يعرض 1 - 20 نتائج من 63 نتيجة بحث عن '"Número reproductivo básico"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المصدر: Revista de la Facultad de Ciencias; Vol. 11 No. 2 (2022): Special Issue: Flat Likelihoods; 74-99 ; Revista de la Facultad de Ciencias; Vol. 11 Núm. 2 (2022): Número Especial: Verosimilitudes Planas; 74-99 ; 2357-5549 ; 0121-747X

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/rfc/article/view/100986/84230; Acuña-Zegarra, M. A., Díaz-Infante, S., Baca-Carrasco, D., Olmos-Liceaga, D. (2021). COVID-19 optimal vaccination policies: a modeling study on efficacy, natural and vaccine-induced immunity responses. Mathematical Biosciences, 6337, 108614.; Acuña-Zegarra, M. A., Santana-Cibrian, M. \& Velasco-Hernández, J. X. (2020). Modeling behavioral change and COVID-19 containment in Mexico: A trade-off between lockdown and compliance. Mathematical Biosciences, 325, 108370.; Arino, J. & Van den Driessche, P. (2003). A multi-city epidemic model. Mathematical Population Studies, 10(3), 175-193.; Barndorff-Nielsen, O.E. & Cox, D.R. (1994). Inference and asymptotics. Chapman & Hall/CRC. Boca Raton.; Camacho, A., Kucharski, A. J., Funk, S., Breman, J., Piot, P. & Edmunds, W. J. (2014). Potential for large outbreaks of Ebola virus disease. Epidemics, 9, 70-78.; Capistrán, M.A., Christen, J. A. & Velasco-Hernández, J. X. (2012). Towards uncertainty quantification and inference in the stochastic SIR epidemic model. \textit{Mathematical Biosciences}, 240(2), 250-259.; Chowell, G., Diaz-Dueñas, P., Miller, J. C., Alcazar-Velazco, A., Hyman, J. M., Fenimore, P. W. & Castillo-Chavez, C. (2007). Estimation of the reproduction number of dengue fever from spatial epidemic data. Mathematical Biosciences, 208(2), 571-589.; Chowell, G., Torre, C. A., Munayco-Escate, C., Suarez-Ognio, L., Lopez-Cruz, R., Hyman, J. M. & Castillo-Chavez, C. (2008). Spatial and temporal dynamics of dengue fever in Peru: 1994--2006. Epidemiology & Infection, 136(12), 1667-1677.; Chowell, G., Towers, S., Viboud, C., Fuentes, R., Sotomayor, V., Simonsen, L.,Miller, M. A., Lima, M., Villarroel, C., Chiu, M., Villarroel, J. E. & Olea, A. (2012). The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile. BMC Infectious Diseases, 12(1), 1-12.; Cole, D. J. (2020). Parameter redundancy and identifiability. Chapman & Hall/CRC. Boca Raton.; Cosner, C. (2015). Models for the effects of host movement in vector-borne disease systems. Mathematical Biosciences, 270, 192-197.; Funk, S., Kucharski, A. J., Camacho, A., Eggo, R. M., Yakob, L., Murray, L. M. & Edmunds, W. J. (2016). Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus. PLoS Neglected Tropical Diseases, 10(12), e0005173.; Gábor, A., Villaverde, A. F. & Banga, J. R. (2017). Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems. BMC Systems Biology, 11(1), 1-16.; Ghosh, I., Sardar, T. & Chattopadhyay, J. (2017). A Mathematical Study to Control Visceral Leishmaniasis: An Application to South Sudan. Bulletin of Mathematical Biology, 79(5), 1100-1134.; Ghosh, I., Tiwari, P. K., Samanta, S., Elmojtaba, I. M., Al-Salti, N. & Chattopadhyay, J. (2018). A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear. Mathematical Biosciences, 306, 160-169.; Guanghu, Z., Tao, L., Jianpeng, X., Bing, Z., Tie, S., Yonghui, Z., Lifeng, L., Zhiqiang, P., Aiping, D., Wenjun, M. & Yuantao, H. (2019). Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. Science of The Total Environment, 651, 969-978.; Gui-Quan, S., Jun-Hui, X., Sheng-He, H., Zhen, J,; Ming-Tao, L. & Liqun, L. (2017). Transmission dynamics of cholera: Mathematical modeling and control strategies. Communications in Nonlinear Science and Numerical Simulation, 45, 235-244.; Hendron, R. W. S. & Bonsall, M. B. (2016). The interplay of vaccination and vector control on small dengue networks. Journal of Theoretical Biology, 407, 349-361.; Kalbfleisch, J. G. (1985). Probability and Statistical Inference, Vol. 2. Springer-Verlag. New York.; Kao, Y. H. & Eisenberg, M. C. (2018). Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment. Epidemics, 25, 89-100.; Kermack, W. O. & McKendrick, A. G. (1927). Contribution to the mathematical theory of epidemics. Proccedings of the Royal Society A, 115(772), 700--721.; Khan, A., Hassan, M. & Imran, M. (2014). Estimating the basic reproduction number for single-strain dengue fever epidemics. Infectious Diseases of Poverty, 3(1), 1-17.; Kim, J. E., Lee, H., Lee, C. H. & Lee, S. (2017). Assessment of optimal strategies in a two-patch dengue transmission model with seasonality. PLoS ONE, 12(3), e0173673.; Lee, S. & Castillo-Chavez, C. (2015). The role of residence times in two-patch dengue transmission dynamics and optimal strategies. Journal of Theoretical Biology, 374, 152-164.; Lloyd-Smith, J. O. (2007). Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS ONE, 2(2), e180.; Ma, J. (2020). Estimating epidemic exponential growth rate and basic reproduction number. Infectious Disease Modelling, 5, 129-141.; Marquis, A.D., Arnold, A., Dean-Bernhoft, C., Carlson, B.E. & Olufsen, M. S. (2018). Practical identifiability and uncertainty quantification of a pulsatile cardiovascular model. Mathematical Biosciences, 304, 9-24.; Mishra, A., Ambrosio, B., Gakkhar, S. & Aziz-Alaoui, M. A. (2018). A network model for control of dengue epidemic using sterile insect technique. Mathematical Biosciences & Engineering, 15(2), 441-460.; Mishra, A. & Gakkhar, S. (2018). Non-linear dynamics of two-patch model incorporating secondary dengue infection. International Journal of Applied and Computational Mathematics, 4(19), 1-22.; Murphy, S. A. & Van Der Vaart, A. W. (2000). On profile likelihood. Journal of the American Statistical Association, 95(450), 449-465.; Nguyen, V. K., Parra-Rojas, C. & Hernandez-Vargas, E. A. (2018). The 2017 plague outbreak in Madagascar: Data descriptions and epidemic modelling. Epidemics, 25, 20-25.; Núñez-López, M., Ramos, L. A. & Velasco-Hernández, J. X. (2021). Migration rate estimation in an epidemic network. Applied Mathematical Modelling, 89, 1949-1964.; Pandey, A., Mubayi, A. & Medlock, J. (2013). Comparing vector-host and SIR models for dengue transmission. Mathematical Biosciences, 246(2), 252-259.; Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press. New York.; Phaijoo, G. R. & Gurung, D. B. (2016). Mathematical study of dengue disease transmission in multi-patch environment. Applied Mathematics, 7(14), 1521-1533.; Qi, L., Xue, M., Cui, J.A., Wang, Q. & Wang, T. (2018). Schistosomiasis transmission model and its control in Anhui province. Bulletin of Mathematical Biology, 80(9), 2435-2451.; Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U. & Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923-1929.; Rosenbaum, E. A., Pechen De D'angelo, A. M., Bergoc, R. M. & Venturino, A. (1999). Modelling acetylcholinesterase kinetics: The identifiability problem in parameter estimation. Journal of Biological Systems, 7(01), 95-111.; Saccomani, M. P. & Thomaseth, K. (2018). The union between structural and practical identifiability makes strength in reducing oncological model complexity: a case study. Complexity, 2018.; Saldaña, F., Flores-Arguedas, H., Camacho-Gutiérrez, J. A. & Barradas, I. (2020). Modeling the transmission dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak. Mathematical Biosciences and Engineering, 17(4), 4165-4183.; Sasmal, S. K., Ghosh, I., Huppert, A. & Chattopadhyay, J. (2018). Modeling the spread of Zika virus in a stage-structured population: effect of sexual transmission. Bulletin of Mathematical Biology, 80(11), 3038-3067.; Serfling, R. J. (2002). Approximation Theorems of Mathematical Statistics. John Wiley & Sons. New York.; Sprott, D. A. (2000), Statistical inference in science. Springer-Verlag. New York.; Tocto-Erazo, M. R., Espíndola-Zepeda, J. A., Montoya-Laos, J. A., Acuña-Zegarra, M. A., Olmos-Liceaga, D., Reyes-Castro, P. A. & Figueroa-Preciado, G. (2020), Lockdown, relaxation, and acme period in COVID-19: A study of disease dynamics in Hermosillo, Sonora, Mexico. PLoS ONE, 15(12), e0242957.; Tocto-Erazo, M. R., Olmos-Liceaga, D. & Montoya, J. A. (2021). Effect of daily periodic human movement on dengue dynamics: The case of the 2010 outbreak in Hermosillo, Mexico. Applied Mathematical Modelling, 97, 559-567.; Towers, S., Brauer, F., Castillo-Chavez, C., Falconar, A.K., Mubayi, A. & Romero-Vivas, C. M. (2016). Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics, 17, 50-55.; Tuncer, N., Gulbudak, H., Cannataro, V. L. & Martcheva, M. (2016). Structural and practical identifiability issues of immuno-epidemiological vector-host models with application to rift valley fever. \textit{Bulletin of Mathematical Biology, 78(9), 1796-1827.; Tuncer, N., Mohanakumar, C., Swanson, S. & Martcheva, M. (2018). Efficacy of control measures in the control of Ebola, Liberia 2014-2015. Journal of Biological Dynamics, 12(1), 913-937.; Vinh, D. N., Ha, D.T.M., Hanh, N.T., Thwaites, G., Boni, M. F., Clapham, H. E. & Thuong, N. T. T. (2018). Modeling tuberculosis dynamics with the presence of hyper-susceptible individuals for Ho Chi Minh City from 1996 to 2015. BMC Infectious Diseases, 18(1), 1-13.; Xiao, Y. & Zou, X. (2014). Transmission dynamics for vector-borne diseases in a patchy environment. Journal of Mathematical Biology, 69(1), 113-146.; Zhan, C., Li, B.Y.S. & Yeung, L.F. (2015). Structural and practical identifiability analysis of S-system. IET Systems Biology, 9(6), 285-293.; https://revistas.unal.edu.co/index.php/rfc/article/view/100986

