يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"O. V. Omelyanskaya"', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: This work was prepared by the author in terms of R&D "Development and creation of a hardware and software complex for opportunistic screening of osteoporosis" (EGISU No.: 123031400007-7) in accordance with Order No. 1196 dated 21. 12. 2022 "On Approval of state assignments, financial support of which is carried out at the expense of the budget of the Moscow to state budgetary (autonomous) institutions subordinate to the Moscow City Health Department, for 2023 and the planning period of 2024 and 2025", Moscow City Health Department., данная работа подготовлена автором в рамках НИОКР «Разработка и создание аппаратно-программного комплекса для оппортунистического скрининга остеопороза» (№ ЕГИСУ: 123031400007–7) в соответствии с Приказом от 21. 12. 2022 г. № 1196 «Об утверждении государственных заданий, финансовое обеспечение которых осуществляется за счет средств бюджета города Москвы государственным бюджетным (автономным) учреждениям, подведомственным Департаменту здравоохранения города Москвы, на 2023 год и плановый период 2024 и 2025 годов» Департамента здравоохранения города Москвы.

    المصدر: Research and Practical Medicine Journal; Том 11, № 4 (2024); 73-87 ; Research'n Practical Medicine Journal; Том 11, № 4 (2024); 73-87 ; 2410-1893 ; 10.17709/2410-1893-2024-11-4

    وصف الملف: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/1049/665; Computed tomography (CT) imaging units per million people, 2021. World Health Organisation: 2023. Режим доступа: https://ourworldindata.org/grapher/availability-of-computed-tomography-ct-imaging.; Meyer E, Raupach R, Lell M, Schmidt B, Kachelrieß M. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 2010;37:5482–5493. doi:10.1118/1.3484090; Charles A. Kelsey. The Physics of Radiology, 4 th Edited by H.E.Johns, J.R.Cunningham. Med Phys. 1984; pp. 731–732. doi:10.1118/1.595545; Wellenberg RHH, Hakvoort ET, Slump CH, Boomsma MF, Maas M, Streekstra GJ. Metal artifact reduction techniques in musculoskeletal CT‑imaging. Eur J Radiol. 2018 Oct;107:60–69. doi:10.1016/j.ejrad.2018.08.010; Kosmas C, Hojjati M, Young P, Abedi A, Gholamrezanezhad A, Rajiah P. Dual‑layer spectral computerized tomography for metal artifact reduction: small versus large orthopedic devices. Skeletal Radiol. 2019;48(12):1981–1990. doi:10.1007/s00256‑019‑03248‑3; Bolstad K, Flatabø S, Aadnevik D, Dalehaug I, Vetti N. Metal artifact reduction in CT, a phantom study: Subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants. Acta Radiol. 2018;59(9):1110–1118. doi:10.1177/0284185117751278; King J, Whittam S, Smith D, Al‑Qaisieh B. The impact of a metal artefact reduction algorithm on treatment planning for patients undergoing radiotherapy of the pelvis. Phys Imaging Radiat Oncol. 2022 Nov 12;24:138–143. doi:10.1016/j.phro.2022.11.007; Li B, Huang J, Ruan J, Peng Q, Huang S, Li Y, Li F. Dosimetric impact of CT metal artifact reduction for spinal implants in stereotactic body radiotherapy planning. Quant Imaging Med Surg. 2023 Dec 1;13(12):8290–8302. doi:10.21037/qims‑23‑442; Vellarackal AJ, Kaim AH. Metal artefact reduction of different alloys with dual energy computed tomography (DECT). Sci Rep. 2021 Jan 26;11(1):2211. doi:10.1038/s41598‑021‑81600‑1; Zhang H, Wang L, Li L, Cai A, Hu G, Yan B. Iterative metal artifact reduction for x‑ray computed tomography using unmatched projector/backprojector pairs. Med Phys. 2016 Jun;43(6):3019–3033. doi:10.1118/1.4950722; Huflage H, Grunz JP, Hackenbroch C, Halt D, Luetkens KS, Alfred Schmidt AM, et al. Metal artefact reduction in low‑dose computed tomography: Benefits of tin prefiltration versus postprocessing of dual‑energy datasets over conventional CT imaging. Radiography (Lond). 2022 Aug;28(3):690–696. doi:10.1016/j.radi.2022.05.006; Mohammadinejad P, Baffour FI, Adkins MC, Yu L, McCollough CH, Fletcher JG, Glazebrook KN. Benefits of iterative metal artifact reduction and dual‑energy CT towards mitigating artifact in the setting of total shoulder prostheses. Skeletal Radiol. 2021 Jan;50(1):51–58. doi:10.1007/s00256‑020‑03528‑3; Roth TD, Maertz NA, Parr JA, Buckwalter KA, Choplin RH. CT of the hip prosthesis: appearance of components, fixation, and complications. Radiographics. 2012 Jul‑Aug;32(4):1089–1107. doi:10.1148/rg.324115183; Васильев Ю. А., Семенов Д. С., Ахмад Е. С., Панина О. Ю., Сергунова К. А., Петряйкин А. В. Метод оценки влияния алгоритмов подавления артефактов от металлов в КТ на количественные характеристики изображений. Медицинская техника. 