يعرض 1 - 9 نتائج من 9 نتيجة بحث عن '"New Generation Sequencing (NGS)"', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Работа поддержана ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России.

    المصدر: Translational Medicine; Том 10, № 4 (2023); 322-331 ; Трансляционная медицина; Том 10, № 4 (2023); 322-331 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/803/526; Маилян О.А., Калпинский А.С., Решетов И.В. и др. Определение распространенности мутаций в генах репарации ДНК в российской популяции у больных метастатическим кастрационно-резистентным раком предстательной железы. Онкоурология 2022;18(3):60–6]. DOI:10.17650/1726-97762022-18-3-60-66.; Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А. Д. Каприна, В. В. Старинского, А. О. Шахзадовой. М.: МНИОИ им. П. А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 252 с.].; Налетов А.А., Недбайло С.А., Кудратова Е.А. и др. Применение апалутамида для лечения рака предстательной железы. Университетская медицина Урала. 2022. Том: 8 Номер: 2 (29). Страницы: 78–83. eLIBRARY ID: 49343196].; Leith A, Ribbands A, Kim J, et al. Real-world homologous recombination repair mutation testing in metastatic castration-resistant prostate cancer in the USA, Europe and Japan. Future Oncol. 2022; 18: 937–951. DOI:10.2217/fon-2021-1113.; Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 2004; 95(11):866–871. DOI:10.1111/j.1349-7006.2004.tb02195.x; Samstein RM, Krishna C, Ma X, et al. Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nat Cancer. 2021; 1(12):1188–1203. DOI:10.1038/s43018-020-00139-8.; Turnbull C, Sud A, Houlston RS. Cancer genetics, precision prevention and a call to action. Nat Genet. 2018; 50(9):1212–1218. DOI:10.1038/s41588-018-0202-0.; Логинова М.В., Павлов В.Н., Гилязова И.Р. Прогностическое значение мутаций в генах BRCA1 и BRCA2 при раке предстательной железы (обзор литературы). Креативная хирургия и онкология. 2021;11(2):183–187]. https://doi.org/10.24060/2076-30932021-11-2-183-187.; Cheng HH, Sokolova AO, Schaeffer EM, et al. Germline and Somatic Mutations in Prostate Cancer for the Clinician. J Natl Compr Canc Netw. 2019; 17(5):515–521. DOI:10.6004/jnccn.2019.7307.; Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med. 2016; 375(5):443–453. DOI:10.1056/NEJMoa1603144.; Стукань А.И., Горяинова А.Ю., Григорян М.М. и др. Сигнальный механизм рецептора андрогена при раке предстательной железы: резистентность к антиандрогенной терапии и связь с генами репарации повреждений ДНК. Онкоурология 2023;19(1):85–101]. DOI:10.17650/17269776-2023-19-1-85-101.; Mai PL, Chatterjee N, Hartge P, et al. Potential excess mortality in BRCA1/2 mutation carriers beyond breast, ovarian, prostate, and pancreatic cancers, and melanoma. PLoS One. 2009; 4(3):e4812. DOI:10.1371/journal.pone.0004812.; Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011; 12(1):68–78. DOI:10.1038/nrc3181.; Lin D, Izadpanah R, Braun SE, et al. A novel model to characterize structure and function of BRCA1. Cell Biol Int. 2018; 42(1):34–44. DOI:10.1002/cbin.10846.; Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011 Dec 23;12(1):68–78. DOI:10.1038/nrc3181.; Castro E, Goh C, Leongamornlert D, et al. Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. Eur Urol. 2015; 68(2):186–193. DOI:10.1016/j.eururo.2014.10.022.; Song WH, Kim SH, Joung JY, et al. Prostate Cancer in a Patient with a Family History of BRCA Mutation: a Case Report and Literature Review. J Korean Med Sci. 2017; 32(2):377–381. DOI:10.3346/jkms.2017.32.2.377.; Castro E, Goh C, Olmos D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013; 31(14):1748–1757. DOI:10.1200/JCO.2012.43.1882.; Segal N, Ber Y, Benjaminov O, et al. Imaging-based prostate cancer screening among BRCA mutation carriersresults from the first round of screening. Ann Oncol. 2020; 31(11):1545–1552. DOI:10.1016/j.annonc.2020.06.025.; Ishiyama Y, Shimbo M, Iizuka J, et al. Association between prostate cancer characteristics and BRCA1/2associated family cancer history in a Japanese cohort. PLoS One. 2020; 15(12):e0244149. DOI:10.1371/journal.pone.0244149.; Ibrahim M, Yadav S, Ogunleye F, et al. Male BRCA mutation carriers: clinical characteristics and cancer spectrum. BMC Cancer. 