  7. 7
  8. 8
    Academic Journal

    المصدر: Revista Facultad de Ciencias Básicas; Vol. 16 No. 1 (2020); 57-68 ; Revista Facultad de Ciencias Básicas; Vol. 16 Núm. 1 (2020); 57-68 ; 2500-5316 ; 1900-4699

    وصف الملف: application/pdf; text/xml

    Relation: https://revistas.unimilitar.edu.co/index.php/rfcb/article/view/4341/4719; https://revistas.unimilitar.edu.co/index.php/rfcb/article/view/4341/4736; P. J. Mason and A. J. Haddow, "An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-1953: An additional note on Chikungunya virus isolations and serum antibodies," Trans. R. Soc. Trop. Med. Hyg., vol. 3, no 51, pp. 238-240, 1957, https://doi.org/10.1016/0035-9203(57)90022-6; J. Bettadapura, L. J. Herrero, A. Taylor, and S. Mahalingam, "Approaches to the treatment of disease induced by chikungunya virus," Indian J. Med. Res., vol. 138, no. 5, pp. 762-765, 2013.; C. Maguiña-Vargas, "Fiebre de Chikungunya: Una nueva enfermedad emergente de gran impacto en la salud pública," Rev. Med. Hered., vol. 26, no. 1, pp. 55-59, 2015, https://doi.org/10.20453/rmh.2015.2350; M. Fischer and J. E. Staples, "Chikungunya virus spreads in the Americas-Caribbean and South America, 2013-2014," Morb. Mortal. Wkly. Rep., vol. 63, no. 22, pp. 500-501, 2014.; Ministerio de Salud de la Provincia de Buenos Aires, Participación Social en la prevención del Dengue, Zika y Chikungunya: guía para el Promotor. Buenos Aires, Argentina: Unicef, 2016.; J. Moya, R. Pimentel, and J. Puello, "Chikungunya: un reto para los servicios de salud de la República Dominicana," Rev. Panam. Salud Pública, vol. 36, pp. 331-335, 2014.; J. L. Manzur and C. Fernández de Kirchner, Enfermedades infecciosas. Fiebre Chikungunya. Guía para el equipo de salud Nro, 13. República Argentina: Dirección de Epidemiología-Ministerio de Salud de la Nación, 2015.; J. E. Staples and M. Fischer, "Chikungunya virus in the Americas-what a vector borne pathogen can do," N. Engl. J. Med., vol. 371, no. 10, pp. 887-889, 2014, https://doi.org/10.1056/NEJMp1407698; E. Delisle et al., "Chikungunya outbreak in Montpellier, France, September to October 2014," Eurosurveillance, vol. 20, no. 17, pp. 21108, 2015, https://doi.org/10.2807/1560-7917.ES2015.20.17.21108; L. F. Shalauddin, R. P. Ricketts, T. Christian, K. Polson, and B. Olowokure, "Chikungunya virus outbreak, Dominica, 2014," Emerging Infect. Dis., vol. 21, no. 5, pp. 909-911, 2015, https://doi.org/10.3201/eid2105.141813; S. S. Patil, S. R. Patil, P. M. Durgawale, and A. G. Patil, "A study of the outbreak of Chikungunya fever," J. Clin. Diagnostic Res., vol. 7, no. 6, pp. 1059-62, 2013, https://doi.org/10.7860/JCDR/2013/5330.3061; C. H. Tan et al., "Entomological investigation and control of a chikungunya cluster in Singapore," Vector Borne Zoonotic Dis., vol. 11, no. 4, pp. 383-390, 2011, https://doi.org/10.1089/vbz.2010.0022; A. Farajollahi, S. P. Healy, I. Unlu, R. Gaugler, and D. M. Fonseca, "Effectiveness of ultra-low volume nighttime applications of an adulticide against diurnal Aedes albopictus, a critical vector of dengue and chikungunya viruses," PLoS One, vol. 7, no. 11, pp. e49181, 2012, https://doi.org/10.1371/journal.pone.0049181; G. C. Abramides, D. Roiz, R. Guitart, S. Quintana, I. Guerrero, and N. Giménez, "Effectiveness of a multiple intervention strategy for the control of the tiger mosquito (Aedes albopictus) in Spain," Trans. R. Soc. Trop. Med. Hyg., vol. 105, no. 5, pp. 281-288, 2011, https://doi.org/10.1016/j.trstmh.2011.01.003; J. Raude and M. Setbon, "The role of environmental and individual factors in the social epidemiology of chikungunya disease on Mayotte Island," Health Place, vol. 15, no. 3, pp. 659-69, 2009, https://doi.org/10.1016/j.healthplace.2008.10.009; T. S. Selvavinayagam, "Chikungunya fever outbreak in Vellore, south India," Indian J. Community Med., vol. 32, no. 4, pp. 286-287, 2007, https://doi.org/10.4103/0970-0218.37697; Z. Qiaoli et al., "Maiden outbreak of chikungunya in Dongguan city, Guangdong province, China: epidemiological characteristics," PloS one, vol. 7, no. 8, pp. e42830, 2012, https://doi.org/10.1371/journal.pone.0042830; A. A. Yoosuf et