2020;4(322):43–45.; Selles M, Stuivenberg VH, Wellenberg RHH, van de Riet L, Nijholt IM, van Osch JAC, et al. Quantitative analysis of metal artifact reduction in total hip arthroplasty using virtual monochromatic imaging and orthopedic metal artifact reduction, a phantom study. Insights Imaging. 2021 Nov 24;12(1):171. doi:10.1186/s13244‑021‑01111‑5; Шубняков И. И., Риахи А., Денисов А. О., Корыткин А. А., Алиев А. Г., Вебер Е. В., и др. Основные тренды в эндопротезировании тазобедренного сустава на основании данных регистра артропластики НМИЦ ТО им. Р.Р. Вредена с 2007 по 2020 г. Травматология и ортопедия России. 2021;27(3):119–142. doi:10.21823/2311‑2905‑2021‑27‑3‑119‑142; Metal artifact reduction for orthopedic implants. Philips Professional healthcare. Режим доступа: https://www.usa.philips.com/healthcare/product/HCNOCTN192/omar-metal-artifact-reduction-for-orthopedic-implants.; Iterative Metal Artifact Reduction (iMAR): Technical Principles and Clinical Results in Radiation Therapy. Siemens‑healthineers. Режим доступа: https://marketing.webassets.siemens-healthineers.com/1800000004904518/83085a287878/RO_Internet_Whitepaper_iMAR_1800000004904518.pdf.; Smart Metal Artifact Reduction (MAR). GE Healthcare: 10 июля 2024. Режим доступа: https://www.gehealthcare.com/en-sg/-/jssmedia/widen/2018/01/25/0204/gehealthcarecom/migrated/2018/02/19/0836/omography-abstracts-metal-artifact-reduction-gehc-brochure_ct-metal-artifact-reduction_pdf.pdf?rev=-1&hash=31ACF01E996A0E76CD1BE595E9DEE697; Single Energy Metal Artifact Reduction. Toshiba Medical. Режим доступа: https://us.medical.canon/download/ct-aq-one-genesis-wp-semar.; Andersson KM, Norrman E, Geijer H, Krauss W, Cao Y, Jendeberg J, et al. Visual grading evaluation of commercially available metal artefact reduction techniques in hip prosthesis computed tomography. Br J Radiol. 2016 Jul;89(1063):20150993. doi:10.1259/bjr.20150993; Selles M, van Osch JAC, Maas M, Boomsma MF, Wellenberg RHH. Advances in metal artifact reduction in CT images: A review of traditional and novel metal artifact reduction techniques. Eur J Radiol. 2024 Jan;170:111276. doi:10.1016/j.ejrad.2023.111276; Selles M, Slotman DJ, van Osch JAC, Nijholt IM, Wellenberg RHH, Maas M, Boomsma MF. Is AI the way forward for reducing metal artifacts in CT? Development of a generic deep learning‑based method and initial evaluation in patients with sacroiliac joint implants. Eur J Radiol. 2023 Jun;163:110844. doi:10.1016/j.ejrad.2023.110844; Arabi H, Zaidi H. Deep learning‑based metal artefact reduction in PET/CT imaging. Eur Radiol. 2021 Aug;31(8):6384–6396. doi:10.1007/s00330‑021‑07709‑z; Feldhaus FW, Böning G, Kahn J, Fehrenbach U, Maurer M, Renz D, Streitparth F. Improvement of image quality and diagnostic confidence using Smart MAR ‑ a projection‑based CT protocol in patients with orthopedic metallic implants in hip, spine, and shoulder. Acta Radiol. 2020 Oct;61(10):1421–1430. doi:10.1177/0284185120903446; Shim E, Kang Y, Ahn JM, Lee E, Lee JW, Oh JH, Kang HS. Metal Artifact Reduction for Orthopedic Implants (O‑MAR): Usefulness in CT Evaluation of Reverse Total Shoulder Arthroplasty. AJR Am J Roentgenol. 2017 Oct;209(4):860–866. doi:10.2214/ajr.16.17684; Хоссаин, Ш. Д., Петряйкин, А. В., Мураев, А. А., Данаев, А. Б., Буренчев, Д. В., Долгалев, А. А., и др. Рентгеноконтрастные шаблоны для определения минеральной плотности кости по данным конусно‑лучевой и мультиспиральной компьютерной томографии. Digital Diagnostics. 2023;4(3):292–305. doi:10.17816/dd501771; Методика приготовления и использования стандартных образцов гидроортофосфата калия в средствах контроля рентгеновских методов остеоденситометрии. 2е изд. М.: ГБУЗ “НПКЦ ДиТ ДЗМ”; 2020, 20 c.; https://www.rpmj.ru/rpmj/article/view/1049

  3. 3
    Academic Journal

    المساهمون: Работа выполнена при финансовой поддержке НИР «Научное обоснование методов лучевой диагностики опухолевых заболеваний с использованием радиомического анализа», (№ ЕГИСУ: № 123031500005-2 ) в соответствии с Приказом от 21.12.2022 г. № 1196 "Об утверждении государственных заданий, финансовое обеспечение которых осуществляется за счет средств бюджета города Москвы государственным бюджетным (автономным) учреждениям подведомственным Департаменту здравоохранения города Москвы, на 2023 год и плановый период 2024 и 2025 годов" Департамента здравоохранения города Москвы.

