يعرض 1 - 13 نتائج من 13 نتيجة بحث عن '"NPs synthesis"', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: 28 páginas; application/pdf

    Relation: Environmental Research; Ab Aziz, S.A.B., et al., 2013. Effect of zeta potential of stanum oxide (SnO2) on electrophoretic deposition (EPD) on porous alumina. Adv. Mater. Res. 795, 334–337.; Abbasi, M., Gholizadeh, R., Kasaee, S.R., Vaez, A., Chelliapan, S., Fadhil Al-Qaim, F., Kamyab, H., 2023. An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver. Scientific reports 13 (1), 5987.; Abdullah, A.H., Ridha, S., Mohshim, D.F., Yusuf, M., Kamyab, H., Krishna, S., Maoinser, M.A., 2022. A comprehensive review of nanoparticles: Effect on water- based drilling fluids and wellbore stability. Chemosphere 308, 136274.; Alwan, R.M., et al., 2015. Synthesis of zinc oXide nanoparticles via sol–gel route and their characterization. Nanosci. Nanotechnol. 5 (1), 1–6.; Alyamani, A.A., et al., 2021. Green fabrication of zinc oXide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoXicity and antibacterial properties. Molecules 26 (20), 6140.; Asmatulu, R., Khan, W., 2019. Chapter 13-Characterization of electrospun nanofibers. Synthesis and Applications of Electrospun Nanofibers 257–281.; Balaraman, P., Balasubramanian, B., Kaliannan, D., Durai, M., Kamyab, H., Park, S., Maruthupandian, A., 2020. Phyco-synthesis of silver nanoparticles mediated from marine algae Sargassum myriocystum and its potential biological and environmental applications. Waste and Biomass Valorization 11, 5255–5271.; Balaraman, P., Balasubramanian, B., Liu, W.C., Kaliannan, D., Durai, M., Kamyab, H., Maruthupandian, A., 2022. Sargassum myriocystum-mediated TiO2-nanoparticles and their antimicrobial, larvicidal activities and enhanced photocatalytic degradation of various dyes. Environmental research 204, 112278.; Bharadwaj, K.K., et al., 2021. Green synthesis of silver nanoparticles using Diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-NP). Nanomaterials 11 (8), 1999.; Bhuyan, T., et al., 2015. Biosynthesis of zinc oXide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61.; Blanco, E., Shen, H., Ferrari, M., 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33 (9), 941–951.; Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of a free radical method to evaluate antioXidant activity. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 28 (1), 25–30.; Chahnasir, E.S., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamad, E.T., Khorami, M., 2018. Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. Smart Struct. Systems 22 (4), 413–424.; Chen, X., et al., 2017. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12, 1–10.; Chou Chau, Y.-F., et al., 2019. Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Results Phys. 15, 102567.; Cioffi, B., et al., 2021. A potential risk assessment tool to monitor pathogens circulation in coastal waters. Environ. Res. 200, 111748.; Das, D., et al., 2013. Synthesis of ZnO nanoparticles and evaluation of antioXidant and cytotoXic activity. Colloids Surf. B Biointerfaces 111, 556–560.; Dhatwalia, J., et al., 2022. Rubus ellipticus Sm. Fruit extract mediated zinc oXide nanoparticles: a green approach for dye degradation and biomedical applications. Materials 15 (10), 3470.; Dizaj, S.M., et al., 2014. Antimicrobial activity of the metals and metal oXide nanoparticles. Mater. Sci. Eng. C 44, 278–284.; Edmond, M.B., et al., 1999. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29 (2), 239–244.; Etienne, O.K., et al., 2021. Chemical characterization, antioXidant and enzyme inhibitory effects of Mitracarpus hirtus extracts. J. Pharmaceut. Biomed. Anal. 194, 113799.; Geetha, M.S., Nagabhushana, H., Shivananjaiah, H.N., 2016. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J. Sci.: Advanced Materials and Devices 1 (3), 301–310.; Gupta, A., et al., 2016. Nanoemulsions: formation, properties and applications. Soft Matter 12 (11), 2826–2841.; Hoshyar, N., et al., 2016. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11 (6), 673–692.; Hussain, I., et al., 2017. EXogenous application of phytosynthesized nanoceria to alleviate ferulic acid stress in Solanum lycopersicum. Sci. Hortic. 214, 158–164.; Jain, D., et al., 2020. Microbial fabrication of zinc oXide nanoparticles and evaluation of their antimicrobial and photocatalytic properties. Front. Chem. 8, 778.; Jobin, M.-L., Alves, I.D., 2014. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity? Biochimie 107, 154–159.; Ju-Nam, Y., Lead, J., 2008. Manufactured nanoparticles and natural aquatic colloids: an overview of their chemical aspects, interactions and potential environmental implications. Sci. Total Environ. 400, 396–414.; Kamyab, H., Chelliapan, S., Hayder, G., Yusuf, M., Taheri, M.M., Rezania, S., Nouri, J., 2023. EXploring the potential of layered metal and metal oXide nanomaterials for sustainable water and wastewater treatment: A review of their antimicrobial properties. Chemosphere 139103.; Kaningini, G.A., et al., 2021. Green synthesis and characterization of zinc oXide nanoparticles using bush tea (AthriXia phylicoides DC) natural extract: assessment of the synthesis process. F1000Research 10.; Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T., Khorami, M., 2020. Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Engineering with. Computers 36, 1539–1558.; Keflie, T.S., Biesalski, H.K., 2021. Micronutrients and bioactive substances: their potential roles in combating COVID-19. Nutrition 84, 111103.; Khan, I., Saeed, K., Khan, I., 2019. Nanoparticles: properties, applications and toXicities. Arab. J. Chem. 12 (7), 908–931.; Koehler, A., et al., 2024. Prediction of melanin content of Fonsecaea pedrosoi using Fourier transform infrared spectroscopy (FTIR) and chemometrics. Spectrochim. Acta Mol. Biomol. Spectrosc. 