al., "First report of chikungunya from the Maldives," Trans. R. Soc. Trop. Med. Hyg., vol. 103, no. 2, pp. 192-196, 2009, https://doi.org/10.1016/j.trstmh.2008.09.006; J. Raude et al., "Public perceptions and behaviours related to the risk of infection with Aedes mosquito-borne diseases: a cross-sectional study in Southeastern France," BMJ open, vol. 2, no. 6, 2012, https://doi.org/10.1136/bmjopen-2012-002094; K. Vijayakumar, T. S. Anish, K. N. Sreekala, R. Ramachandran, and R. R. Philip, "Environmental factors of households in five districts of Kerala affected by the epidemic of chikungunya fever in 2007," Natl. Med. J. India, vol. 23, no. 6, 2010.; J. Thuilliez, C. Bellia, J. S. Dehecq, and O. Reilhes, "Household-level expenditure on protective measures against mosquitoes on the island of La Réunion, France," PLoS Negl. Trop. Dis., vol. 8, no. 1, pp. e2609, 2014, https://doi.org/10.1371/journal.pntd.0002609; I. N. Kantor, "Dengue, zika, chikungunya y el desarrollo de vacunas," Medicina (Buenos Aires), vol. 8, no. 1, pp. 23-28, 2018.; C. Smalley, J. H. Erasmus, C. B. Chesson, and D. W. Beasley, "Status of research and development of vaccines for chikungunya," Vaccine, vol. 34, no. 26, pp. 2976-2981, 2016, https://doi.org/10.1016/j.vaccine.2016.03.076; N. H. Levitt, H. H. Ramsburg, S. E. Hasty, P. M. Repik, Jr, F. E. Cole, and H. W. Lupton, "Development of an attenuated strain of chikungunya virus for use in vaccine production," Vaccine, vol. 4, no. 3, pp. 157-162, 1986. https://doi.org/10.1016/0264-410X(86)90003-4; D. Requena and J. L. Segovia-Juárez, "Sugerencias a partir del análisis de sensibilidad de un modelo matemático de transmisión de chikungunya," Rev. Peru. Med. Exp. Salud Pública, vol. 33, no. 1, pp. 154-161, 2016, https://doi.org/10.17843/rpmesp.2016.331.2017; F. Martínez et al., "Modelado predictivo de la epidemia de Chikungunya," Rev. Ontare, vol. 3, no. 2, pp. 7-31, 2015, https://doi.org/10.21158/23823399.v3.n2.2015.1439; M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos. New York: Academic Press, 2012. https://doi.org/10.1016/B978-0-12-382010-5.00015-4; L. Perko, Differential Equations and Dynamical Systems. New York: Springer-Verlag, 1996. https://doi.org/10.1007/978-1-4684-0249-0; O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts, "The construction of next- generation matrices for compartmental epidemic models," J. R. Soc. Interface, vol. 7, no. 47, pp. 873-885, 2009, https://doi.org/10.1098/rsif.2009.0386; P. Mingola, "A Study of Poisson and Related Processes with Applications," M.S. thesis, Math. Dept., Univ. Tennessee, Knoxville, Tennessee, 2013. [Online]. Available: https://trace.tennessee.edu/utk_chanhonoproj/1613; B. R. James. Probabilidade: um curso em nível intermediário. Rio de Janeiro, Brasil: IMPA, 2008.; J. H. Erasmus et al., "A chikungunya fever vaccine utilizing an insect-specific virus platform," Nat. Med., vol. 23, no. 2, pp. 192-199, 2017, https://doi.org/10.1038/nm.4253; R. Edelman, C. O. Tacket, S. S. Wasserman., S. A. Bodison, J. G. Perry, and J. A. Mangiafico, "Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218," Am. J. Trop. Med. Hyg., vol. 62, no. 6, pp. 681-685, 2000, https://doi.org/10.4269/ajtmh.2000.62.681; M. M. Akiner, B. Demirci, G. Babuadze, V. Robert, and F. Schaffner, "Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea region increases risk of chikungunya, dengue, and zika outbreaks in Europe," PLoS Negl. Trop. Dis., vol. 10, no. 4, pp. e0004664, 2016, https://doi.org/10.1371/journal.pntd.0004664; M. K. Butterworth, C. W. Morin, and A. C. Comrie, "An analysis of the potential impact of climate change on dengue transmission in the Southeastern United States," Environ. Health Perspect. vol. 125, no. 4, pp. 579-84, 2016, https://doi.org/10.1289/EHP218; L. A. Ganushkina, I. V. Patraman, G. Rezza, L. Migliorini, S. K. Litvinov, and V. P. Sergiev, "Detection of Aedes aegypti, Aedes albopictus, and Aedes koreicus in the area of Sochi, Russia," Vector Borne Zoonotic Dis., vol. 16, no. 1, pp. 58-60, 2016, https://doi.org/10.1089/vbz.2014.1761; https://revistas.unimilitar.edu.co/index.php/rfcb/article/view/4341