    المصدر: Medical Visualization; Принято в печать ; Медицинская визуализация; Принято в печать ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1425/880; https://medvis.vidar.ru/jour/article/downloadSuppFile/1425/2263; https://medvis.vidar.ru/jour/article/downloadSuppFile/1425/2264; https://medvis.vidar.ru/jour/article/downloadSuppFile/1425/2265; https://medvis.vidar.ru/jour/article/downloadSuppFile/1425/2266; https://medvis.vidar.ru/jour/article/downloadSuppFile/1425/2444; https://medvis.vidar.ru/jour/article/downloadSuppFile/1425/2446; https://medvis.vidar.ru/jour/article/downloadSuppFile/1425/2447; Hosny A., Parmar C., Quackenbush J. et al. Artificial intelligence in radiology. Nat. Rev. Cancer. 2018; 18 (8): 500–510. http://doi.org/10.1038/s41568-018-0016-5; Sogani J., Allen B. Jr., Dreyer K., McGinty G. Artificial intelligence in radiology: the ecosystem essential to improving patient care. Clin. Imaging. 2019; 59 (1): A3–A6. https://doi.org/10.1016/j.clinimag.2019.08.001; Keane P.A., Topol E.J. With an eye to AI and autonomous diagnosis. NPJ Digital Medicine. 2018; 1: 40. https://doi.org/10.1038/s41746-018-0048-y; Владзимирский А.В., Гусев А.В., Шарова Д.Е., Шулькин И.М., Попов А.А., Балашов М.К., Омелянская О.В., Васильев Ю.А. Методика оценки уровня зрелости информационной системы для здравоохранения. Врач и информационные технологии. 2022; 3: 68–86. https://doi.org/10.25881/18110193_2022_3_68; Шарова Д.Е., Гарбук С.В., Васильев Ю.А. Системы искусственного интеллекта в клинической медицине. Первая в мире серия национальных стандартов. Стандарты и качество. 2023; 1: 46–51. https://doi.org/10.35400/0038-9692-2023-1-304-22; Kelly S., Kaye S.-A., Oviedo-Trespalacios O. What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics. 2023; 77: 101925. https://doi.org/10.1016/j.tele.2022.101925; Page M.J., McKenzie J.E., Bossuyt P.M. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71. https://doi.org/10.1136/bmj.n71; Shea B.J., Reeves B.C., Wells G. et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017; 358: j4008. https://doi.org/10.1136/bmj.j4008; Yoon J.H., Strand F., Baltzer P.A.T. et al. Standalone AI for Breast Cancer Detection at Screening Digital Mammography and Digital Breast Tomosynthesis: A Systematic Review and Meta-Analysis. Radiology. 2023; 307 (5): e222639. https://doi.org/10.1148/radiol.222639; Hickman S.E., Woitek R., Vi Le E.P. et al. Machine Learning for Workflow Applications in Screening Mammography: Systematic Review and Meta-Analysis. Radiology. 2022; 302: 88–104. https://doi.org/10.1148/radiol.2021210391; Kuo R.Y.L., Harrison C., Curran T.-A. et al. Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis. Radiology. 2022. 304 (1): 50–62. https://doi.org/10.1148/radiol.211785; Xue Y., Zhou Y., Wang T. et al. Accuracy of Ultrasound Diagnosis of Thyroid Nodules Based on Artificial Intelligence-Assisted Diagnostic Technology: A Systematic Review and Meta-Analysis. Int J Endocrinol. 2022: 9492056. https://doi.org/10.1155/2022/9492056; Lex J.R., Di Michele J., Koucheki R. et al. Artificial Intelligence for Hip Fracture Detection and Outcome Prediction A Systematic Review and Meta-analysis. JAMA Network Open. 2023; 6 (3): e233391. https://doi.org/10.1001/jamanetworkopen.2023.3391; Gao L., Jiao T., Feng Q., Wang W. Application of artificial intelligence in diagnosis of osteoporosis using medical images: a systematic review and meta-analysis. Osteoporosis International. 2021; 32: 1279–1286. https://doi.org/10.1007/s00198-021-05887-6; Poly T.N., Islam M., Li Y.-C. J. et al. Application of Artificial Intelligence for Screening COVID-19 Patients Using Digital Images: Meta-analysis. JMIR Med. Inform. 2021; 9 (4): e21394. https://medinform.jmir.org/2021/4/e21394; Zhang X., Yang Y., Shen Y.-W. et al. Diagnostic accuracy and potential covariates of artificial intelligence for diagnosing orthopedic fractures: a systematic literature review and meta-analysis. Eur. Radiol. 2022; 32 (10): 7196–7216. https://doi.org/10.1007/s00330-022-08956-4; Sugibayashi T., Walston S.L., Matsumoto T. et al. Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis. Eur. Respirat. Rev. 2023; 32: 220259. https://doi.org/10.1183/16000617.0259-2022; Thong L.T., Chou H.S., Chew H.S.J., Lau Y. Diagnostic test accuracy of artificial intelligence-based imaging for lung cancer screening: A systematic review and meta-analysis. Lung Cancer. 2023; 176: 4–13. https://doi.org/10.1016/j.lungcan.2022.12.002; Menon N., Guidozzi N., Chidambaram S., Markar S.R. Performance of radiomics-based artificial intelligence systems in the diagnosis and prediction of treatment response and survival in esophageal cancer: asystematic review and meta-analysis of diagnostic accuracy. Dis. Esophagus. 2023; 36 (6): doad034. https://doi.org/10.1093/dote/doad034; Xing W., Gao W., Lv X. et al. Artificial intelligence predicts lung cancer radiotherapy response: A meta-analysis. Artif. Intell. Med. 2023; 142: 102585 https://doi.org/10.1016/j.artmed.2023.102585; Zheng X., He B., Hu Y. et al. Diagnostic Accuracy of Deep Learning and Radiomics in Lung Cancer Staging: A Systematic Review and Meta-Analysis. Front. Public Health. 