يعرض 1 - 7 نتائج من 7 نتيجة بحث عن '"N. Tarabanovskaya A."', وقت الاستعلام: 0.36s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Grants No. 17-29-06037, RNF No. 14-15-00350, Грантами РФФИ № 17-29-06037, РНФ № 14-15-00350

    المصدر: Bulletin of Siberian Medicine; Том 18, № 1 (2019); 60-75 ; Бюллетень сибирской медицины; Том 18, № 1 (2019); 60-75 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2019-18-1

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2171/1538; Williams M.J. Drosophila hemopoiesis and cellular immunity. J. Immunol. 2007; 178 (8): 4711–4716. DOI:10.4049/jimmunol.178.8.4711.; Ziegler-Heitbrock L. Blood monocytes and their subsets: established features and open questions. Frontiers in Immunology. 2015; 6: 423. DOI:10.3389/fimmu.2015.00423.; Wynn T.A., Chawla A., Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature. 2013; 496 (7446): 445–455. DOI:10.1038/nature12034.; Kzhyshkowska J., Gudima A., Moganti K., Gratchev A., Orekhov A. Perspectives for monocyte/macrophage-based diagnostics of chronic inflammation. Transfus. Med. Hemother. 2016; 43 (2): 66–77. DOI:10.1159/000444943.; Mosig S., Rennert K., Krause S., Kzhyshkowska J., Neunü- bel K., Heller R., Funke H. Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+ CD16+ monocytes in detoxification of oxidized LDL. Fasber J. 2009; 23 (3): 866–874. DOI:10.1096/fj.08-118240.; Hristov M. Weber C. Differential role of monocyte subsets in atherosclerosis. Thromb. Haemost. 2011; 106 (5): 757–762. DOI:10.1160/TH11-07-0500.; Grivennikov S. and Karin M. Inflammation and oncogenesis: a vicious connection. Curr. Opin. Genet. Dev. 2010; February; 20 (1): 65. DOI:10.1016/j.gde.2009.11.004.; Zitvogel L., Kepp O., Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol. 2011; 8 (3): 151–160. DOI:10.1038/nrclinonc.2010.223.; Таширева Л.А., Перельмутер В.М., Манских В.Н., Денисов Е.В., Савельева О.Е., Кайгородова Е.В., Завьялова М.В. Типы иммуновоспалительных реакций как алгоритмы взаимодействия клеток в условиях репаративной регенерации и опухолевого роста. Биохимия. 2017; 82 (5): 542–555. DOI:10.1134/s0006297917050029.; Stakheyeva M., Riabov V., Mitrofanova I., Litviakov N., Choynzonov E., Cherdyntseva N., Kzhyshkowska J. Role of the immune component of tumor microenvironment in the efficiency of cancer treatment: perspectives for the personalized therapy. Curr. Pharm. Des. 2017; 23: 32. DOI:10.2174/1381612823666170714161703.; Buldakov M., Zavyalova M., Krakhmal N., Telegina N., Vtorushin S., Mitrofanova I., Riabov V., Yin S., Song B., Cherdyntseva N., Kzhyshkowska J. CD68+, but not stabilin-1+ tumor associated macrophages in gaps of ductal tumor structures negatively correlate with the lymphatic metastasis in human breast cancer. Immunobiology. 2017; 222 (1): 31–38. DOI:10.1016/j.imbio.2015.09.011.; Little M.C., Hurst R.J., Else K.J. Dynamic changes in macrophage activation and proliferation during the development and resolution of intestinal inflammation. J. Immunol. 2014; 193 (9): 4684–4695. DOI:10.4049/jimmunol.1400502.; Waskow C., Liu K., Darrasse-Jeze G., Guermonprez P., Ginhoux F. The receptor tyrosine kinase Flt3 is re quired for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 2008; 9 (6): 676–683. DOI:10.1038/ni.1615.; Kabashima K., Banks T.A., Ansel K.M., Lu T.T., Ware C.F., Cyster J.G. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity. 2005; 22 (4): 439–450. DOI:10.1016/j.immuni.2005.02.007.; Iwasaki H., Akashi K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity. 2007; 26 (6): 726–740. DOI:10.1016/j.immuni.2007.06.004.; Lawrence T., Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Reviews Immunology. 2011; 11 (11): 750–761. DOI:10.1038/nri3088.; Cortez-Retamozo V., Etzrodt M., Newton A., Rauch P.J., Chudnovskiy A., Berger C., Ryan R.J., Iwamoto Y., Marinelli B., Gorbatov R., Forghani R., Novobrantseva T.I., Koteliansky V., Figueiredo J.L., Chen J.W., Anderson D.G., Nahrendorf M., Swirski F.K., Weissleder R., Pittet M.J. Origins of tumor-associated macrophages and neutrophils. Proceedings of the National Academy of Sciences. 2012; 109 (7): 2491–2496. DOI:10.1073/pnas.1113744109.; Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010; 141 (1): 39–51. DOI:10.1016/j.cell.2010.03.014.; Aharinejad S., Paulus P., Sioud M., Hofmann M., Zins K., Schäfer R., Stanley E.R., Abraham D. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 2004; 64 (15): 5378–5384. DOI:10.1158/0008-5472.; Paulus P., Stanley E.R., Schafer R., Abraham D., Aharinejad S. Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 2006; 66 (8): 4349–4356. DOI:10.1158/0008-5472.CAN-05-3523.; De Nardo D.G., Brennan D.J., Rexhepaj E., Ruffell B., Shiao S.L., Madden S.F., Gallagher W.M., Wadhwani N., Keil S.D., Junaid S.A., Rugo H.S., Hwang E.S., Jirstrom K., West B.L., Coussens L.M. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011; 1 (1): 54–67. DOI:10.1158/2159-8274.CD-10-0028.; Schmeler K.M., Vadhan-Raj S., Ramirez P.T., Apte S.M., Cohen L., Bassett R.L., Iyer R.B., Wolf J.K., Levenback C.L., Gershenson D.M., Freedman R.S. A phase II study of GM-CSF and rIFN-gamma1b plus carboplatin for the treatment of recurrent, platinum-sensitive ovarian, fallopian tube and primary peritoneal cancer. Gynecol Oncol. 2009; 113 (2): 210–215. DOI:10.1016/j.ygyno.2009.02.007.; Spitler L.E., Grossbard M.L., Ernstoff M.S., Silver G., Jacobs M., Hayes F.A., Soong S.J. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J. Clin. Oncol. 