2018; 18(1):179. DOI:10.1186/s12885-018-4098-y.; Abida W, Patnaik A, Campbell D, et al. Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J Clin Oncol. 2020; 38(32):3763–3772. DOI:10.1200/JCO.20.01035.; Mersch J, Jackson MA, Park M, et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer. 2015; 121(2):269–75. DOI:10.1002/cncr.29041.; Pellini F, Granuzzo E, Urbani S, et al. Male Breast Cancer: Surgical and Genetic Features and a Multidisciplinary Management Strategy. Breast Care (Basel). 2020; 15(1):14–20. DOI:10.1159/000501711.; Gallagher DJ, Gaudet MM, Pal P, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010; 16(7):2115–2121. DOI:10.1158/1078-0432.CCR-09-2871.; Mateo J, Boysen G, Barbieri CE, et al. DNA Repair in Prostate Cancer: Biology and Clinical Implications. Eur Urol. 2017; 71(3):417–425. DOI:10.1016/j.eururo.2016.08.037.; Stolarova L, Kleiblova P, Janatova M, et al. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells. 2020; 9(12):2675. DOI:10.3390/cells9122675.; Zhen JT, Syed J, Nguyen KA, et al. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer. 2018; 124(15):3105–3117. DOI:10.1002/cncr.31316.; Dong X, Wang L, Taniguchi K, et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 2003; 72(2):270–280. DOI:10.1086/346094.; Матвеев В.Б., Киричек А.А., Савинкова А.В. и др. Влияние герминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком предстательной железы. Онкоурология 2018;14(4):53–67].; Wu S, Zhou J, Zhang K, et al. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front Oncol. 2020; 10:301. DOI:10.3389/fonc.2020.00301.; Голотюк М.А., Бережной А.А., Казанцева Н.В. и др. Герминальные мутации в генах PALB2 и CHEK2 и наследственный рак. Уральский медицинский журнал. 2023;22(3):126−136]. http://doi.org/10.52420/2071-5943-2023-22-3-126-136; Nicolosi P, Ledet E, Yang S, et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 2019;5(4):523−528. https://doi.org/10.1001/jamaoncol.2018.6760; Dillon KM, Bekele RT, Sztupinszki Z, et al. PALB2 or BARD1 loss confers homologous recombination deficiency and PARP inhibitor sensitivity in prostate cancer. NPJ Precis Oncol. 2022;6(1):49. https://doi.org/10.1038/s41698-022-00291-7.; Norris JD, Chang C-Y, Wittmann BM, et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Molec Cell. 2009;36(3):405−16. https://doi.org/10.1016/j.molcel.2009.10.020; Шашкин М.Н., Головко Д.А. Обзор универсальных и специфичных мутаций высокопенетрантных генов, ассоциированных с опухолями предстательной железы// Вестник науки. 2022. №6 (51)].; Рева С.А., Кудинова Н.И., Лапин С.В., Петров С.Б. Генетическое исследование как метод оценки предрасположенности к развитию рака предстательной железы. Вестник урологии. 2020;8(3):103−110]. https://doi.org/10.21886/2308-6424-2020-8-3-103-110; Park CK, Shin SJ, Cho YA, et al. HoxB13 expression in ductal type adenocarcinoma of prostate: clinicopathologic characteristics and its utility as potential diagnostic marker. Sci Rep. 2019;9(1):20205. https://doi.org/10.1038/s41598-019-56657-8.; Ueno S, Sudo T, Hirasawa A. ATM: Functions of ATM Kinase and Its Relevance to Hereditary Tumors. Int J Mol Sci. 2022; 23(1):523. DOI:10.3390/ijms23010523.; Neeb A, Herranz N, Arce-Gallego S, et al. Advanced Prostate Cancer with ATM Loss: PARP and ATR Inhibitors. Eur Urol. 2021; 79(2):200−211. DOI:10.1016/j.eururo.2020.10.029.; Zolotyh MA, Bilyalov AI, Nesterova AI, et al. Rak molochnoj zhelezy: genetika personal’nogo riska. Klinicheskaya onkologiya. 2023; 25(2): 190−198. In Russian [Золотых М.А., Билялов А.И., Нестерова А.И. и др. Рак молочной железы: генетика персонального риска. Клиническая онкология. 