2022; 10: 938113. https://doi.org/10.3389/fpubh.2022.938113; Agarwal S., Wood D., Grzeda M. et al. Systematic Review of Artificial Intelligence for Abnormality Detection in High-volume Neuroimaging and Subgroup Meta-analysis for Intracranial Hemorrhage Detection. Clin. Neuroradiol. 2023; 33: 943–956. https://doi.org/10.1007/s00062-023-01291-1; Bedrikovetski S., Dudi-Venkata N.N., Kroon H.M. et al. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. BMC Cancer. 2021a; 21. https://doi.org/10.1186/s12885-021-08773-w; Bedrikovetski S., Dudi-Venkata N.N., Maicas G. et al. Artificial intelligence for the diagnosis of lymph node metastases in patients with abdominopelvic malignancy: A systematic review and meta-analysis. Artif. Intell. Med. 2021b; 113: 102022. https://doi.org/10.1016/j.artmed.2021.102022; Din M., Agarwal S., Grzeda M. et al. Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis. J. NeuroIntervent. Surg. 2023; 15: 262–271. https://doi.org/10.1136/jnis-2022-019456; Xu H.-L., Gong T.-T., Liu F.-H. et al. Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis. eClinicalMedicine. 2022; 53: 101662. https://doi.org/10.1016/j.eclinm.2022.101662; Sadr S., Mohammad-Rahimi H., Motamedian S.R. et al. Deep Learning for Detection of Periapical Radiolucent Lesions: A Systematic Review and Meta-analysis of Diagnostic Test Accuracy. J. Endodont. 2023; 49 (3): 248–261.e3. https://doi.org/10.1016/j.joen.2022.12.007; Komolafe T.E., Cao Y., Nguchu B.A. et al. Diagnostic Test Accuracy of Deep Learning Detection of COVID-19: A Systematic Review and Meta-Analysis. Acad. Radiol. 2021; 28 (11): 1507–1523. https://doi.org/10.1016/j.acra.2021.08.008; Wang Q., Ma J., Zhang L., Xie L. Diagnostic performance of corona virus disease 2019 chest computer tomography image recognition based on deep learning: Systematic review and meta-analysis. Medicine. 2022; 101: 42 (e31346). http://dx.doi.org/10.1097/MD.0000000000031346; Campello C.A., Castanha E.B., Vilardo M. et al. Machine learning for malignant versus benign focal liver lesions on US and CEUS: a meta‑analysis. Abdom. Radiology. 2023; 48: 3114–3126. https://doi.org/10.1007/s00261-023-03984-0; Dumitrescu E.A., Ungureanu B.S., Cazacu I.M. et al. Diagnostic Value of Artificial Intelligence-Assisted Endoscopic Ultrasound for Pancreatic Cancer: A Systematic Review and Meta-Analysis. Diagnostics. 2022; 12: 309. https://doi.org/10.3390/diagnostics12020309; Potipimpanon P., Charakorn N., Hirunwiwatkul P. A comparison of artificial intelligence versus radiologists in the diagnosis of thyroid nodules using ultrasonography: a systematic review and meta‑analysis. Eur. Arch. of Oto-Rhino-Laryngol. 2022; 279: 5363–5373. https://doi.org/10.1007/s00405-022-07436-1; Rescinito R., Ratti M., Payedimarri A.B., Panella M. Prediction Models for Intrauterine Growth Restriction Using Artificial Intelligence and Machine Learning: A Systematic Review and Meta-Analysis. Healthcare. 2023; 11: 1617. https://doi.org/10.3390/healthcare11111617; Abesi F., Jamali A.S., Zamani M. Accuracy of artificial intelligence in the detection and segmentation of oral and maxillofacial structures using cone-beam computed tomography images: a systematic review and meta-analysisn. Polish J. Radiol. 2023; 88: e256–e263. https://doi.org/10.5114/pjr.2023.127624; Badr F.F., Jadu F.M. Performance of artificial intelligence using oral and maxillofacial CBCT images: A systematic review and meta-analysis. Nigerian J. Clin. Pract. 2022; 25: 1918–1927. https://doi.org/10.4103/njcp.njcp_394_22; Soffer S., Klang E., Shimon O. et al. Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis. Scientific Reports. 2021; 11: 15814. https://doi.org/10.1038/s41598-021-95249-3; Islam M., Poly T.N., Walther B.A. et al. Deep Learning for the Diagnosis of Esophageal Cancer in Endoscopic Images: A Systematic Review and Meta-Analysis. Cancers. 2022; 14 (23): 5996. https://doi.org/10.3390/cancers14235996; Xu Y., Ding W., Wang Y. et al. Comparison of diagnostic performance between convolutional neural networks and human endoscopists for diagnosis of colorectal polyp: A systematic review and meta-analysis. PLoS ONE. 2021; 16 (2): e0246892. https://doi.org/10.1371/journal.pone.0246892; Taib B.G., Karwath A., Wensley K. et al. Artificial intelligence in the management and treatment of burns: A systematic review and meta-analyses. J. Plast. Reconstructive & Aesthetic Surg. 2023; 77: 133–161. https://doi.org/10.1016/j.bjps.2022.11.049; Yang C., Qin L., Xie Y., Liao J. Deep learning in CT image segmentation of cervical cancer: a systematic review and meta‑analysis. Radiation Oncology. 2022; 17: 175 https://doi.org/10.1186/s13014-022-02148-6; Electronic resource: QUADAS-2, University of Bristol: https://www.bristol.ac.uk/population-health-sciences/projects/quadas/quadas-2/; Electronic resource: Radiomics Quality Score - RQS 2.0.: https://www.radiomics.world/rqs2; Kim H.Y., Cho S.J., Sunwoo L. et al. Classification of true progression after radiotherapy of brain metastasis on MRI using artificial intelligence: a systematic review and meta-analysis. Neuro-Oncology Advances. 