2000; 18 (8): 1614–1621. DOI:10.1200/JCO.2000.18.8.1614.; Pinedo H.M., Buter J., Luykx de Bakker S.A., Pohlmann P.R., van Hensbergen Y., Heideman D.A., van Diest P.J., de Gruijl T.D., van der Wall E. Extended neoadjuvant chemotherapy in locally advanced breast cancer combined with GM-CSF: effect on tumour-draining lymph node dendritic cells. Eur. J. Cancer. 2003; 39 (8): 1061– 1067. DOI:10.1016/s0959-8049(03)00131-x.; Jaipersad A.S., Lip G.Y., Silverman S., Shantsila E. The Role of Monocytes in Angiogenesis and Atherosclerosis. Journal of the American College of Cardiology. 2014; 63 (1): 1–11. DOI:10.1016/j.jacc.2013.09.019.; Srivastava M., Jung S., Wilhelm J., Fink L., Bьhling F., Welte T., Bohle R.M., Seeger W., Lohmeyer J., Maus U.A. The inflammatory versus constitutive trafficking of mononuclear phagocytes into the alveolar space of mice is associated with drastic changes in their gene expression profiles. J. Immunol. 2005; 175 (3): 1884–1893. DOI:10.4049/jimmunol.175.3.1884.; Thomas-Ecker S., Lindecke A., Hatzmann W., Kaltschmidt C., Zänker K.S., Dittmar T. Alteration in the gene expression pattern of primary monocytes after adhesion to endothelial cells. Proceedings of the National Academy of Sciences. 2007; 104 (13): 5539–5544. DOI:10.1073/pnas.0700732104.; Gerhardt T., Ley K. Monocyte trafficking across the vessel wall. Cardiovasc. Res. 2015; 107 (3): 321–330. DOI:10.1093/cvr/cvv147.; Ueno T., Toi M., Saji H., Muta M., Bando H., Kuroi K., Koike M., Inadera H., Matsushima K. Significance of macrophage chemoattractant protein 1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 2000; 6 (8): 3282–3289.; Lebrecht A., Grimm C., Lantzsch T., Ludwig E., Hefler L., Ulbrich E. Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biol. 2004; 25 (1–2): 14–17. DOI:10.1159/000077718.; Qian B.Z., Li J., Zhang H., Kitamura T., Zhang J., Campion L.R. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011; 475 (7355): 222–225. DOI:10.1038/nature10138.; Groblewska M., Mroczko B., Wereszczyńska-Siemiatkowska U., Myśliwiec P., Kedra B., Szmitkowski M. Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clin. Chem. Lab. Med. 2007; 45 (1): 30–34. DOI:10.1515/CCLM.2007.025.; Mroczko B., Groblewska M., Wereszczyńska-Siemiatkowska U., Okulczyk B., Kedra B., Łaszewicz W., Dabrowski A., Szmitkowski M. Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin. Chim. Acta. 2007; 380 (1–2): 208–212. DOI:10.1016/j.cca.2007.02.037.; Zhu X.D., Zhang J.B., Zhuang P.Y., Zhu H.G., Zhang W., Xiong Y.Q., Wu W.Z., Wang L., Tang Z.Y., Sun H.C. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J. Clin. Oncol. 2008; 26 (16): 2707–2716. DOI:10.1200/JCO.2007.15.6521.; Smith H.O., Anderson P.S., Kuo D.Y., Goldberg G.L., DeVictoria C.L., Boocock C.A., Jones J.G., Runowicz C.D., Stanley E.R., Pollard J.W. The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin. Cancer Res. 1995; 1 (3): 313–325.; Steiner J.L., Murphy E.A. Importance of chemokine (CC-motif) ligand 2 in breast cancer. The International Journal of Biological Markers. 2012; 27 (3): 179–185. DOI:10.5301/JBM.2012.9345.; Pienta K.J., Machiels J.P., Schrijvers D., Alekseev B., Shkolnik M., Crabb S.J., Li S., Seetharam S., Puchalski T.A., Takimoto C., Elsayed Y., Dawkins F., de Bono J.S. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs. 2013; 31 (3): 760–768. DOI:10.1007/s10637-012-9869-8.; Sandhu S.K., Papadopoulos K., Fong P.C., Patnaik A., Messiou C., Olmos D., Wang G., Tromp B.J., Puchalski T.A., Balkwill F., Berns B., Seetharam S., de Bono J.S., Tolcher A.W. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother. Pharmacol. 2013; 71 (4): 1041–1050. DOI:10.1007/s00280-013-2099-8.; Brana I., Calles A., Lo Russo P.M., Yee L.K., Puchalski T.A., Seetharam S., Zhong B., de Boer C.J., Tabernero J., Calvo E. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol. 2015; 10 (1): 111–123. DOI:10.1007/s11523-014-0320-2.; Bonapace L., Coissieux M.M., Wyckoff J., Mertz K.D., Varga Z., Junt T., Bentires-Alj M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014; 515 (7525): 130–133. DOI:10.1038/nature13862.; Feng A.L., Zhu J.K., Sun J.T., Yang M.X., Neckenig M.R., Wang X.W., Shao Q.Q., Song B.F., Yang Q.F., Kong B.H., Qu X. CD16+ monocytes in breast cancer patients: expanded by monocyte chemoattractant protein-1 and may be useful for early diagnosis. Clin. Exp. Immunol. 2011; 164 (1): 57– 65. DOI:10.1111/j.1365-2249.2011.04321.; Jiang L., Jiang S., Situ D., Lin Y., Yang H., Li Y., Long H., Zhou Z. Prognostic value of monocyte and neutrophils to lymphocytes ratio in patients with metastatic soft tissue sarcoma. Oncotarget. 2015; 6 (11): 9542– 9550. DOI:10.18632/oncotarget.3283.; Huang S.H., Waldron J.N., Milosevic M., Shen X., Ringash J., Su J., Tong L., Perez-Ordonez B., Weinreb I., Bayley A.J., Kim J., Hope A., Cho B.C., Giuliani M., Razak A., Goldstein D., Shi W., Liu F.F., Xu W., O’Sullivan B. Prognostic value of pretreatment circulating neutrophils, monocytes, and lymphocytes in oropharyngeal cancer stratified by human papillomavirus status. Cancer. 2015; 121 (4): 545–555. DOI:10.1002/cncr.29100.; Passlick B., Ziegler-Heitbrock L. Identification and Characterization of a Novel Monocyte Subpopulation in Human peripheral blood. Blood. 1989; 74 (7): 2527–2534.; Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116 (16): 74–80. DOI:10.1182/blood-2010-02-258558.; Fingerle G., Pforte A., Passlick B., Blumenstein M., Strö- bel M., Ziegler-Heitbrock L. The novel subset of CD14+/ CD16+ blood monocytesis expanded in sepsis patients. Blood. 1993; 82 (10): 3170–3176.; Fingerle-Rowso G., Auers J., Kreuzer E., Fraunberger P., Blumenstein M., Ziegler-Heitbrock L. Expansion of CD14+CD16+monocytes in critically ill cardiac surgery patients. Inflammation. 