2023; 25(2): 190−198]. https://doi.org/10.26442/18151434.2023.2.202110; Kote-Jarai Z, Jugurnauth S, Mulholland S, et al. A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer. Br J Cancer 100, 426–430 (2009). https://doi.org/10.1038/sj.bjc.6604847; Isaacsson Velho P, Qazi F, Hassan S, et al. Efficacy of Radium-223 in Bone-metastatic Castrationresistant Prostate Cancer with and Without Homologous Repair Gene Defects. Eur Urol. 2019; 76(2):170−176. DOI:10.1016/j.eururo.2018.09.040.; Sutera P, Deek MP, Van der Eecken K, et al. Genomic biomarkers to guide precision radiotherapy in prostate cancer. Prostate. 2022; 82 Suppl 1(Suppl 1):S73− S85. DOI:10.1002/pros.24373.; Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 161(5):1215−1228. DOI:10.1016/j.cell.2015.05.001.; Cohen SA, Pritchard CC, Jarvik GP. Lynch Syndrome: From Screening to Diagnosis to Treatment in the Era of Modern Molecular Oncology. Annu Rev Genomics Hum Genet. 2019; 20:293−307. DOI:10.1146/annurev-genom-083118-015406.; Mitra AV, Bancroft EK, Barbachano Y, et al. Targeted prostate cancer screening in men with mutations in BRCA1 and BRCA2 detects aggressive prostate cancer: preliminary analysis of the results of the IMPACT study. BJU Int. 2011; 107(1):28−39. DOI:10.1111/j.1464410X.2010.09648.x.; Sokolova AO, Cheng HH. Genetic Testing in Prostate Cancer. Curr Oncol Rep. 2020; 22(1):5. DOI:10.1007/s11912-020-0863-6.; European Association of Urology. Guidelines 2020. In Russian [Европейская ассоциация урологов. Клинические рекомендации Европейской ассоциации урологов 2020].; Loeb S, Carter HB, Catalona WJ, et al. Baseline prostate-specific antigen testing at a young age. Eur Urol. 2012; 61(1):1−7. DOI:10.1016/j.eururo.2011.07.067.; Bancroft EK, Page EC, Castro E, et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol. 2014; 66(3):489−499. DOI:10.1016/j.eururo.2014.01.003.; Tang P, Sun L, Uhlman MA, et al. Initial prostate specific antigen 1.5 ng/ml or greater in men 50 years old or younger predicts higher prostate cancer risk. J Urol. 2010; 183(3):946−950. DOI:10.1016/j.juro.2009.11.021.; Vickers AJ, Ulmert D, Sjoberg DD, et al. Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40−55 and long term risk of metastasis: case-control study. BMJ. 2013; 346:f2023. DOI:10.1136/bmj.f2023.; Wyatt AW, Annala M, Aggarwal R, et al. Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. J Natl Cancer Inst. 2017; 109(12):djx118. DOI:10.1093/jnci/djx118.; Sigorski D, Iżycka-Świeszewska E, Bodnar L. Poly(ADP-Ribose) Polymerase Inhibitors in Prostate Cancer: Molecular Mechanisms, and Preclinical and Clinical Data. Target Oncol. 2020; 15(6):709−722. DOI:10.1007/s11523-020-00756-4.; Bishoff JT, Freedland SJ, Gerber L, et al. Prognostic utility of the cell cycle progression score generated from biopsy in men treated with prostatectomy. J Urol. 2014; 192(2):409−414. DOI:10.1016/j.juro.2014.02.003.; Klein EA, Yousefi K, Haddad Z, et al. A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur Urol. 2015; 67(4):778−786. DOI:10.1016/j.eururo.2014.10.036.; Benjamin H, Tashzna J, Olamide O, et al. Association Between a 22-feature Genomic Classifier and Biopsy Gleason Upgrade During Active Surveillance for Prostate Cancer. Eur Urol Open Sci. 2022 Feb 11; 37:113−119. DOI:10.1016/j.euros.2022.01.008.; Geybels MS, Wright JL, Bibikova M, et al. Epigenetic signature of Gleason score and prostate cancer recurrence after radical prostatectomy. Clin Epigenetics. 2016; 8:97. DOI:10.1186/s13148-016-0260-z.; Covas Moschovas M, Chew C, Bhat S, et al. Association Between Oncotype DX Genomic Prostate Score and Adverse Tumor Pathology After Radical Prostatectomy. Eur Urol Focus. 2022; 8(2):418−424. DOI:10.1016/j.euf.2021.03.015.; https://transmed.almazovcentre.ru/jour/article/view/803

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6

    المساهمون: Universidade de Santiago de Compostela. Centro de Investigación en Medicina Molecular e Enfermidades Crónicas, Universidade de Santiago de Compostela. Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela. Instituto de Acuicultura

    المصدر: Minerva. Repositorio Institucional de la Universidad de Santiago de Compostela
    instname
    Genes, Vol 10, Iss 10, p 760 (2019)

    وصف الملف: application/pdf

  7. 7
  8. 8
    Dissertation/ Thesis
  9. 9