2021; 3 (1): 1–12. https://doi.org/10.1093/noajnl/vdab080; Electronic resource: International Prospective Register of Systematic Reviews. https://www.crd.york.ac.uk/PROSPERO/; Adamou A., Beltsios E.T., Bania A. et al. Artificial intelligence-driven ASPECTS for the detection of early stroke changes in non-contrast CT: a systematic review and meta-analysis. J. NeuroIntervent. Surg. 2023; 15: e298–e304. https://doi.org/10.1136/jnis-2022-019447; Nabizadeh F., Ramezannezhad E., Kargar A. et al. Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis. Neurol. Sci. 2023; 44: 499–517. https://doi.org/10.1007/s10072-022-06460-7; Arbabshirani M.R., Fornwalt B.K., Mongelluzzo G.J. et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Dig. Med. 2018; 1: 9. https://doi.org/10.1038/s41746-017-0015-z; Ginat D. Implementation of machine learning software on the radiology worklist decreases scan view delay for the detection of intracranial hemorrhage on CT. Brain Sci. 2021. 11 (7): 832. https://doi.org/10.3390/brainsci11070832; Salehinejad H., Kitamura J., Ditkofsky N. et al. A real-world demonstration of machine learning generalizability in the detection of intracranial hemorrhage on head computerized tomography. Sci. Reports. 2021; 11: 17051. https://doi.org/10.1038/s41598-021-95533-2; Владзимирский А.В., Омелянская О.В., Шулькин.И.М., Четвериков С.Ф., Семенов С.С., Новик В.П., Павлов Н.А., Арзамасов К.М., Андрейченко А.Е., Бобровская Т.М., Блохин И.А., Гомболевский В.А. MosMedData: НДКТ с признаков рака легкого. Свидетельство о государственной регистрации базы данных № 2023621253 Российская Федерация. MosMedData: НДКТ с признаками рака легкого: № 2023620623: заявл. 10.03.2023: опубл. 18.04.2023 / заявитель ГБУЗ города Москвы “Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы”.; Морозов С.П., Андрейченко А.Е., Блохин И.А., Гележе П.Б., Гончар А.П., Николаев А.Е., Павлов Н.А., Чернина В.Ю., Гомболевский В.А. MosMedData: датасет 1110 компьютерных томографий органов грудной клетки, выполненных во время эпидемии COVID-19. Digital Diagnostics. 2020; 1 (1): 49–59. https://doi.org/10.17816/DD46826; Гомболевский В.А., Харламов К.А., Пятницкий И.А. и др. Шаблоны протоколов описаний исследований по специальности “Рентгенология”. Компьютерная томография: Методические рекомендации № 23 / Москва: ГБУЗ города Москвы “Научно-практический центр медицинской радиологии Департамента здравоохранения города Москвы”, 2016а. 31 с.; Гомболевский В.А., Харламов К.А., Пятницкий И.А. и др. Шаблоны протоколов описаний исследований по специальности “Рентгенология”. Магнитно-резонансная томография: Методические рекомендации № 21 / Москва: Государственное бюджетное учреждение здравоохранения города Москвы “Научно-практический центр медицинской радиологии Департамента здравоохранения города Москвы”, 2016б. 41 с.; Aggarwal R., Sounderajah V., Martin G. et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Dig. Med. 2021; 4: 65. https://doi.org/10.1038/s41746-021-00438-z; Liu M., Wu J., Wang N. et al. The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis. PLoS ONE. 2023; 18 (3): e0273445. https://doi.org/10.1371/journal.pone.0273445; Jørgensen M.D., Antulov R., Hess S., Lysdahlgaard S. Convolutional neural network performance compared to radiologists in detecting intracranial hemorrhage from brain computed tomography: A systematic review and meta-analysis. Eur. J. Radiol. 2022; 146: 110073. https://doi.org/10.1016/j.ejrad.2021.110073; Evangelista K., de Freitas Silva B.S., Yamamoto-Silva F.P. et al. Accuracy of artificial intelligence for tooth extraction decision‑making in orthodontics: a systematic review and meta‑analysis. Clin. Oral Invest. 2022; 26: 6893–6905. https://doi.org/10.1007/s00784-022-04742-0; https://medvis.vidar.ru/jour/article/view/1425

  4. 4
    Academic Journal

    المساهمون: This paper was prepared by a group of authors as a part of the research and development effort titled “Scientific evidence for using radiomics-guided medical imaging to diagnose cancer”, No. 123031400009-1”, (USIS No. 123031500005-2) in accordance with the Order No. 1196 dated December 21, 2022 «On approval of state assignments funded by means of allocations from the budget of the city of Moscow to the state budgetary (autonomous) institutions subordinate to the Moscow Health Care Department, for 2023 and the planned period of 2024 and 2025» issued by the Moscow Health Care Department., Данная статья подготовлена авторским коллективом в рамках НИР «Научное обоснование методов лучевой диагностики опухолевых заболеваний с использованием радиомического анализа», (№ ЕГИСУ: № 123031500005-2) в соответствии с Приказом от 21.12.2022 г. № 1196 «Об утверждении государственных заданий, финансовое обеспечение которых осуществляется за счет средств бюджета города Москвы государственным бюджетным (автономным) учреждениям подведомственным Департаменту здравоохранения города Москвы, на 2023 год и плановый период 2024 и 2025 годов» Департамента здравоохранения города Москвы.