1998; 22 (8): 367–379. DOI:10.1023/A:1022316815196.; Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell Immunol. 2014; 289 (1–2): 135–139. DOI:10.1016/j.cellimm.2014.03.019.; Gordon S. and Taylor P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005; 5 (12): 953– 964. DOI:10.1038/nri1733.; Ginhoux F. and Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014; 14 (6): 392–404. DOI:10.1038/nri3671.; Cross J. Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors. Immunity. 2010; 33 (3): 375–386. DOI:10.1016/j.immuni.2010.08.012.; Zawada A.M., Rogacev K.S., Rotter B., Winter P., Marell R.R., Fliser D., Heine G.H. SuperSAGE evidence for CD14+CD16+ monocytes as a third monocyte subset. Blood. 2011; 118 (12): 50–61. DOI:10.1182/blood-2011-01-326827.; Gratchev A., Ovsiy I., Manousaridis I., Riabov V., Orekhov A., Kzhyshkowska J. Novel monocyte biomarkers of atherogenic conditions. Curr. Pharm. Des. 2013; 19 (33): 5859–5864. DOI:10.2174/1381612811319330004.; Wong K.L., Tai J.J., Wong W.C., Han H., Sem X., Yeap W.H., Kourilsky P., Wong S.C. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011; 118 (5): 16–31. DOI:10.1182/blood-2010-12-326355.; Saleh M.N., Goldman S.J., Lo Buglio A.F., Beall A.C., Sabio H., McCord M.C., Minasian L., Alpaugh R.K., Weiner L.M., Munn D.H. CD16 + monocytes in patients with cancer: spontaneous elevation and pharmacologic induction by recombinant human macrophage colony-stimulating factor. Blood. 1995; 85 (10): 2910–2917.; Schauer D., Starlinger P., Reiter C., Jahn N., Zajc P., Buchberger E., Bachleitner-Hofmann T., Bergmann M., Stift A., Gruenberger T., Brostjan C. Intermediate monocytes but not TIE2- expressing monocytes are a sensitive diagnostic indicator for colorectal cancer. PLoS One. 2012; 7 (9): e44450. DOI:10.1371/journal.pone.0044450.; Subimerb C., Pinlaor S., Lulitanond V., Khuntikeo N., Okada S., McGrath M.S., Wongkham S. Circulating CD14(+) CD16(+) monocyte levels predict tissue invasive character of cholangiocarcinoma. Clin. Exp. Immunol. 2010; 161 (3): 471–479. DOI:10.1111/j.1365- 2249.2010.04200.; Hamm A., Prenen H., Van Delm W., Di Matteo M., Wenes M., Delamarre E., Schmidt T., Weitz J., Sarmiento R., Dezi A., Gasparini G., Rothé F., Schmitz R., D’Hoore A., Iserentant H., Hendlisz A., Mazzone M. Tumour-educated circulating monocytes are powerful candidate biomarkers for diagnosis and disease follow-up of colorectal cancer. Gut. 2016; 65 (6): 990–1000. DOI:10.1136/gutjnl-2014-308988.; Grage-Griebenow E., Zawatzky R., Kahlert H., Brade L., Flad H., Ernst M. Identification of a novel dendritic cell-like subset of CD64+/CD16+ blood monocytes. Eur. J. Immunol. 2001; 31 (1): 48–56. DOI:10.1002/1521-4141(200101)31:13.0.CO;2-5; Turrini R., Pabois A., Xenarios I., Coukos G., Delaloye J.F., Doucey M.A. TIE-2 expressing monocytes in human cancers. Oncoimmunology. 2017; 6 (4): e1303585. DOI:10.1080/2162402X.2017.1303585.; Welford A.F., Biziato D., Coffelt S.B., Nucera S., Fisher M., Pucci F., Di Serio C., Naldini L., De Palma M., Tozer G.M., Lewis C.E. TIE2-expressing macrophages limit the therapeutic efficacy of the vasculardisrupting agent combretastatin A4 phosphate in mice. J. Clin. Invest. 2011; 121 (5): 1969–1973. DOI:10.1172/JCI44562.; Guex N., Crespo I., Bron S., Ifticene-Treboux A., FaesVan’t Hull E., Kharoubi S., Liechti R., Werffeli P., Ibberson M., Majo F., Nicolas M., Laurent J., Garg A., Zaman K., Lehr H.A., Stevenson B.J., Rüegg C., Coukos G., Delaloye J.F., Xenarios I., Doucey M.A. Angiogenic activity of breast cancer patients’ monocytes reverted by combined use of systems modeling and experimental approaches. PLoS Comput Biol. 2015; Mar. 13; 11 (3): e1004050. DOI:10.1371/journal.pcbi.1004050.; Forget M.A., Voorhees J.L., Cole S.L., Dakhlallah D., Patterson I.L., Gross A.C., Moldovan L., Mo X., Evans R., Marsh C.B. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLoS One. 2014; 9 (6): e98623. DOI:10.1371/journal.pone.0098623.; Ibberson M., Bron S., Guex N., Faes-van’t Hull E., Ifticene-Treboux A., Henry L., Lehr H.A., Delaloye J.F., Coukos G., Xenarios I. TIE-2 and VEGFR kinase activities drive immunosuppressive function of TIE-2-expressing monocytes in human breast tumors. Clin. Cancer. Res. 2013; 19 (13): 3439–3449. DOI:10.1158/1078-0432.CCR-12-3181.; Pulaski H.L., Spahlinger G., Silva I.A., McLean K., Kueck A.S., Reynolds R.K., Coukos G., Conejo-Garcia J.R., Buckanovich R.J. Identifying alemtuzumab as an anti-myeloid cell antiangiogenic therapy for the treatment of ovarian cancer. J. Transl. Med. 2009; Jun. 19; 7 (1): 49. DOI:10.1186/1479-5876-7-49.; Bron S., Henry L., Faes-van’t Hull E., Turrini R., Vanhecke D., Guex N., Ifticene-Treboux A., Iancu E.M., Semilietof A., Rufer N., Lehr H.-A., Xenarios I., Coukos G., Delaloye J.F., Doucey M.A. TIE-2-expressing monocytes are lymphangiogenic and associate specifically with lymphatics of human breast cancer. Oncoimmunology. 2016; 5 (2): e1073882. DOI:10.1080/2162402X.2015.1073882.; Tsutsui S., Inoue H., Yasuda K., Suzuki K., Takeuchi H., Nishizaki T., Higashi H., Era S., Mori M. Angiopoietin-2 expression in invasive ductal carcinoma of the breast: its relationship to the VEGF expression and microvessel density. Breast Cancer Res. Treat. 2006; 98 (3): 261–266. DOI:10.1007/s10549-005-9157-9.; Ji J., Zhang G., Sun B., Yuan H., Huang Y., Zhang J, Wei X., Zhang X., Hou J. The frequency of tumor-infiltrating Tie-2-expressing monocytes in renal cell carcinoma: its relationship to angiogenesis and progression. Urology. 