310, 123945.; Kouhbanani, M.A.J., Mosleh-Shirazi, S., Beheshtkhoo, N., Kasaee, S.R., Nekouian, S., Alshehery, S., Amani, A.M., 2023. Investigation through the antimicrobial activity of electrospun PCL nanofiber mats with green synthesized Ag–Fe nanoparticles. Journal of Drug Delivery Science and Technology 85, 104541.; Kumar, P., Kumar, S.V., 2023. Nanopriming of Eleusine coracana seeds using phyto- assisted magnetic nanoparticles (Fe3O4) synthesized from Colocasia esculenta leaves. Biomass Conversion and Biorefinery.; Lallo da Silva, B., et al., 2019. Relationship between structure and antimicrobial activity of zinc oXide nanoparticles: an overview. Int. J. Nanomed. 14, 9395–9410.; Lan, S., Lin, J., Zheng, N., 2014. Evaluation of the antioXidant activity of Coreopsis tinctoria Nuff. and optimisation of isolation by response surface methodology. Acta Pharm. 64 (3), 369–378.; Lei, H., et al., 2023. Enhanced tribocatalytic degradation of organic pollutants by ZnO nanoparticles of high crystallinity. Nanomaterials 13 (1), 46.; Look, D.C., 2001. Recent advances in ZnO materials and devices. Mater. Sci. Eng., B 80 (1), 383–387.; Ly, N.H., Nguyen, N.B., Tran, H.N., Hoang, T.T.H., Joo, S.W., Vasseghian, Y., Klemeˇs, J. J., 2023. Metal-organic framework nanopesticide carrier for accurate pesticide delivery and decrement of groundwater pollution. J. Clean. Prod. 402, 136809.; Mahdi Ismail, S.M., et al., 2023. Characterization of green synthesized of ZnO nanoparticles by using pinus brutia leaves extracts. J. Mol. Struct. 1280, 135063.; Manojkumar, U., Kaliannan, D., Srinivasan, V., Balasubramanian, B., Kamyab, H., Mussa, Z.H., Palaninaicker, S., 2023. Green synthesis of zinc oXide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity. Chemosphere 323, 138263.; Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M., Shariati, M., 2013. Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams. Struct. Eng. Mech. Int. J. 46 (6), 853–868.; Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M., Shariati, M., 2014. An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups. Smart Struct. Syst. Int. J. 14 (5), 785–809.; Mohd Yusof, H., et al., 2019. Microbial synthesis of zinc oXide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol. 10, 1–22.; Mohd Yusof, H., et al., 2020. Biosynthesis of zinc oXide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Sci. Rep. 10 (1), 19996.; Muhammad, W., et al., 2019. Optical, morphological and biological analysis of zinc oXide nanoparticles (ZnO NPs) using. RSC Adv. 9 (51), 29541–29548.; Nava, A.R., Daneshian, L., Sarma, H., 2022. Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs. Environ. Res. 215, 114212.; Nikalje, A.P., 2015. Nanotechnology and its applications in medicine. Med. Chem. 5 (2), 81–89.; Nilavukkarasi, M., Vijayakumar, S., Prathipkumar, S., 2020. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Materials Science for Energy Technologies 3, 335–343.; Pavlova, E.L., Zografov, N.N., Simeonova, L.S., 2016. Comparative study on the antioXidant capacities of synthetic influenza inhibitors and ellagic acid in model systems. Biomed. Pharmacother. 83, 755–762.; Prashanna Suvaitha, S., et al., 2023. Optical and biological properties of MgO/ZnO nanocomposite derived via eggshell membrane: a bio-waste approach. Bioproc. Biosyst. Eng. 46 (1), 39–51.; Preeti, et al., 2020. ZnO quantum dots: broad spectrum microbicidal agent against multidrug resistant pathogens E. coli and C. albicans. Frontiers in Nanotechnology 2, 576342.; Pushparaj, K., Liu, W.C., Meyyazhagan, A., Orlacchio, A., Pappusamy, M., Vadivalagan, C., Balasubramanian, B., 2022. Nano-from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. Energy 240, 122732.; Rad, S.S., Sani, A.M., Mohseni, S., 2019. Biosynthesis, characterization and antimicrobial activities of zinc oXide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog. 131, 239–245.; Rahimi, M.T., et al., 2015. Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. Int. J. Surg. 19, 128–133.; Rahman, A., et al., 2021. Zinc oXide and zinc oXide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioproc. Biosyst. Eng. 44 (7), 1333–1372.; Raimondi, F., et al., 2005. Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew. Chem. Int. Ed. 44 (15), 2190–2209.; Rajeshkumar, S., et al., 2022. Degradation of toXic dye and antimicrobial and free radical potential of environmental benign zinc oXide nanoparticles. Bioinorgan. Chem. Appl. 2022, 4513208.; Rasouli, K., Rasouli, J., Mohtaram, M.S., Sabbaghi, S., Kamyab, H., Moradi, H., Chelliapan, S., 2023. Biomass-derived activated carbon nanocomposites for cleaner production: a review on aspects of photocatalytic pollutant degradation. J. Clean. Prod. 138181.; Reddy, K.M., et al., 2007. Selective toXicity of zinc oXide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90 (21).; Regiel-Futyra, A., et al., 2015. The quenching effect of chitosan crosslinking on ZnO nanoparticles photocatalytic activity. RSC Adv. 5 (97), 80089–80097.; Safa, M., Kachitvichyanukul, V., 2019. Moment rotation prediction of precast beam to column connections using extreme learning machine. Struct. Eng. Mech. Int. J. 70 (5), 639–647.; Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K., Khorami, M., 2020. Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes. Phys. A: Stat. Mech. Appl. 550, 124046.; Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M., Petkovi´c, D., 2016. Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel Compos. Struct. Int. J. 21 (3), 679–688.; Salem, W., et al., 2015. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoXic Escherichia coli. International Journal of Medical Microbiology 305 (1), 85–95.; Santhoshkumar, J., Kumar, S.V., Rajeshkumar, S., 2017. Synthesis of zinc oXide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies 3 (4), 459–465.; Sˇebesta, M., et al., 2019. Increased colloidal stability and decreased solubility—sol—gel synthesis of zinc oXide nanoparticles with humic acids. J. Nanosci. Nanotechnol. 19 (5), 3024–3030.; Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Azar, V.M., Toghroli, A., Wakil, K., 2018. Application of ANFIS technique on performance of C and L shaped angle shear connectors. Smart Struc. Systems 22 (3), 335–340.; Segets, D., et al., 2009. Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano 3 (7), 1703–1710.; Senguttuvan, J., Paulsamy, S., Karthika, K., 2014. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioXidant activities. Asian Pac. J. Trop. Biomed. 4, S359–S367.; Senthilkumar, R., et al., 2018. Phytochemical screening of aqueous leaf extract of Sida acuta burm. F. And its antibacterial activity. Journal of Emerging Technologies and Innovative Research 5 (8), 474–478.; Seshadri, V.D., 2021. Zinc oXide nanoparticles from Cassia auriculata flowers showed the potent antimicrobial and in vitro anticancer activity against the osteosarcoma MG- 63 cells. Saudi J. Biol. Sci. 28 (7), 4046–4054.; Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T., Shariati, A., 2020a. Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS). Steel Compos. Struct. 34 (1), 155.; Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T., Toghroli, A., 2020b. Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm). Smart Structu. Systems Int. J. 25 (2), 183–195.; Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N. T., Shariati, A., 2022. A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng. Comput. 1–23.; Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Poi- Ngian, S., 2019. Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Applied Sci. 9 (24), 5534.; Shittu, M., Alagbe, J., 2020. Phyto-nutritional profiles of broom weed (Sida acuta) leaf extract. International Journal on Integrated Education 3 (11), 119–124.; Siddheswaran, R., et al., 2013. Fabrication and characterization of a diluted magnetic semiconducting TM co-doped Al: ZnO (TM Co, Ni) thin films by sol–gel spin coating method. Spectrochim. Acta Mol. Biomol. Spectrosc. 106, 118–123.; Sidebottom, D.L., 2024. Dynamic light scattering study of the non-exponential α-relaxation in sodium germanate glass melts. J. Non-Cryst. Solids 627, 122819.; Silva, G.A., 2004. Introduction to nanotechnology and its applications to medicine. Surg. Neurol. 61 (3), 216–220.; Singh, J., et al., 2018. ‘Green’synthesis of metals and their oXide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16 (1), 1–24.; Singh, A., et al., 2020. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnology Reports 25, e00427.; Sirelkhatim, A., et al., 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242.; Srivastava, V., Gusain, D., Sharma, Y.C., 2013. Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceram. Int. 39 (8), 9803–9808.; Stoimenov, P.K., et al., 2002. Metal oxide nanoparticles as bactericidal agents. Langmuir 18 (17), 6679–6686.; Sultanova, N., et al., 2001. Antioxidant and antimicrobial activities of Tamarix ramosissima. J. Ethnopharmacol. 78 (2), 201–205.; Syama, S., et al., 2014. Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells. Toxicol. Mech. Methods 24 (9), 644–653.; Tan, Q., et al., 2019. Hierarchical zinc oxide/reduced graphene oxide composite: preparation route, mechanism study and lithium ion storage. J. Colloid Interface Sci. 548, 233–243.; Tavakkoli, O., Kamyab, H., Shariati, M., Mohamed, A.M., Junin, R., 2022. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review. Fuel 312, 122867.; Titus, D., James Jebaseelan Samuel, E., Roopan, S.M., 2019. Chapter 12 - nanoparticle characterization techniques. In: Shukla, A.K., Iravani, S. (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier, pp. 303–319.; Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M., Ibrahim, Z., 2014. Prediction of shear capacity of channel shear connectors using the ANFIS model. Steel Compos. Struct. 17 (5), 623–639.; Veerakumar, K., Govindarajan, M., Rajeswary, M., 2013. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 112 (12), 4073–4085.; Verma, C., et al., 2018. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J. Mol. Liq. 266, 577–590.; Win, T.T., et al., 2021. Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Sci. Rep. 11 (1), 21996.; Xia, C., et al., 2023. Optimistic and possible contribution of nanomaterial on biomedical applications: a review. Environ. Res. 218, 114921.; Xia, C., Ren, T., Darabi, R., Shabani-Nooshabadi, M., Klemeˇs, J.J., Karaman, C., Chelliapan, S., 2023. Spotlighting the boosted energy storage capacity of CoFe2O4/ Graphene nanoribbons: A promising positive electrode material for high-energydensity asymmetric supercapacitor. Energy 270, 126914.; Yazdani, M., Kabirifar, K., Frimpong, B.E., Shariati, M., Mirmozaffari, M., Boskabadi, A., 2021. Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia. J. Clean. Prod. 280, 124138.; Zainah, T.A.S.M.I., Shahaboddin, S.M.S.M.S., 1801. Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam. J. Intell. Manuf. 29 (8), 1793.; Zhang, Z., Karimi-Maleh, H., 2023. In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324, 138302.; Zhu, X., Pathakoti, K., Hwang, H.-M., 2019. Chapter 10 - green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In: Shukla, A.K., Iravani, S. (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier, pp. 223–263.; 28; 258; https://hdl.handle.net/11323/13667; https://doi.org/10.1016/j.envres.2024.119204; Corporación Universidad de la Costa; https://repositorio.cuc.edu.co/