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 3 (2023); 23-31 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 3 (2023); 23-31 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1933/855; Mascalchi M., Diciotti S., Sverzellati N., Camiciottoli G., Ciccotosto C., Falaschi F. et al. Low agreement of visual rating for detailed quantification of pulmonary emphysema in whole-lung CT. Acta Radiol. 2012;53(1):53–60. DOI:10.1258/ar.2011.110419.; Ng C.S., Desai S.R., Rubens M.B., Padley S.P., Wells A.U., Hansell D.M. Visual quantitation and observer variation of signs of small airways disease at inspiratory and expiratory CT. J. Thorac. Imaging. 1999;14(4):279–285. DOI:10.1097/00005382-199910000-00008.; Siemienowicz M.L., Kruger S.J., Goh N.S., Dobson J.E., Spelman T.D., Fabiny R.P. Agreement and mortality prediction in high-resolution CT of diffuse fibrotic lung disease. J. Med. Imaging Radiat. Oncol. 2015;59(5):555–563. DOI:10.1111/1754-9485.12314.; Walsh S.L.F., Hansell D.M. High-resolution CT of interstitial lung disease: A continuous evolution. Semin. Respir. Crit. Care Med. 2014;35(1):129–144. DOI:10.1055/s-0033-1363458.; Asil K., Kalaycıoğlu B., Mahmutyazıcıoğlu K. Individual factors affecting computed tomography densitometry measurements. The International Annals of Medicine. 2018;2(12). DOI:10.24087/IAM.2018.2.12.680.; Ringheim H., Thudium R.F., Jensen J.S., Rezahosseini O., Nielsen S.D. Prevalence of emphysema in people living with human immunodeficiency virus in the current combined antiretroviral therapy era: A systematic review. Front. Med. (Lausanne). 2022;9:897773. DOI:10.3389/fmed.2022.897773.; Romei C., Castellana R., Conti B., Bemi P., Taliani A., Pistelli F. et al. Quantitative texture-based analysis of pulmonary parenchymal features on chest CT: comparison with densitometric indices and short-term effect of changes in smoking habit. Eur. Respir. J. 2022;60(4):2102618. DOI:10.1183/13993003.02618-2021.; Lagrange J.L., Brassard N., Costa A., Aubanel D., Héry M., Bruneton J.N. et al. CT measurement of lung density: the role of patient position and value for total body irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1987;13(6):941–944. DOI:10.1016/0360-3016(87)90111-8.; Lynch D.A. Progress in imaging COPD, 2004–2014. Chronic Obstr. Pulm. Dis. 2014;1(1):73–82. DOI:10.15326/jcopdf.1.1.2014.0125.; Yanase J., Triantaphyllou E. A systematic survey of computer-aided diagnosis in medicine: Past and present developments. Expert Systems with Applications. 2019;138:112821. DOI:10.1016/j.eswa.2019.112821.; Bankman I. (ed.) Handbook of medical image processing and analysis. 2-nd ed. San Diego, United States: Elsevier Science Publishing Co Inc.; 2008:1000.; Loeh B., Brylski L.T., von der Beck D., Seeger W., Krauss E., Bonniaud P. et al. Lung CT densitometry in idiopathic pulmonary fibrosis for the prediction of natural course, severity, and mortality. Chest. 2019;155(5):972–981. DOI:10.1016/j.chest.2019.01.019.; Hoffman E.A., Ahmed F.S., Baumhauer H., Budoff M., Carr J.J., Kronmal R. et al. Variation in the percent of emphysema-like lung in a healthy, nonsmoking multiethnic sample. The MESA lung study. Ann. Am. Thorac. Soc. 2014;11(6):898–907. DOI:10.1513/AnnalsATS.201310-364OC.; Walsdorff M., Van Muylem A., Gevenois P.A. Effect of total lung capacity and gender on CT densitometry indexes. BJR. 2016;89(1058):20150631. DOI:10.1259/bjr.20150631.; Avila N.A., Kelly J.A., Dwyer A.J., Johnson D.L., Jones E.C., Moss J. Lymphangioleiomyomatosis: Correlation of qualitative and quantitative thin-section CT with pulmonary function tests and assessment of dependence on pleurodesis. Radiology. 2002;223(1):189–197. DOI:10.1148/radiol.2231010315.; Crossley D., Renton M., Khan M., Low E.V., Turner A.M. CT densitometry in emphysema: a systematic review of its clinical utility. Int. J. Chron. Obstruct. Pulmon. Dis. 2018;13:547–563. DOI:10.2147/COPD.S143066.; Jou S.S., Yagihashi K., Zach J.A., Lynch D., Suh Y.J. Relationship between current smoking, visual CT findings and emphysema index in cigarette smokers. Clinical Imaging. 2019;53:195–199. DOI:10.1016/j.clinimag.2018.10.024.; Эмфизема легких. Большая российская энциклопедия – электронная версия. Accessed February 8, 2023. URL: https://old.bigenc.ru/medicine/text/4935239 (13.04.2023).; Viegi G., Pistelli F., Sherrill D.L., Maio S., Baldacci S., Carrozzi L. Definition, epidemiology and natural history of COPD. Eur. Resp. J. 2007;30(5):993–1013. DOI:10.1183/09031936.00082507.; Carr L.L., Jacobson S., Lynch D.A., Foreman M.G., Flenaugh E.L., Hersh C.P. et al. Features of COPD as predictors of lung cancer. Chest. 2018;153(6):1326–1335. DOI:10.1016/j.chest.2018.01.049.; Николаев А.Е., Блохин И.А., Лбова О.А., Дадакина И.С., Гомболевский В.А., Морозов С.П. Три клинически значимые находки при скрининге рака легких. Туберкулез и болезни легких. 2019;97(10):37–44. DOI:10.21292/2075-1230-2019-97-10-37-44.; Yasuura Y., Terada Y., Mizuno K., Kayata H., Hayato K., Kojima H. et al. Quantitative severity of emphysema is related to the prognostic outcome of early-stage lung cancer. Eur. J. Cardiothorac. Surg. 2022;62(5):ezac499. DOI:10.1093/ejcts/ezac499.; Ezponda A., Casanova C., Divo M., Marín-Oto M., Cabrera C., Marín J.M. et al. Chest CT-assessed comorbidities and all-cause mortality risk in COPD patients in the BODE cohort. Respirology. 