  9. 9
    Academic Journal

    المصدر: Revista Colombiana de Matemáticas; Vol. 55 Núm. 1 (2021); 71-107 ; Revista Colombiana de Matemáticas; Vol. 55 No. 1 (2021); 71-107 ; 2357-4100 ; 0034-7426

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/recolma/article/view/99099/81497; B. Adams and M. Boots, How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model, Epidemics (2010).; S. Altizer, A. Dobson, and P. Hosseini et al, Seasonality and the dynamics of infectious diseases, Ecology letters (2006).; M. Andraud, N. Hens, C. Marais, and P. Beutels, Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PloS one (2012).; B. Angel and V. Joshi, Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of rajasthan, india, Journal of vector borne diseases (2008).; N. Arunachalam, S. C. Tewari, and V. Thenmozhi et al, Natural vertical transmission of dengue viruses by Aedes aegypti in Chennai, Tamil Nadu, India, Indian Journal of Medical Research (2008).; N. Bacaër, Genealogy with seasonality, the basic reproduction number, and the influenza pandemic, Journal of Mathematical Biology (2011).; N. Bacaër and E. H. Ait Dads, On the biological interpretation of a definition for the parameter R0 in periodic population models, Journal of mathematical biology (2012).; N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, Journal of mathematical biology (2006).; L. M. Bartley, C. A. Donnelly, and G. P. Garnett, The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms, Transactions of the royal society of tropical medicine and hygiene (2002).; T. A. Burton, Stability and periodic solutions of ordinary and functional differential equations, Academic Press, New York, 1985.; M. Canals, C. González, and A. Canals et al, Dinámica epidemiológica del dengue en Isla de Pascua, Revista chilena de infectología 29 (2012), 388-394.; F. A. B. Coutinhoa, M. N. Burattinia, and L. F. Lopeza et al, Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bulletin of mathematical biology (2006).; Departamento Administrativo Nacional de Estadística, Proyecciones demográficas por municipio basadas en el censo del año 2005, Colombia, DANE, 2010, Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion.; Departamento Administrativo Nacional de Estadística, Proyecciones nacionales y departamentales de población 2005-2020, Colombia, DANE, 2010, Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion.; O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation (Vol. 5), John Wiley & Sons, Chichester, 2000.; O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of the Royal Society Interface (2010).; L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Mathematical biosciences (1998).; L. Esteva and C. Vargas, Influence of vertical and mechanical transmission on the dynamics of dengue disease, Mathematical biosciences (2000).; E. Quispe et al, Ciclo biológico y Tabla de Vida de Aedes aegypti, en laboratorio: Trujillo (Perú), 2014, Revista REBIOLEST (2015).; J. Liu-Helmersson et al., Climate change and Aedes vectors: 21st century projections for dengue transmission in Europe, EBioMedicine (2016).; Z. Feng and J. X. Velasco-Hernández, Competitive exclusion in a vectorhost model for the dengue fever, Journal of mathematical biology (1997).; H. O. Florentino, D. R. Cantane, and F. L. Santos et al, Multiobjective genetic algorithm applied to dengue control, Mathematical biosciences 258 (2014), 77-84.; D. A. Focks, R. J. Brenner, J. Hayes, and E. Daniels, Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts, American Journal of Tropical Medical Hygiene (2014).; F. Fouque, R. Carinci, P. Gaborit, J. Issaly, D. J. Bicout, and P. Sabatier, Aedes aegypti survival and dengue transmission patterns in French Guiana, Journal of Vector Ecology (2006).; V. Frantchez, R. Fornelli, and G. P. Sartori et al, Dengue en adultos: diagnóstico, tratamiento y abordaje de situaciones especiales, Revista Médica del Uruguay 32 (2016), 43-51.; K. L. Gage, T. R. Burkot, and R. J. Eisen et al, Climate and vectorborne diseases, American journal of preventive medicine (2008).; M. G. Guzman, S. B. Halstead, and H. Artsob et al, Dengue: a continuing global threat, Nature Reviews Microbiology (2010).; J. K. Hale, Ordinary Differential Equations, Malabar, FL, USA: Robert E. Krieger Publishing Company, Inc, 1980.; S. B. Halstead, Dengue, The lancet (2007).; P. Hartman, Ordinary Differential Equations, John Wiley and Sons, Inc., New York, 1964.; J. A. P. Heesterbeek and M. G. Roberts, Threshold quantities for infectious diseases in periodic environments, Journal of biological systems (1995).; P. Hess, Periodic-parabolic boundary value problems and positivity, Pitman Res. Notes Math. Ser., vol. 247, Longman Scientific and Technical, Harlow, 