2013; 82 (4): e9–13. DOI:10.1016/j.urology.2013.05.026.; Schauer D., Starlinger P., Reiter C., Jahn N., Zajc P., Buchberger E., Bachleitner-Hofmann T., Bergmann M., Stift A., Gruenberger T., Brostjan C. Intermediate Monocytes but Not TIE2-Expressing Monocytes Are a Sensitive Diagnostic Indicator for Colorectal Cancer. PLoS One. 2012; 7 (9): e44450. DOI:10.1371/journal.pone.0044450.; Gabrusiewicz K., Liu D., Cortes-Santiago N., Hossain M.B., Conrad C.A., Aldape K.D., Fuller G.N., Marini F.C., Alonso M.M., Idoate M.A., Gilbert M.R., Fueyo J., Gomez-Manzano C. Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes. Oncotarget. 2014; 5 (8): 2208–2220. DOI:10.18632/oncotarget.1893.; Venneri M.A., De Palma M., Ponzoni M., Pucci F., Scielzo C., Zonari E., Mazzieri R., Doglioni C., Naldini L. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood. 2007; 109 (12): 5276–5285. DOI:10.1182/blood-2006-10-053504.; Goede V., Coutelle O., Shimabukuro-Vornhagen A., Holtick U., Neuneier J., Koslowsky T.C., Weihrauch M.R., von Bergwelt-Baildon M., Hacker U.T. Analysis of Tie2-expressing monocytes (TEM) in patients with colorectal cancer. Cancer Invest. 2012; 30 (3): 225–230. DOI:10.3109/07357907.2011.636114.; De Palma M., Murdoch C., Venneri M.A., Naldini L., Lewis C.E. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 2007; 28 (12): 519–524. DOI:10.1016/j.it.2007.09.004.; Sainz B.J., Carron E., Vallespinуs M., Machado H.L. Cancer stem cells and macrophages: implications in tumor biology and therapeutic strategies. Mediators Inflamm. 2016; 2016: 1–15. DOI:10.1155/2016/9012369.; Gasteiger G., D’Osualdo A., Schubert D.A., Weber A., Bruscia E.M., Hartl D. Cellular Innate Immunity: An old game with new players. J. Innate Immun. 2017; 9 (2): 111–125. DOI:10.1159/000453397.; Saeed S., Quintin J., Kerstens H.H., Rao N.A., Aghajanirefah A., Matarese F., Cheng S.C., Ratter J., Berentsen K., van der Ent M.A., Sharifi N., Janssen-Megens E.M., Ter Huurne M., Mandoli A., van Schaik T., Ng A., Burden F., Downes K., Frontini M., Kumar V., Giamarellos-Bourboulis E.J., Ouwehand W.H., van der Meer J.W., Joosten L.A., Wijmenga C., Martens J.H., Xavier R.J., Logie C., Netea M.G., Stunnenberg H.G. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014; 345 (6204): 1251086. DOI:10.1126/science.1251086.; Hoeksema M.A., de Winther M.P. Epigenetic regulation of monocyte and macrophage function. Antioxid Redox Signal. 2016; 25 (14): 758–774. DOI:10.1089/ars.2016.6695.; Netea M.G., Joosten L.A., Latz E., Mills K.H., Natoli G., Stunnenberg H.G., O’Neill L.A., Xavier R.J. Trained immunity: A program of innate immune memory in health and disease. Science. 2016; 352 (6284): aaf1098. DOI:10.1126/science.aaf1098.; Bekkering S., Joosten L.A., van der Meer J.W., Netea M.G., Riksen N.P. The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin. Ther. 2015; 37 (4): 914–923. DOI:10.1016/j.clinthera.2015.01.008.; van Diepen J.A., Thiem K., Stienstra R., Riksen N.P., Tack C.J., Netea M.G. Diabetes propels the risk for cardiovascular disease: sweet monocytes becoming aggressive? Cell Mol. Life Sci. 2016; 73 (24): 4675–4684. DOI:10.1007/s00018-016-2316-9.; Almatroodi S.A., McDonald C.F., Collins A.L., Darby I.A., Pouniotis D.S. Blood classical monocytes phenotype is not altered in primary non-small cell lung cancer. World J. Clin. Oncol. 2014; 5 (5): 1078–1087. DOI:10.5306/wjco.v5.i5.1078.; Hanna R.N., Cekic C., Sag D., Tacke R., Thomas G.D., Nowyhed H., Herrley E., Rasquinha N., McArdle S., Wu R., Peluso E., Metzger D., Ichinose H., Shaked I., Chodaczek G., Biswas S.K., Hedrick C.C. Patrolling monocytes control tumor metastasis to the lung. Science. 2015; 350 (6263): 985–990. DOI:10.1126/science.aac9407.; Zhang B., Cao M., He Y., Liu Y., Zhang G., Yang C., Du Y., Xu J., Hu J., Gao F. Increased circulating M2- like monocytes in patients with breast cancer. Tumour Biol. 2017; 39 (6): 1010428317711571. DOI:10.1177/1010428317711571.; Adams D.L., Martin S.S., Alpaugh R.K., Charpentier M., Tsai S., Bergan R.C., Ogden I.M., Catalona W., Chumsri S., Tang C.M., Cristofanilli M. Circulating giant macrophages as a potential biomarker of solid tumors. Proceedings of the National Academy of Sciences. 2014; 111 (9): 3514–3519. DOI:10.1073/pnas.1320198111.; Adams D.L., Adams D.K., Alpaugh R.K., Cristofanilli M., Martin S.S., Chumsri S., Tang C.M., Marks J.R. Circulating cancer-associated macrophage-like cells differentiate malignant breast cancer and benign breast conditions. Cancer Epidemiol. Biomarkers Prev. 2016; 25 (7): 1037– 1042. DOI:10.1158/1055-9965.; Biswas S.K., Mantovani A. Macrophages: biology and role in the pathology of diseases. New York: Springer, 2014: 7–11. DOI:10.1007/978-1-4939-1311-4.; Zhao L., Shao Q., Zhang Y., Zhang L., He Y., Wang L., Kong B., Qu X. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts. Sci. Rep. 2016; 6 (1): 20409. DOI:10.1038/srep20409.; Baj-Krzyworzeka M., Baran J., Szatanek R., Mytar B., Siedlar M., Zembala M. Interactions of human monocytes with TMVs (tumour-derived microvesicles). Biochem. Soc. Trans. 2013; 41 (1): 268–272. DOI:10.1042/BST20120244.; Dimitrov S., Shaikh F., Pruitt C., Green M., Wilson K., Beg N., Hong S. Differential TNF production by monocyte subsets under physical stress: blunted mobilization of proinflammatory monocytes in prehypertensive individuals. Brain Behav. Immun. 2013; 27 (1): 101–108. DOI:10.1016/j.bbi.2012.10.003.; van Furth R., Cohn Z.A., Hirsch J.G., Humphrey J.H., Spector W.G., Langevoort H.L. Mononuclear phagocytic system: new classification of macrophages, monocytes and of their cell line. Bull World Health Organ. 