2022;27(4):286–293. DOI:10.1111/resp.14223.; Bakker J.T., Klooster K., Vliegenthart R., Slebos D.J. Measuring pulmonary function in COPD using quantitative chest computed tomography analysis. Eur. Respir. Rev. 2021;30(161):210031. DOI:10.1183/16000617.0031-2021.; Cavigli E., Camiciottoli G., Diciotti S., Orlandi I., Spinelli C., Meoni E. et al. Whole-lung densitometry versus visual assessment of emphysema. Eur. Radiol. 2009;19(7):1686–1692. DOI:10.1007/s00330-009-1320-y.; Chen H., Zeng Q.S., Zhang M., Chen R.C., Xia T.T., Wang W. et al. Quantitative low-dose computed tomography of the lung parenchyma and airways for the differentiation between chronic obstructive pulmonary disease and asthma patients. RES. 2017;94(4):366–374. DOI:10.1159/000478531.; Loh L.C., Ong C.K., Koo H.J., Lee S.M., Lee J.S., Oh Y.M. et al. A novel CT-emphysema index/FEV1 approach of phenotyping COPD to predict mortality. Int. J. Chron. Obstruct Pulmon. Dis. 2018;13:2543–2550. DOI:10.2147/COPD.S165898.; QIBA Profile: Computed Tomography: Lung Densitometry; Alliance QIB. Radiological Society of North America; 2021. URL: https://qibawiki.rsna.org/images/a/a8/QIBA_CT_Lung_Density_Profile_090420-clean.pdf (13.04.2023).; Nguyen-Kim T.D.L., Maurer B., Suliman Y.A., Morsbach F., Distler O., Frauenfelder T. The impact of slice-reduced computed tomography on histogram-based densitometry assessment of lung fibrosis in patients with systemic sclerosis. J. Thorac. Dis. 2018;10(4):2142–2152. DOI:10.21037/jtd.2018.04.39.; Alevizos M.K., Danoff S.K., Pappas D.A., Lederer D.J., Johnson C., Hoffman E.A. et al. Assessing predictors of rheumatoid arthritis-associated interstitial lung disease using quantitative lung densitometry. Rheumatology (Oxford). 2022;61(7):2792–2804. DOI:10.1093/rheumatology/keab828.; Tao Q., Zhu T., Ge X., Gong S., Guo J. The application value of spiral CT lung densitometry software in the diagnosis of radiation-induced lung injury. Contrast Media & Molecular Imaging. 2021;2021:e9305508. DOI:10.1155/2021/9305508.; Carvalho A.R.S., Guimarães A.R., Sztajnbok F.R., Rodrigues R.S., Silva B.R.A., Lopes A.J. et al. Automatic quantification of interstitial lung disease from chest computed tomography in systemic sclerosis. Front. Med. (Lausanne). 2020;7:577739. DOI:10.3389/fmed.2020.577739.; Abuladze L.R., Blokhin I.A., Gonchar A.P., Suchilova M.M., Vladzymyrskyy A.V., Gombolevskiy V.A. et al. CT imaging of HIV-associated pulmonary disorders in COVID-19 pandemic. Clinical Imaging. 2023;95:97–106. DOI:10.1016/j.clinimag.2023.01.006.; Richeldi L., Collard H.R., Jones M.G. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–1952. DOI:10.1016/S0140-6736(17)30866-8.; Easthausen I., Podolanczuk A., Hoffman E., Kawut S., Oelsner E., Kim J.S. et al. Reference values for high attenuation areas on chest CT in a healthy, never-smoker, multi-ethnic sample: The MESA study. Respirology. 2020;25(8):855–862. DOI:10.1111/resp.13783.; Kim G.H.J., Weigt S.S., Belperio J.A., Brown M.S., Shi Y., Lai J.H. et al. Prediction of idiopathic pulmonary fibrosis progression using early quantitative changes on CT imaging for a short term of clinical 18–24-month follow-ups. Eur. Radiol. 2020;30(2):726–734. DOI:10.1007/s00330-019-06402-6.; Best A.C., Meng J., Lynch A.M., Bozic C.M., Miller D., Grunwald G.K. et al. Idiopathic pulmonary fibrosis: physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality. Radiology. 2008;246(3):935–940. DOI:10.1148/radiol.2463062200.; Humphries S.M., Mackintosh J.A., Jo H.E., Walsh S.L.F., Silva M., Calandriello L. et al. Quantitative computed tomography predicts outcomes in idiopathic pulmonary fibrosis. Respirology. 2022;27(12):1045–1053. DOI:10.1111/resp.14333.; Jacob J., Bartholmai B.J., Rajagopalan S., Kokosi M., Nair A., Karwoski R. et al. Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures. Eur. Respir. J. 2017;49(1):1601011. DOI:10.1183/13993003.01011-2016.; De Giacomi F., Raghunath S., Karwoski R., Bartholmai B.J., Moua T. Short-term automated quantification of radiologic changes in the characterization of idiopathic pulmonary fibrosis versus nonspecific interstitial pneumonia and prediction of long-term survival. J. Thorac. Imaging. 2018;33(2):124–131. DOI:10.1097/RTI.0000000000000317.; Чучалин А.Г., Авдеев С.Н., Айсанов З.Р., Белевский А.С., Демура С.А., Илькович М.М. и др. Диагностика и лечение идиопатического легочного фиброза. Федеральные клинические рекомендации. Пульмонология. 2016;26(4):399–419. DOI:10.18093/0869-0189-2016-26-4-399-419.; Ando K., Sekiya M., Tobino K., Takahashi K. Relationship between quantitative CT metrics and pulmonary function in combined pulmonary fibrosis and emphysema. Lung. 2013;191(6):585–591. DOI:10.1007/s00408-013-9513-1.; Wisselink H.J., Pelgrim G.J., Rook M., van den Berge M., Slump K., Nagaraj Y. et al. Potential for dose reduction in CT emphysema densitometry with post-scan noise reduction: a phantom study. BJR. 2020;93(1105):20181019. DOI:10.1259/bjr.20181019.; Choromańska A., Macura K.J. Role of computed tomography in quantitative assessment of emphysema. Pol. J. Radiol. 2012;77(1):28–36. DOI:10.12659/pjr.882578.; Гаврилов П.