1991.; P. Hess, H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition (Vol. 13), Cambridge university press, 1995.; W. M. Hirsch, H. Hanisch, and J. P. Gabriel, Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Communications on Pure and Applied Mathematics (1985).; H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, Journal of mathematical biology (2012).; V. Joshi, D. T. Mourya, and R. C. Sharma, Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes, The American journal of tropical medicine and hygiene (2002).; T. Kato, Perturbation theory for linear operators (Vol. 132), Springer Science & Business Media, 2013.; H. K. Khalil and J. W. Grizzle, Nonlinear systems (Vol. 3), Upper Saddle River, NJ: Prentice hall, 2002.; C. Y. Kow, L. L. Koon, and P. F. Yin, Detection of dengue viruses in field caught male Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Singapore by type-specific PCR, Journal of medical entomology (2001).; V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability analysis of nonlinear systems, Marcel Dekker Inc., New York, Basel, 1989.; J. Liu-Helmersson, H. Stenlund, and A. Wilder-Smith et al, Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential, Addison-Wesley Publishing Company, PloS one 9 (2014), e89783.; D. P. Lizarralde-Bejarano, S. Arboleda-Sánchez, and M. E. Puerta-Yepes, Understanding epidemics from mathematical models: Details of the 2010 dengue epidemic in Bello (Antioquia, Colombia), Applied Mathematical Modelling (2017).; E. Martínez, Dengue, Estudos avancados 22 (2008), 33-52.; C. J. Mitchell and B. R. Miller, Vertical transmission of dengue viruses by strains of Aedes albopictus recently introduced into brazil, Journal of the American Mosquito Control Association (1990).; M. S. Mustafa, V. Rasotgi, and S. Jain et al, Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control, Medical Journal Armed Forces India 71 (2015), 67-70.; Y. Nakata and T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl. (2010).; E. A. Newton and P. Reiter, A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics, The American Journal of Tropical Medicine and Hygiene (1992).; World Health Organization, Dengue hemorrhagic fever: diagnosis, treatment, prevention and control, 2nd edition, Geneva, Switzerland: WHO, 1997.; S. T. R. D. Pinho, C. P. Ferreira, L. Esteva, F. R. Barreto, V. C. Morato e Silva, and M. G. L. Teixeira, Modelling the dynamics of dengue real epidemics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (2010).; D. Posny and J. Wang, Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments, Applied Mathematics and Computation (2014).; J. P.Tian and J. Wang, Some results in Floquet theory, with application to periodic epidemic models, Applicable Analysis (2015).; J. G. Rigau-Pérez, G. G. Clark, and D. J. Gubler et al, Dengue and dengue haemorrhagic fever, The Lancet (1998).; H. S. Rodrigues, M. T. T. Monteiro, and D. F. Torres, Seasonality effects on dengue: basic reproduction number, sensitivity analysis and optimal control, Mathematical Methods in the Applied Sciences (2016).; T. Sardar, S. Rana, and J. Chattopadhyay, A mathematical model of dengue transmission with memory, Communications in Nonlinear Science and Numerical Simulation (2015).; H. R. Thieme, Spectral bound and reproduction number for infinitedimensional population structure and time heterogeneity, SIAM Journal on Applied Mathematics (2009).; P. van den Driessche, Reproduction numbers of infectious disease models, Infectious Disease Modelling (2017).; P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Mathematical biosciences (2002).; W. Wang and X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, Journal of Dynamics and Differential Equations (2008).; X. Wang and X. Q. Zhao, Dynamics of a time-delayed Lyme disease model with seasonality, SIAM Journal on Applied Dynamical Systems (2017).; L. Wasinpiyamongkol, S. Thongrungkiat, and N. Jirakanjanakit et al, Susceptibility and transovarial transmission of dengue virus in Aedes aegypti: a preliminary study of morphological variations, Southeast Asian journal of tropical medicine and public health (2003).; https://revistas.unal.edu.co/index.php/recolma/article/view/99099

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المصدر: Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; Vol 6 No 12 (2019): July - December; 95-101 ; Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; Vol. 6 Núm. 12 (2019): Julio - Diciembre; 95-101 ; 2007-6363 ; 10.29057/icbi.v6i12

    وصف الملف: application/pdf

  14. 14
    Academic Journal

    المصدر: Revista Facultad de Ciencias Básicas; Vol. 16 No. 1 (2020); 57-68 ; Revista Facultad de Ciencias Básicas; Vol. 16 Núm. 1 (2020); 57-68 ; 2500-5316 ; 1900-4699