1972; 47: 651–658.; Guilliams M., van de Laar L. A hitchhiker’s guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system. Front. Immunol. 2015; 6. DOI:10.3389/fimmu.2015.00406.; Чердынцева Н.В., Митрофанова И.В., Булдаков М.А., Стахеева М.Н., Патышева М.Р., Завьялова М.В., Кжышковска Ю.Г. Макрофаги и опухолевая прогрессия: на пути к макрофаг-специфичной терапии. юллетень сибирской медицины. 2017; 16 (4): 61–74. DOI:10.20538/1682-0363-2017-4-61-74.; Movahedi K., Laoui D., Gysemans C., Baeten M., Stangé G., Van den Bossche J., Mack M., Pipeleers D., In’t Veld P., e Baetselier P. Van Ginderachter J.A. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010; 70 (14): 5728–5739. DOI:10.1158/0008-5472.CAN-09-4672.; Franklin R.A., Liao W., Sarkar A., Kim M.V., Bivona M.R., Liu K., Pamer E.G., Li M.O. The cellular and molecular origin of tumor-associated macrophages. Science. 2014; 344 (6186): 921–925. DOI:10.1126/science.1252510.; Qian B.Z., Li J., Zhang H., Kitamura T., Zhang J., Campion L.R., Kaiser E.A., Snyder L.A., Pollard J.W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011; 475 (7355): 222–225. DOI:10.1038/nature10138.; Shand F.H., Ueha S., Otsuji M., Koid S.S., Shichino S., Tsukui T., Kosugi-Kanaya M., Abe J., Tomura M., Ziogas J., Matsushima K. Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proceedings of the National Academy of Sciences. 2014; 111 (21): 7771–7776. DOI:10.1073/pnas.1402914111.; Harney A.S., Arwert E.N., Entenberg D., Wang Y., Guo P., Qian B.Z., Oktay M.H., Pollard J.W., Jones J.G., Condeelis J.S. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 2015; 5 (9): 932–943. DOI:10.1158/2159-8290.CD-15-0012.; Sawanobori Y., Ueha S., Kurachi M., Shimaoka T., Talmadge J.E., Abe J., Shono Y., Kitabatake M., Kakimi K., Mukaida N., Matsushima K. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 2008; 111 (12): 5457–5466. DOI:10.1182/blood-2008-01-136895.; Bögels M., Braster R., Nijland P.G., Gül N., van de Luijtgaarden W., Fijneman R.J., Meijer G.A., Jimenez C.R., Beelen R.H., van Egmond M. Carcinoma origin dictates differential skewing of monocyte function. OncoImmunology. 2012; 1 (6): 798–809. DOI:10.4161/onci.20427.; Baron S., Finbloom J., Horowitz J., Bekisz J., Morrow A., Zhao T., Fey S., Schmeisser H., Balinsky C., Miyake K., Clark C., Zoon K. Near eradication of clinically relevant concentrations of human tumor cells by interferon-activated monocytes in vitro. J. Interferon. Cytokine Res. 2011; 31 (7): 569–573. DOI:10.1089/jir.2010.0153.; Кжышковска Ю.Г., Митрофанова И.В., Завьялова М.В., Слонимская Е.М., Чердынцева Н.В. Опухолеассоциированные макрофаги. М.: Наука, 2017: 224.; Hettinger J., Richards D.M., Hansson J., Barra M.M., Joschko A.C., Krijgsveld J., Feuerer M. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunl. 2013; 14 (8): 821–830. DOI:10.1038/ni.2638.; Segura E., Amigorena S. Inflammatory dendritic cells in mice and humans. Trends immunol. 2013; 34 (9): 440– 445. DOI:10.1016/j.it.2013.06.001.; Maeng H., Terabe M., Berzofsky J.A. Cancer vaccines: translation from mice to human clinical trials. Curr. Opin Immunol. 2018; 51: 111–122. DOI:10.1016/j.coi.2018.03.001.; Kongsted P., Borch T.H., Ellebaek E., Iversen T.Z., Andersen R., Met Ö., Hansen M., Lindberg H., Sengeløv L., Svane I.M. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: A randomized phase II study. Cytotherapy. 2017; 19 (4): 500–513. DOI:10.1016/j.jcyt.2017.01.007.; Vuk-Pavlović S., Bulur P.A., Lin Y., Qin R., Szumlanski C.L., Zhao X., Dietz A.B. Immunosuppressive CD14+HLA-DRlow/-monocytes in prostate cancer. Prostate. 2010; 70 (4): 443–455. DOI:10.1002/pros.21078.; Laborde R.R., Lin Y., Gustafson M.P., Bulur P.A., Dietz A.B. Cancer vaccines in the world of immune suppressive monocytes (CD14+HLA-DRlo/neg cells): the gateway to improved responses. Frontiers in Immunology. 2014; 5: 147. DOI:10.3389/fimmu.2014.00147.; Yu J., Du W., Yan F., Wang Y., Li H., Cao S, Yu W, Shen C, Liu J, Ren X. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol. 2013; 190 (7): 3783–3797. DOI:10.4049/jimmunol.1201449.; Mougiakakos D., Jitschin R., von Bahr L., Poschke I., Gary R., Sundberg B., Gerbitz A, Ljungman P, Le Blanc K. Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Leukemia. 2013; 27 (2): 377–388. DOI:10.1038/leu.2012.215.; Maeda A., Kawamura T., Ueno T., Usui N., Miyagawa S. Monocytic suppressor cells derived from human peripheral blood suppress xenogenic immune reactions. Xenotransplantation. 2014; 21 (1): 46–56. DOI:10.1111/xen.12067.; Poschke I., Mao Y., Adamson L., Salazar-Onfray F., Masucci G., Kiessling R. Myeloid-derived suppressor cells impair the quality of dendritic cell vaccines. Cancer Immunol. Immunother. 2012; 61 (6): 827–838. DOI:10.1007/s00262-011-1143-y.; Gustafson M.P., Lin Y., New K.C., Bulur P.A., O’Neill B.P., Gastineau D.A., Dietz AB. Systemic immune suppression in glioblastoma: the interplay between CD14+HLADRlo/neg monocytes, tumor factors, and dexamethasone. Neuro Oncol. 2010; 12 (7): 631–644. DOI:10.1093/neuonc/noq001.; Engblom C., Pfirschke C., Pittet M.J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer. 2016; 16 (7): 447–462. DOI:10.1038/nrc.2016.54.; Germano G., Frapolli R., Belgiovine C., Anselmo A., Pesce S., Liguori M., Erba E., Uboldi S., Zucchetti M., Pasqualini F. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013; 23 (2): 249–262. DOI:10.1016/j.ccr.2013.01.008.; https://bulletin.tomsk.ru/jour/article/view/2171

