يعرض 1 - 20 نتائج من 76 نتيجة بحث عن '"Morales-Aramburo, Álvaro"', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 1
    Conference
  2. 2
  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: Nanomaterials; Pulgar-Velásquez, L.; Sierra-Ortega, J.; Vinasco, J.A.; Laroze, D.; Radu, A.; Kasapoglu, E.; Restrepo, R.L.; Gil-Corrales, J.A.; Morales, A.L.; Duque, C.A. Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field. Nanomaterials 2021, 11, 2832. https://doi.org/10.3390/ nano11112832; http://hdl.handle.net/10495/26172

  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: Avazzadeh, Z.; Bahramiyan, H.; Khordad, R.; Mohammadi, S. A. (2016). Diamagnetic Susceptibility of an Off-Center Hydrogenic Donor in Pyramid-Like and Cone-Like Quantum Dots. Eur. Phys. J. Plus, 131(121) Abril, pp. 1-8. [Online] Disponible en: https://doi.org/10.1140/epjp/i2016-16121-8. [Consultado 11 de mayo de 2020].; Çakır, B.; Yakar, Y.; Özmen, A. (2012). Refractive Index Changes and Absorption Coefficients in a Spherical Quantum Dot with Parabolic Potential. J. Lumin., 132(10) Octubre, pp. 2659-2664. http://dx.doi.org/10.1016/j.jlumin.2012.03.065; COMSOL Multiphysics, v. 5.4. COMSOL AB, Stockholm, Sweden.; Dezhkam, M.; Zakery, A. (2012). Exact Investigation of the Electronic Structure and the Linear and Nonlinear Optical Properties of Conical Quantum Dots. Chin. Opt. Lett., 10(12) Diciembre, pp.1-4. http://dx.doi.org/10.3788/COL201210.121901; Gil-Corrales, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A. (2017). Donor-Impurity-Related Optical Response and Electron Raman Scattering in GaAs Cone-Like Quantum Dots. Physica B, 507 Febrero, pp. 76-83. http://dx.doi.org/10.1016/j.physb.2016.11.033; Hiruma, K.; Haraguchi, K.; Yazawa, M.; Madokoro, Y.; Katsuyama, T. (2006). Nanometre-Sized GaAs Wires Grown by Organo-Metallic Vapour-Phase Epitaxy. Nanotechnology, 17(11) Mayo, pp. S369–S375. https://doi.org/10.1088/0957-4484/17/11/S23; Iqraoun, E.; Sali, A.; Rezzouk, A.; Feddi, E.; Dujardin, F.; Mora-Ramos, M. E; Duque, C. A. (2017). Donor Impurity-Related Photoionization Cross Section in GaAs Cone-Like Quantum Dots Under Applied Electric Field. Philosophical Magazine, 97(18) Marzo, pp. 1445-1463. http://dx.doi.org/10.1080/14786435.2017.1302613; Kanyinda-Malu, C.; Cruz, M. R. (2003). Interface Phonon Modes in Truncated Conical Self-Assembled Quantum Dots. Surf. Sci., 529(3) Abril, pp. 503-514. https://doi.org/10.1016/S0039-6028(03)00335-2; Khordada, R.; Bahramiyanb, H. (2014). Optical Properties of a GaAs Cone-Like Quantum Dot: Second and Third-Harmonic Generation. Opt. Spectrosc., 117(3) Septiembre, pp. 447–452. https://doi.org/10.1134/S0030400X14080165; Lelong, Ph.; Bastard, G. (1996). Binding Energies of Excitons and Charged Excitons in GaAsGa(In)As Quantum Dots. Solid State Commun, 98(9) Junio, pp. 819-823. https://doi.org/10.1016/0038-1098(96)00024-5; Li, Y.; Voskoboynikov, O.; Lee, C. P.; Sze, S. M.; Tretyak, O. (2001). Electron Energy State Dependence on the Shape and Size of Semiconductor Quantum Dots. J. Appl. Phys., 90(12) Diciembre, pp. 6416-6420. http://dx.doi.org/10.1063/1.1412578; Ngo, C. Y.; Yoon, S. F.; Fan, W. J.; Chua, S. J. (2006). Effects of Size and Shape on Electronic States of Quantum Dots. Phys. Rev. B, 74(24) Diciembre, pp. 1-10. http://dx.doi.org/10.1103/PhysRevB.74.245331; Nguyen, C. V.; Hieu, N. N.; Duque, C. A.; Poklonski, N. A.; Ilyasov, V. V.; Hieu, N. V.; Dinh, L.; Quang, Q. K.; Tung, L. V.; Phuc, H. V. (2017). Linear and Nonlinear Magneto-Optical Absorption Coefficients and Refractive Index Changes in Graphene. Opt. Mater., 69 Julio, pp. 328-332. https://doi.org/10.1016/j.optmat.2017.04.053; Niculescu, E.; Tiriba, G.; Spandonide, A. (2015). Optical Absorption in Pyramid-Shaped Quantum Dots Under Applied Electric and Magnetic Fields. U.P.B. Sci. Bull., Series A, 77(3) Enero, pp. 229-240.; Rezaei, G.; Karimi, M.J.; Pakarzadeh, H. (2013). Magnetic Field Effects on the Electron Raman Scattering in Coaxial Cylindrical Quantum Well Wires. J. Lumin., 143 Noviembre, pp. 551-557. http://dx.doi.org/10.1016/j.jlumin.2013.05.039; https://revistas.eia.edu.co/index.php/reveia/article/download/1425/1362; Núm. 34 , Año 2020; 13; 34; 17; Revista EIA; https://repository.eia.edu.co/handle/11190/5123; https://doi.org/10.24050/reia.v17i34.1425