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: AZEVEDO, I.; BARAUNA, J.; CUNHA FILHO, F. J. V.; CHIAVONE-FILHO, O.; VITORIANO, J.; ALVES-JUNIOR, C.; LIMA, A.B. Mota. Reduction of Aqueous Ag+ Steered by Electrochemical Plasma: Connecting the Bulk pH Variation with the Reaction Pathways for Hydrated Electrons. JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, v. 00, p. 1-14, 2019. Disponível em: https://www.scielo.br/j/jbchs/a/3SCTDyC7QczzYLzhgGmQHTD/abstract/?lang=en&format=html. Acesso em: 14 jul. 2021. https://doi.org/10.21577/0103-5053.20190020.; https://repositorio.ufrn.br/handle/123456789/45049

  7. 7
    Academic Journal
  8. 8
    Conference
  9. 9
  10. 10
    Academic Journal

    المساهمون: Akman, Erdi, Sönmezoğlu, Savaş

    وصف الملف: application/pdf

    Relation: Journal of Composite Materials20; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; Akman, E., Sönmezoğlu, S., Yiğit, E., Eskizeybek, V., Avci, A. (2021). Hybrid nanoparticles embedded polyvinyl butyral nanocomposites for improved mechanical, thermal and microwave absorption performance. Journal of Composite Materials, doi:10.1177/00219983211039550; https://doi.org/10.1177/00219983211039550; https://hdl.handle.net/11492/5198

  11. 11
  12. 12
    Dissertation/ Thesis
  13. 13