  2. 2
    Academic Journal

    المصدر: Bulletin of Siberian Medicine; Том 17, № 3 (2018); 180-187 ; Бюллетень сибирской медицины; Том 17, № 3 (2018); 180-187 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2018-17-3

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/1297/837; Çлокачественные новообразования в России в 2016 году (заболеваемость и смертность); под ред. А.Д. Каприна и др. М.: МНИОИ им. П.А. Герцена; филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018: 250 с.; Gray J.M., Rasanayagam S., Engel C., Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health. 2017; 16 (1): 94. DOI:10.1186/s12940-017-0287-4.; Liu F., Zhou J., Zhou P., Chen W., Guo F. The ubiquitin ligase CHIP inactivates NF-κB signaling and impairs the ability of migration and invasion in gastric cancer cells. Int. J. Oncol. 2015; 46 (5): 2096–2106. DOI:10.3892/ijo.2015.2893.; Kuo W.-H., Chang Y.-Y., Lai L.-C., Tsai M.-H., Hsiao C.K., Chang K.-J., Chuang E.Y. Molecular сharacteristics and metastasis рredictor genes of triple-negative breast сancer: а сlinical study of triple-negative breast сarcinomas. PLoS One. 2012; 7 (9): e45831. DOI:10.1371/journal.pone.0045831.; Kennecke H., Yerushalmi R., Woods R. et al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 2010; 28 (20): 3271–3277. DOI:10.1200/JCO.2009.25.9820.; Слонимская Е.М., Вторушин С.В., Бабышкина Н.Н., Паталяк С.В. Роль морфологических и генетических особенностей строения рецепторов ýстрогенов альфа в развитии резистентности к ýндокринотерапии тамоксифеном у пациенток люминальным раком молочной железы. Сибирский онкологический журнал. 2014; 3: 39–44.; Babyshkina N., Vtorushin S., Zavyalova M., Patalyak S., Dronova T., Litviakov N., Slonimskaya E., Kzhyshkowska J., Cherdyntseva N., Choynzonov E. The distribution pattern of ERa expression, ESR1 genetic variation and expression of growth factor receptors: association with breast cancer prognosis in Russian patients treated with adjuvant tamoxifen. Clin. Exp. Med. 2017; 17 (3): 383– 393. DOI:10.1007/s10238-016-0428-z.; Yamamoto M., Hosoda M., Nakano K., Jia S., Hatanaka K.C., Takakuwa E., Hatanaka Y., Matsuno Y., Yamashita H. P53 accumulation is a strong predictor of recurrence in estrogen receptor-positive breast cancer patients treated. Cancer Sci. 2014; 105 (1): 81–88. DOI:10.1111/cas.12302.; Molnár I.A., Molnár B.Б., Vízkeleti L., Fekete K., Tamás J., Deák P., Szundi C., Székely B., Moldvay J., Vári-Kakas S., Szász M.A., Kulka J., Tőkés A.M. Breast carcinoma subtypes show different patterns of metastatic behavior. Virchows Arch. 2017; 470 (3): 275–283. DOI:10.1007/s00428-017-2065-7.; Thangarajah F., Enninga I., W. Malter S. et al. Retrospective analysis of Ki-67 index and its prognostic significance in over 800 primary breast cancer cases. Anticancer Res. 2017; 37 (4): 1957–1964.; Perou C.M. Molecular Stratification of triple-negative breast сancer. The Oncologist. 2011; 16 (1): 61–70.; Кондакова И.В., Чойнзонов Е.Л. Прогнозирование метастазирования плоскоклеточных карцином головы и шеи. Вопросы онкологии. 2012; 58 (1): 26–32.; Моисеенко Ф.В., Волков Н.М., Богданов А.А. и др. Современные возможности клинического применения ýкспрессионного типирования опухолей молочной железы. Вопросы онкологии. 2016; 62 (1): 31–34.; Lub S., Maes K., Menu E. Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget. 2016; 7 (6): 6521–6537. DOI:10.18632/oncotarget.6658.; Колегова Е.С., Кондакова И.В., Çавьялов А.А. Малые белки теплового шока и убиквитин-протеасомная система при злокачественных опухолях. Вопросы онкологии. 2016; 3: 401–405.; Spirina L.V., Yunusova N.V., Kondakova I.V., Kolomiets L.A., Koval V.D., Chernyshova A.L., Shpileva O.V. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer. Molecular Biology Reports. 2012; 9: 8655–8662.; Kondakova I.V., Yunusova N.V., Spirina L.V. Association between intracellular proteinase activities and the content of locomotor proteins in tissues of primary tumors and metastases of ovarian cancer. Russian Journal of Bioorganic Chemistry. 2014; 40 (6): 681–687.; Kondakova I.V., Yunusova N.V., Spirina L.V., Shashova E.E., Kolegova E.S., Kolomiets L.A., Slonimskaya E.M., Villert A.B. Locomotor proteins in tissues of primary tumors and metastases of ovarian and breast cancer. Physics of Сancer: Interdisciplinary Problems and Clinical Applications. 2016: 020032. doi.org/10.1063/1.4960251.; Liu F., Zhou J., Zhou P. The ubiquitin ligase CHIP inactivates NF-κB signaling and impairs the ability of migration and invasion in gastric cancer cells. Int. J. Oncol. 2015; 46 (5): 2096–2106. DOI:10.3892/ijo.2015.2893.; Цимоха А.С. Протеасомы: участие в клеточных процессах. Цитология. 2010; 52 (4): 277–300.; Kakurina G.V., Kondakova I.V., Cheremisina O.V., Shishkin D.A., Choinzonov E.L. Adenylyl сyclase-аssociated рrotein 1 in the development of head and neck squamous сell сarcinomas. Bull. Exp. Biol. Med. 2016; 160 (5): 695–697. doi.org/10.1007/s10517-016-3252-2.; Powers G.L., Ellison-Zelski S.J., Casa A.J. et al. Proteasome inhibition represses ER gene expression in ER + cells – a new link between proteasome activity and estrogen signaling in breast cancer. Oncogene. 2010; 29 (10): 1509–1518.; Ogawa S., Shih L.-Y., Suzuki T., Otsu M., Nakauchi H., et al. Deregulated intracellular signaling by mutated c-CBL in myeloid neoplasms. Clinical Cancer Research. 2010; 16: 3825–3831. DOI:10.1158/1078-0432.CCR-09-2341.; Shashova E.E., Lyupina Y.V., Glushchenko S.A., Slonimskaya E.M., Savenkova et al. Proteasome unctioning in breast сancer: сonnection with сlinical-рathological factors. PLoS ONE. 2014; 9 (10): e109933. doi.org/10.1371/journal.pone.0109933.; Ivanova E.V., Kondakova I.V., Spirina L.V. et al. Chymotrypsin-like activity of proteasomes and total calpain activity in gastric and colorectal cancer. Bulleten of Experimental Biology and Medicine. 2014; 157 (6): 781–784.; Спирина Л.В., Кондакова И.В., Усынин Е.А., Юрмазов Ç.А. Регуляция ýкспрессии транскрипционных факторов и фактора роста ýндотелия протеасомной системой при метастазировании рака почки. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2012; 23 (1): 27–32.; Kakurina G.V., Kondakova I.V., Choinzonov E.L. Degradome сomponents in рrogression of squamous cell carcinoma of the head andn Neck. Vestn. Ross. Akad. Med. Nauk. 2015; (6): 684–693.; https://bulletin.tomsk.ru/jour/article/view/1297

  3. 3
    Academic Journal

    المصدر: Siberian journal of oncology; Том 15, № 3 (2016); 37-42 ; Сибирский онкологический журнал; Том 15, № 3 (2016); 37-42 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-3

