storm: Solar wind driver and magnetospheric response. Journal of Geophysical Research, 107, 1440 – 1. https://doi.org/10.1029/2001JA009154; Iyemori, T., Takeda, M., Nose, M., Odagi, Y., & Toh, H. ( 2010 ). Mid‐latitude geomagnetic indices ASY and SYM for 2009 (provisional), internal report of data analysis center for geomagnetism and space magnetism. Kyoto University.; Knipp, D. J. ( 2015 ). Synthesis of geomagnetically induced currents: Commentary and research. Space Weather, 13, 727 – 729. https://doi.org/10.1002/2015SW001317; Knipp, D. J., & Gannon, J. L. ( 2019 ). The 2019 National Space Weather strategy and action plan and beyond. Space Weather, 17, 794 – 795. https://doi.org/10.1029/2019SW002254; Kozyreva, O. V., Pilipenko, V.,A., Belakhovsky, V. B., & Sakharov, Y.,A. ( 2018 ). Ground geomagnetic field and GIC response to March 17, 2015, storm. Earth, Planets, and Space, 70, 157. https://doi.org/10.1186/s40623-018-0933-2; Lee, D.‐Y., Lyons, L. R., & Reeves, G. D. ( 2005 ). Comparison of geosynchronous energetic particle flux responses to solar wind dynamic pressure enhancements and substorms. Journal of Geophysical Research, 110, A09213. https://doi.org/10.1029/2005JA011091; Lee, D.‐Y., Ohtani, S., Brandt, P. C., & Lyons, L. R. ( 2007 ). Energetic neutral atom response to solar wind dynamic pressure enhancements. Journal of Geophysical Research, 112, A09210 – n. https://doi.org/10.1029/2007JA012399; Love, J. J., Hayakawa, H., & Cliver, E. W. ( 2019 ). Intensity and impact of the New York Railroad superstorm of May 1921. Space Weather, 17, 1281 – 1292. https://doi.org/10.1029/2019SW002250; Lühr, H., Rother, M., Iyemori, T., Hansen, T. L., & Lepping, R. P. ( 1998 ). Superposed epoch analysis applied to large‐amplitude travelling convection vortices. Annals of Geophysics, 16, 743 – 753. https://doi.org/10.1007/s00585-998-0743-0; Marshalko, E., Kruglyakov, M., Kuvshinov, A., Juusola, L., Kwagala, N. K., Sokolova, E., & Pilipenko, V. ( 2021 ). Comparing three approaches to the inducing source setting for the ground electromagnetic field modeling due to space weather events. Space Weather, 19, e2020SW002657. https://doi.org/10.1029/2020SW002657; Meurant, M., Gérard, J.‐C., Hubert, B., Coumans, V., Blockx, C., Østgaard, N., & Mende, S. B. ( 2003 ). Dynamics of global scale electron and proton precipitation induced by a solar wind pressure pulse. Geophysical Research Letters, 30, 2032. https://doi.org/10.1029/2003GL018017

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
  14. 14
    Academic Journal
  15. 15
    Conference
  16. 16
    Conference
  17. 17
  18. 18
    Conference
  19. 19
    Report
  20. 20
    Report