    وصف الملف: application/pdf; text/xml

    Relation: https://revistas.unimilitar.edu.co/index.php/rfcb/article/view/4341/4719; https://revistas.unimilitar.edu.co/index.php/rfcb/article/view/4341/4736; P. J. Mason and A. J. Haddow, "An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-1953: An additional note on Chikungunya virus isolations and serum antibodies," Trans. R. Soc. Trop. Med. Hyg., vol. 3, no 51, pp. 238-240, 1957, https://doi.org/10.1016/0035-9203(57)90022-6; J. Bettadapura, L. J. Herrero, A. Taylor, and S. Mahalingam, "Approaches to the treatment of disease induced by chikungunya virus," Indian J. Med. Res., vol. 138, no. 5, pp. 762-765, 2013.; C. Maguiña-Vargas, "Fiebre de Chikungunya: Una nueva enfermedad emergente de gran impacto en la salud pública," Rev. Med. Hered., vol. 26, no. 1, pp. 55-59, 2015, https://doi.org/10.20453/rmh.2015.2350; M. Fischer and J. E. Staples, "Chikungunya virus spreads in the Americas-Caribbean and South America, 2013-2014," Morb. Mortal. Wkly. Rep., vol. 63, no. 22, pp. 500-501, 2014.; Ministerio de Salud de la Provincia de Buenos Aires, Participación Social en la prevención del Dengue, Zika y Chikungunya: guía para el Promotor. Buenos Aires, Argentina: Unicef, 2016.; J. Moya, R. Pimentel, and J. Puello, "Chikungunya: un reto para los servicios de salud de la República Dominicana," Rev. Panam. Salud Pública, vol. 36, pp. 331-335, 2014.; J. L. Manzur and C. Fernández de Kirchner, Enfermedades infecciosas. Fiebre Chikungunya. Guía para el equipo de salud Nro, 13. República Argentina: Dirección de Epidemiología-Ministerio de Salud de la Nación, 2015.; J. E. Staples and M. Fischer, "Chikungunya virus in the Americas-what a vector borne pathogen can do," N. Engl. J. Med., vol. 371, no. 10, pp. 887-889, 2014, https://doi.org/10.1056/NEJMp1407698; E. Delisle et al., "Chikungunya outbreak in Montpellier, France, September to October 2014," Eurosurveillance, vol. 20, no. 17, pp. 21108, 2015, https://doi.org/10.2807/1560-7917.ES2015.20.17.21108; L. F. Shalauddin, R. P. Ricketts, T. Christian, K. Polson, and B. Olowokure, "Chikungunya virus outbreak, Dominica, 2014," Emerging Infect. Dis., vol. 21, no. 5, pp. 909-911, 2015, https://doi.org/10.3201/eid2105.141813; S. S. Patil, S. R. Patil, P. M. Durgawale, and A. G. Patil, "A study of the outbreak of Chikungunya fever," J. Clin. Diagnostic Res., vol. 7, no. 6, pp. 1059-62, 2013, https://doi.org/10.7860/JCDR/2013/5330.3061; C. H. Tan et al., "Entomological investigation and control of a chikungunya cluster in Singapore," Vector Borne Zoonotic Dis., vol. 11, no. 4, pp. 383-390, 2011, https://doi.org/10.1089/vbz.2010.0022; A. Farajollahi, S. P. Healy, I. Unlu, R. Gaugler, and D. M. Fonseca, "Effectiveness of ultra-low volume nighttime applications of an adulticide against diurnal Aedes albopictus, a critical vector of dengue and chikungunya viruses," PLoS One, vol. 7, no. 11, pp. e49181, 2012, https://doi.org/10.1371/journal.pone.0049181; G. C. Abramides, D. Roiz, R. Guitart, S. Quintana, I. Guerrero, and N. Giménez, "Effectiveness of a multiple intervention strategy for the control of the tiger mosquito (Aedes albopictus) in Spain," Trans. R. Soc. Trop. Med. Hyg., vol. 105, no. 5, pp. 281-288, 2011, https://doi.org/10.1016/j.trstmh.2011.01.003; J. Raude and M. Setbon, "The role of environmental and individual factors in the social epidemiology of chikungunya disease on Mayotte Island," Health Place, vol. 15, no. 3, pp. 659-69, 2009, https://doi.org/10.1016/j.healthplace.2008.10.009; T. S. Selvavinayagam, "Chikungunya fever outbreak in Vellore, south India," Indian J. Community Med., vol. 32, no. 4, pp. 286-287, 2007, https://doi.org/10.4103/0970-0218.37697; Z. Qiaoli et al., "Maiden outbreak of chikungunya in Dongguan city, Guangdong province, China: epidemiological characteristics," PloS one, vol. 7, no. 8, pp. e42830, 2012, https://doi.org/10.1371/journal.pone.0042830; A. A. Yoosuf et al., "First report of chikungunya from the Maldives," Trans. R. Soc. Trop. Med. Hyg., vol. 103, no. 2, pp. 192-196, 2009, https://doi.org/10.1016/j.trstmh.2008.09.006; J. Raude et al., "Public perceptions and behaviours related to the risk of infection with Aedes mosquito-borne