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/347/342; Слонимская Е.М., Брагина О.В., Тарабановская Н.А., Дорошенко А.В., Гарбуков Е.Ю. Опыт применения капецитабина в неоадъювантной химиотерапии рака молочной железы // Современная онкология. 2012. № 4. С. 22–25.; Bonnefoi H., Litière S., Piccart M., MacGrogan G., Fumoleau P., Brain E., Petit T., Rouanet P., Jassem J., Moldovan C., Bodmer A., Zaman K., Cufer T., Campone M., Luporsi E., Malmström P., Werutsky G., Bogaerts J., Bergh J., Cameron D.A. Pathological complete response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified breast cancer intrinsic subtypes: a landmark and two-step approach analyses from the EORTC 10994/BIG 1-00 phase III trial // Ann. Oncol. 2014. Vol. 25 (6). Р. 1128–1136. doi:10.1093/annonc/mdu118.; Hatzis C., Symmans W.F., Zhang Y., Gould R., Moulder S., Hunt K.K., Abu-Khalaf M.M., Hofstatter E., Lannin D.R., Chagpar A.B., Pusztai L. Relationship between complete pathologic response to neoadjuvant chemotherapy and survival in triple negative breast cancer // Clin. Cancer Res. 2016. Vol. 22 (1). P. 26–33. doi:10.1158/1078-0432.CCR-14-3304.; Eremin J., Cowley G., Walker L.G., Murray E., Stovickova M., Eremin O. Women with large (≥3 cm) and locally advanced breast cancers (T3, 4, N1, 2, M0) receiving neoadjuvant chemotherapy (NAC: cyclophosphamide, doxorubicin, docetaxel): addition of capecitabine improves 4-year disease-free survival // Springerplus. 2015. Vol. 4. P. 9. doi:10.1186/2193-1801-4-9.; Kaufmann M., Von Minckwitz G., Mamounas E.P., Cameron D., Carey L.A., Cristofanilli M., Denkert C., Eiermann W., Gnant M., Harris J.R., Karn T., Liedtke C., Mauri D., Rouzier R., Ruckhaeberle E., Semiglazov V., Symmans W.F., Tutt A., Pusztai L. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer // Ann. Surg. Oncol. 2012. Vol. 19 (5). Р. 1508–1516. doi:10.1245/s10434-011-2108-2.; Luangdilok S., Samarnthai N., Korphaisarn K. Association between Pathological Complete Response and Outcome Following Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer Patients // J. Breast Cancer. 2014. Vol. 17 (4). Р. 376–385. doi:10.4048/jbc.2014.17.4.376.; Miller M., Ottesen R.A., Niland J.C., Kruper L., Chen S.L., Vito C. Tumor response ratio predicts overall survival in breast cancer patients treated with neoadjuvant chemotherapy // Ann. Surg. Oncol. 2014. Vol. 21 (10). P. 3317–3323. doi:10.1245/s10434-014-3922-0.; Steger G.G., Greil R., Lang A., Rudas M., Fitzal F., Mlineritsch B., Hartmann B. L., Bartsch R., Melbinger E., Hubalek M., Stoeger H., Dubsky P., Ressler S., Petzer A.L., Singer C. F., Muss C., Jakesz R., Gampenrieder S.P., Zielinski C.C., Fesl C., Gnant M. Epirubicine and docetaxel with or without capecitabine as neoadjuvant treatment for early breast cancer: final results of a randomized phase III study (ABCSG-24) // Ann. Oncol. 2014. Vol. 25 (2). P. 366–371. doi:10.1093/annonc/mdt508.; Symmans W.F., Peintinger F., Hatzis C., Rajan R., Kuerer H., Valero V., Assad L., Poniecka A., Hennessy B., Green M., Buzdar A.U., Singletary S.E., Hortobagyi G.N., Pusztai L. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy // J. Clin. Oncol. 2007. Vol. 25 (28). P. 4414–4422.; Teshome M., Hunt K.K. Neoadjuvant Therapy in the Treatment of Breast Cancer // Surg. Oncol. Clin. N. Am. 2014. Vol. 23 (3). Р. 505–523. doi:10.1016/j.soc.2014.03.006; Haddad T.C., Goetz M.P. Landscape of neoadjuvant therapy for breast cancer // Ann. Surg. Oncol. 2015. Vol. 22 (5). P. 1408–1415. doi:10.1245/s10434-015-4405-7.; Rapoport B.L., Demetriou G.S., Moodley S.D., Benn C.A. When and how do I use neoadjuvant chemotherapy for breast cancer? // Curr. Treat. Option. 2014. Vol. 15 (1). Р. 86–98. doi:10.1007/s11864-013-0266-0.; Rastogi P., Geyer C.E. Jr., Mamounas E.P., DeMichele A. Drug development: neoadjuvant opportunities in breast cancer // Am. Soc. Clin. Oncol. Educ. Book. 2013. P. 73–79. doi:10.1200/EdBook_AM.2013.33.73.; https://www.siboncoj.ru/jour/article/view/347

  4. 4
    Academic Journal

    المصدر: Siberian journal of oncology; Том 15, № 2 (2016); 29-35 ; Сибирский онкологический журнал; Том 15, № 2 (2016); 29-35 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-2