В., Грива Н.А., Торкатюк Е.А. Оценка воспроизводимости программного анализа объема эмфиземы: сравнительный анализ результатов при оценке различными программными продуктами. Лучевая диагностика и терапия. 2021;11(4):37–43. DOI:10.22328/2079-5343-2020-11-4-37-43.; Гомболевский В.А., Чернина В.Ю., Блохин И.А., Николаев А.Е., Барчук А.А., Морозов С.П. Основные достижения низкодозной компьютерной томографии в скрининге рака легкого. Туберкулез и болезни легких. 2021;99(1):61–70. DOI:10.21292/2075-1230-2021-99-1-61-70.; Gierada D.S., Bierhals A.J., Choong C.K., Bartel S.T., Ritter J.H., Das N.A. et al. Effects of CT section thickness and reconstruction kernel on emphysema quantification relationship to the magnitude of the CT emphysema index. Acad. Radiol. 2010;17(2):146–156. DOI:10.1016/j.acra.2009.08.007.; Cao X., Jin C., Tan T., Guo Y. Optimal threshold in low-dose CT quantification of emphysema. Eur. J. Radiol. 2020;129:109094. DOI:10.1016/j.ejrad.2020.109094.; Jin H., Heo C., Kim J.H. Deep learning-enabled accurate normalization of reconstruction kernel Effects on emphysema quantification in low-dose CT. Phys. Med Biol. 2019;64(13):135010. DOI:10.1088/1361-6560/ab28a1.; Kim H., Goo J.M., Ohno Y., Kauczor H.U., Hoffman E.A., Gee J.C. et al. Effect of reconstruction parameters on the quantitative analysis of chest computed tomography. J. Thorac. Imaging. 2019;34(2):92–102. DOI:10.1097/RTI.0000000000000389.; Nagaraj Y., Wisselink H.J., Rook M., Cai J., Nagaraj S.B., Sidorenkov G. et al. AI-driven model for automatic emphysema detection in low-dose computed tomography using disease-specific augmentation. J. Digit. Imaging. 2022;35(3):538–550. DOI:10.1007/s10278-022-00599-7.; Bak S.H., Kim J.H., Jin H., Kwon S.O., Kim B., Cha Y.K. et al. Emphysema quantification using low-dose computed tomography with deep learning-based kernel conversion comparison. Eur. Radiol. 2020;30(12):6779–6787. DOI:10.1007/s00330-020-07020-3.; Эмфизема легких: Клинические рекомендации. Российское Респираторное общество; 2021. URL: https://spulmo.ru/upload/kr/Emfizema_2021.pdf (13.04.2023).; Rea G., De Martino M., Capaccio A., Dolce P., Valente T., Castaldo S. et al. Comparative analysis of density histograms and visual scores in incremental and volumetric high-resolution computed tomography of the chest in idiopathic pulmonary fibrosis patients. Radiol. med. 2021;126(4):599–607. DOI:10.1007/s11547-020-01307-7.; Sukhija A., Mahajan M., Joshi P.C., Dsouza J., Seth N.D.N., Patil K.H. Radiographic findings in COVID-19: Comparison between AI and radiologist. Indian J. Radiol. Imaging. 2021;31(Suppl 1):S87–S93. DOI:10.4103/ijri.IJRI_777_20.; Soyer P., Fishman E.K., Rowe S.P., Patlas M.N., Chassagnon G. Does artificial intelligence surpass the radiologist? Diagnostic and Interventional Imaging. 2022;103(10):445–447. DOI:10.1016/j.diii.2022.08.001.; Colombi D., Bodini F.C., Petrini M., Maffi G., Morelli N., Milanese G. et al. Well-aerated lung on admitting chest CT to predict adverse out-come in COVID-19 Pneumonia. Radiology. 2020;296(2):E86–E96. DOI:10.1148/radiol.2020201433.; Блохин И.А., Соловьев А.В., Владзимирский A.B., Коденко М.Р., Шумская Ю.Ф., Гончар А.П. и др. Автоматический анализ поражения легких при COVID-19: сравнение стандартной и низкодозной компьютерной томографии. Сибирский журнал клинической и экспериментальной медицины. 2022;37(4):114–123. DOI:10.29001/2073-8552-2022-37-4-114-123.; Шатенок М.П., Рыжов С.А., Лантух З.А., Дружинина Ю.В., Толкачев К.В. Возможности программного обеспечения для мониторинга дозовой нагрузки пациентов в лучевой диагностике. Digital Diagnostics. 2022;3(3):212−230. DOI:10.17816/DD106083.; Kodenko M.R., Vasilev Y.A., Vladzymyrskyy A.V., Omelyanskaya O.V., Leonov D.V., Blokhin I.A. et al. Diagnostic accuracy of AI for opportunistic screening of abdominal aortic aneurysm in CT: A systematic review and narrative synthesis. Diagnostics. 2022;12(12):3197. DOI:10.3390/diagnostics12123197.; Sorantin E., Grasser M.G., Hemmelmayr A., Tschauner S., Hrzic F., Weiss V. et al. The augmented radiologist: artificial intelligence in the practice of radiology. Pediatr. Radiol. 2022;52(11):2074–2086. DOI:10.1007/s00247-021-05177-7.; Gangeh M.J., Sørensen L., Shaker S.B., Kamel M.S., de Bruijne M., Loog M. A texton-based approach for the classification of lung parenchyma in CT images. Med. Image Comput. Comput. Assist. Interv. 2010;13(Pt. 3):595–602. DOI:10.1007/978-3-642-15711-0_74.; Soffer S., Ben-Cohen A., Shimon O., Amitai M.M., Greenspan H., Klang E. Convolutional neural networks for radiologic images: A radiologist’s guide. Radiology. 2019;290(3):590–606. DOI:10.1148/radiol.2018180547.; Soffer S., Morgenthau A.S., Shimon O., Barash Y., Konen E., Glicksberg B.S. et al. Artificial intelligence for interstitial lung disease analysis on chest computed tomography: A systematic review. Academic Radiology. 2022;29:S226–S235. DOI:10.1016/j.acra.2021.05.014.; Aggarwal R., Sounderajah V., Martin G., Aggarwal R., Sounderajah V., Martin G. et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit. Med. 2021;4(1):1–23. DOI:10.1038/s41746-021-00438-z.; https://www.sibjcem.ru/jour/article/view/1933