diseases: a cross-sectional study in Southeastern France," BMJ open, vol. 2, no. 6, 2012, https://doi.org/10.1136/bmjopen-2012-002094; K. Vijayakumar, T. S. Anish, K. N. Sreekala, R. Ramachandran, and R. R. Philip, "Environmental factors of households in five districts of Kerala affected by the epidemic of chikungunya fever in 2007," Natl. Med. J. India, vol. 23, no. 6, 2010.; J. Thuilliez, C. Bellia, J. S. Dehecq, and O. Reilhes, "Household-level expenditure on protective measures against mosquitoes on the island of La Réunion, France," PLoS Negl. Trop. Dis., vol. 8, no. 1, pp. e2609, 2014, https://doi.org/10.1371/journal.pntd.0002609; I. N. Kantor, "Dengue, zika, chikungunya y el desarrollo de vacunas," Medicina (Buenos Aires), vol. 8, no. 1, pp. 23-28, 2018.; C. Smalley, J. H. Erasmus, C. B. Chesson, and D. W. Beasley, "Status of research and development of vaccines for chikungunya," Vaccine, vol. 34, no. 26, pp. 2976-2981, 2016, https://doi.org/10.1016/j.vaccine.2016.03.076; N. H. Levitt, H. H. Ramsburg, S. E. Hasty, P. M. Repik, Jr, F. E. Cole, and H. W. Lupton, "Development of an attenuated strain of chikungunya virus for use in vaccine production," Vaccine, vol. 4, no. 3, pp. 157-162, 1986. https://doi.org/10.1016/0264-410X(86)90003-4; D. Requena and J. L. Segovia-Juárez, "Sugerencias a partir del análisis de sensibilidad de un modelo matemático de transmisión de chikungunya," Rev. Peru. Med. Exp. Salud Pública, vol. 33, no. 1, pp. 154-161, 2016, https://doi.org/10.17843/rpmesp.2016.331.2017; F. Martínez et al., "Modelado predictivo de la epidemia de Chikungunya," Rev. Ontare, vol. 3, no. 2, pp. 7-31, 2015, https://doi.org/10.21158/23823399.v3.n2.2015.1439; M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos. New York: Academic Press, 2012. https://doi.org/10.1016/B978-0-12-382010-5.00015-4; L. Perko, Differential Equations and Dynamical Systems. New York: Springer-Verlag, 1996. https://doi.org/10.1007/978-1-4684-0249-0; O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts, "The construction of next- generation matrices for compartmental epidemic models," J. R. Soc. Interface, vol. 7, no. 47, pp. 873-885, 2009, https://doi.org/10.1098/rsif.2009.0386; P. Mingola, "A Study of Poisson and Related Processes with Applications," M.S. thesis, Math. Dept., Univ. Tennessee, Knoxville, Tennessee, 2013. [Online]. Available: https://trace.tennessee.edu/utk_chanhonoproj/1613; B. R. James. Probabilidade: um curso em nível intermediário. Rio de Janeiro, Brasil: IMPA, 2008.; J. H. Erasmus et al., "A chikungunya fever vaccine utilizing an insect-specific virus platform," Nat. Med., vol. 23, no. 2, pp. 192-199, 2017, https://doi.org/10.1038/nm.4253; R. Edelman, C. O. Tacket, S. S. Wasserman., S. A. Bodison, J. G. Perry, and J. A. Mangiafico, "Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218," Am. J. Trop. Med. Hyg., vol. 62, no. 6, pp. 681-685, 2000, https://doi.org/10.4269/ajtmh.2000.62.681; M. M. Akiner, B. Demirci, G. Babuadze, V. Robert, and F. Schaffner, "Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea region increases risk of chikungunya, dengue, and zika outbreaks in Europe," PLoS Negl. Trop. Dis., vol. 10, no. 4, pp. e0004664, 2016, https://doi.org/10.1371/journal.pntd.0004664; M. K. Butterworth, C. W. Morin, and A. C. Comrie, "An analysis of the potential impact of climate change on dengue transmission in the Southeastern United States," Environ. Health Perspect. vol. 125, no. 4, pp. 579-84, 2016, https://doi.org/10.1289/EHP218; L. A. Ganushkina, I. V. Patraman, G. Rezza, L. Migliorini, S. K. Litvinov, and V. P. Sergiev, "Detection of Aedes aegypti, Aedes albopictus, and Aedes koreicus in the area of Sochi, Russia," Vector Borne Zoonotic Dis., vol. 16, no. 1, pp. 58-60, 2016, https://doi.org/10.1089/vbz.2014.1761; https://revistas.unimilitar.edu.co/index.php/rfcb/article/view/4341; http://hdl.handle.net/10654/42715

  15. 15
    Report
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Dissertation/ Thesis

    المؤلفون: Poveda Giner, Joan Josep

    Thesis Advisors: Cantó Colomina, Begoña, Pagán Moreno, Mª Jesús, Sánchez Juan, Elena, Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament

  19. 19
  20. 20
    Academic Journal