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/330/325; Eechoute K., Sparreboom A., Burger H., Franke R.M., Schiavon G., Verweij J., Loos W.J., Wiemer E.A., Mathijssen R.H. Drug transporters and imatinib treatment: implications for clinical practice // Clin. Cancer Res. 2011. Vol. 17 (3). P. 406–415. doi:10.1158/1078-0432.CCR-10-2250.; Gillet J.P., Gottesman M.M. Overcoming multidrug resistance in cancer: 35 years after the discovery of ABCB1 // Drug Resist Updat. 2012. Vol. 15 (1–2). P. 2–4. doi:10.1016/j.drup.2012.03.001.; Han S., Park K., Shin E., Kim H.J., Kim J.Y., Kim J.Y., Gwak G. Genomic change of chromosome 8 predicts the response to taxane-based neoadjuvant chemotherapy in node-positive breast cancer // Oncol. Reports. 2010. Vol. 24 (1). P. 121–128.; Han W., Woo J.H., Yu J.H., Lee M.J., Moon H.G., Kang D., Noh D.Y. Common genetic variants associated with breast cancer in Korean women and differential susceptibility accoding to intrisic subtype // Cancer Epidemiol. Biomarkers Prev. 2011. Vol. 20 (5). P. 793–798. doi:10.1158/1055-9965.EPI-10-1282.; Kaufmann M., von Minckwitz G., Mamounas E.P., Cameron D., Carey L.A., Cristofanilli M., Denkert C., Eiermann W., Gnant M., Harris J.R., Karn T., Liedtke C., Mauri D., Rouzier R., Ruckhaeberle E., Semiglazov V., Symmans W.F., Tutt A., Pusztai L. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer // Ann. Surg. Oncol. 2012. Vol. 19 (5). P. 1508–1516. doi:10.1245/s10434-011-2108-2.; Kawachi K., Sasaki T., Murakami A., Ishikawa T., Kito A., Ota I., Shimizu D., Nozawa A., Nagashima Y., Machinami R., Aoki I. The topoisomerase II alpha gene status in primary breast cancer is a predictive marker of the response to anthracycline-based neoadjuvant chemotherapy // Pathol. Res. Pract. 2010. Vol. 206 (3). P. 156–162. doi:10.1016/j.prp.2009.10.009.; Konecny G.E., Pauletti C., Untch M., Wang H.-J., Modus V., Kulin W., Thomssen C., Harbeck N., Wang L., Apple S., Janicke F., Slamon D.J. Association between HER2, TOP2A, and response to antracycline-based preoperative chemotherapy in high-risk primary breast cancer // Breast Cancer Res. Treat. 2010. Vol. 120. P. 481–489. doi:10.1007/s10549-010-0744-z.; Litviakov N., Cherdyntseva N., Tsyganov M., Denisov E., Garbukov E., Merzliakova M., Volkomorov V., Vtorushin S., Zavyalova M., Slonimskaya E. Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response // Cancer Chemother. Pharmacol. 2013. Vol. 71 (1). P. 153–163. doi:10.1007/s00280-012-1992-x.; Litviakov N.V., Cherdyntseva N.V., Tsyganov N.V., Slonimskaya E.M., Ibragimova M.K., Kazantseva P.V., Kzhyshkowska J., Choinzonov E.L. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy // Oncotarget. 2016. Vol. 7 (7). P. 7829–7841. doi:10.18632/oncotarget.6953.; Miller M., Ottesen R.A., Niland J.C., Kruper L., Chen S.L., Vito C. Tumor response ratio predicts overall survival in breast cancer patients treated with neoadjuvant chemotherapy // Ann. Surg. Oncol. 2014. Vol. 21. P. 3317–3323. doi:10.1245/s10434-014-3922-0.; Miyoshi Y., Kurosumi M., Kurebayashi J., Matsuura N., Takahashi M., Tokunaga E., Egawa C., Masuda N., Kono S., Morimoto K., Kim S.J., Okishiro M., Yanagisawa T., Ueda S., Taguchi T., Tamaki Y., Noguchi S. Predictive factors for anthracycline-based chemotherapy for human breast cancer // Breast Cancer. 2010. Vol. 17 (2). P. 103–109. doi:10.1007/s12282-009-0152-6.; O'Driscoll L., Clynes M. Molecular markers of multiple drug resistance in breast cancer // Chemotherapy. 2006. Vol. 52 (3). P. 125–129.; Schinkel A.H., Jonker J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview // Adv. Drug Deliv. Rev. 2012. Vol. 64. P. 138–153.; Symmans W.F., Peintinger F., Hatzis C., Rajan R., Kuerer H., Valero V., Assad L., Poniecka A., Hennessy B., Green M., Buzdar A.U., Singletary S.E., Hortobagyi G.N., Pusztai L. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy // J. Clin. Oncol. 2007. Vol. 25 (28). P. 4414–4422.; Szakacs G., Paterson J.K., Ludwig J.A., Booth-Genthe C., Gottesman M.M. Targeting multidrug resistance in cancer // Nat. Rev. Drug Discov. 2006. Vol. 5 (3). P. 219–234.; Von Minckwitz D., Untch M., Blohmer J.U., Costa S.D., Eidtmann H., Fasching P.A., Gerber B., Eiermann W., Hilfrich J., Huober J., Jackisch C., Kaufmann M., Konecny C., Denkert C., Nekljudova V., Mehta K., Loibl S. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes // J. Clin. Oncol. 2012. Vol. 30 (15). P. 1796–1804. doi:10.1200/JCO.2011.38.8595.; Wikman H., Sielaff-Frimpong B., Kropidlowski J., Witzel I., Milde-Langosch K., Sauter G., Westphal M., Lamszus K., Pantel K. Clinical Relevance of Loss of 11p15 in Primary and Metastatic Breast Cancer: Association with Loss of PRKCDBP Expression in Brain Metastases // PLoS ONE. 2012. Vol. 7 (10): e47537. doi:10.1371/journal.pone.0047537.; https://www.siboncoj.ru/jour/article/view/330

  5. 5
    Academic Journal

    المساهمون: РФФИ

    المصدر: Siberian journal of oncology; Том 15, № 6 (2016); 48-54 ; Сибирский онкологический журнал; Том 15, № 6 (2016); 48-54 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-6

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/446/394; Ewing J. Neoplastic diseases. Ed 6. Philadelphia: W. B. Saunders Co. 1928.; Paget S. The distribution of secondary growths in cancer of the breast. The Lancet. 1889; 133 (3421): 571–573.; Barcellos-Hoff M.H., Lyden D., Wang T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013 Jul; 13 (7): 511–8. doi:10.1038/nrc3536.; Salgado R., Denkert C., Demaria S., Sirtaine N., Klauschen F., Pruneri G., Wienert S., Van den Eynden G., Baehner F.L., Penault-Llorca F., Perez E.A., Thompson E.A., Symmans W.F., Richardson A.L., Brock J., Criscitiello C., Bailey H., Ignatiadis M., Floris G., Sparano J., Kos Z., Nielsen T., Rimm D.L., Allison K.H., Reis-Filho J.S., Loibl S., Sotiriou C., Viale G., Badve S., Adams S., Willard-Gallo K., Loi S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015 Feb; 26 (2): 259–71. doi:10.1093/annonc/mdu450.; Yao M., Brummer G., Acevedo D., Cheng N. Cytokine Regulation of Metastasis and Tumorigenicity. Adv Cancer Res. 2016; 132: 265–367. doi:10.1016/bs.acr.2016.05.005.; Niu J., Chang Z., Peng B., Xia Q., Lu W., Huang P., Tsao M.S., Chiao P.J. Keratinocyte growth factor/fibroblast growth factor-7-regulated cell migration and invasion through activation of NF-kappaB transcription factors. J Biol Chem. 2007 Mar 2; 282 (9): 6001–11. doi:10.1074/jbc.M606878200.; Sasaki T., Hiroki K., Yamashita Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res Int. 2013; 2013: 546318. doi:10.1155/2013/546318.; Sato S., Hanibuchi M., Kuramoto T., Yamamori N., Goto H., Ogawa H., Mitsuhashi A., Van T.T., Kakiuchi S., Akiyama S., Nishioka Y., Sone S. Macrophage stimulating protein promotes liver metastases of small cell lung cancer cells by affecting the organ microenvironment. Clin Exp Metastasis. 2013 Mar; 30 (3): 333–44. doi:10.1007/s10585-012-9540-y.; Bertazza L., Mocellin S. The dual role of tumor necrosis factor (TNF) in cancer biology. Curr Med Chem. 2010; 17 (29): 3337–3352.; Перельмутер В.М., Манских В.Н. Прениша как отсутствующее звено концепции метастатических ниш, объясняющее избирательное метастазирование злокачественных опухолей и форму метастатической болезни. Биохимия. 2012; 77 (1): 130–139.; https://www.siboncoj.ru/jour/article/view/446

  6. 6
    Academic Journal
  7. 7