  5. 5
    Academic Journal
  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: Andrade C. G, Cabral Filho P. E., Tenório D. PL, Santos B. S., Beltrao E. IC, Fontes A., Carvalho L. B. (2013). Evaluation of Glycophenotype in Breast Cancer by Quantum Dot-lectin Histochemistry. Int. J. Nanomed. 8, pp 4623 – 4629. Bahramiyan H. (2018). Electric field y impurity effect on nonlinear optical rectification of a double cone like quantum dot. Opt. Mater 75, pp 187 - 195. Baier M. H., C. Constantin, Pelucchi E., y Kapon E. (2004). Electroluminescence from a single pyramidal quantum dot in a light-emitting diode. Appl. Phys. Lett. 84, pp 1967 - 1969. Bailey R. E., Smith A. M. y Shuming N. (2004). Quantum dots in biology and medicine. Physica E 25, pp 1 - 12. COMSOL Multiphysics, v. 5.2a. COMSOL AB, Stockholm, Sweden.; Cunha C.R.A., Oliveira A.D.P.R., Firmino T.V.C., Tenório D.P.L.A., Pereira G., Carvalho L.B., Santos B.S., Correia M.T.S., Fontes A. (2018). Biomedical Applications fo Glyconanoparticles Based on Quantum Dots, Biochim. Biophys. Acta, 1862, pp 427 – 439.; Duque C.A., Gil-Corrales A., Morales A.L., Restrepo R.L., Mora-Ramos M.E. y Monsalve-Calderón K. (2017). Electron Raman Scattering and Raman Gain in Pyramidal Semiconductor Quantum Dots, J. Nanosci. Nanotechno. 17, pp 1140- 1148.; Duque C.A., Gil-Corrales A., Morales A.L., Restrepo R.L., Mora-Ramos M.E. (2017). Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots, Physica B 507, pp 76-83.; Hayrapetyan D. B., Kazaryan E. M. y Sarkisyan H. A. (2016). Magneto-absorption in conical quantum dot ensemble: Possible applications for QD LED. Opt. Commun. 371, pp 138 - 143. Huggenberger A., Schneider C., Drescher C., Heckelmann S., Heindel T., Reitzenstein S., Kamp M., Hofling S., Worschech L. y Forchel A. (2011). Site-controlled In(Ga)As/GaAs quantum dots for integration into optically and electrically operated devices J. Cryst. Grown 323, pp 194 - 197. Jadupati Nag, Rawat K., Asokan K., Kanjilal D., Bohidar H.B. (2018). Zener diode behavior of nitrogen-doped graphene quantum dots. Physica E 17, pp 13181 - 13200. Jarlov C., Gallo P., Calic M., Dwir B., Rudra A. (2012). Bound and anti-bound biexciton in site-controlled pyramidal GaInAs/GaAs quantum dots. Appl. Phys. Lett. 101, pp 191101-1 191101-4. Khordad R. y Bahramiyan H. (2014). Optical Properties of a GaAs Cone-Like Quantum Dot: Second and Third Harmonic Generation. Opt. Spectrosc. 117, pp 447- 452. Khordad R., Bahramiyan H. y Mohammadi S.A. (2016). Influence of impurity on binding energy and optical properties of lens shaped quantum dots: Finite element method and Arnoldi algorithm. Chinese J. Phys. 54, pp 20 – 32. Lozovski V. y Piatnytsia V. (2011). The Analytical Study of Electronic and Optical Properties of Pyramid-Like and Cone-Like Quantum Dots. J. Comput. Theor. Nanos. 8, pp 1–9. Luhluh K. J., Boda A., Shankar I. V., Raju Ch. N. y Chatterjee A. (2018). Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers. Sci. Rep-Uk 8, pp 5073 - 5086. Manoj K. M., Hofsass H. C. y Vetter U. (2016). Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications. Intech., 298, pp 109 - 131. Norris D. J. y Bawendi M. G. (1996). Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B, 53, pp 16338 – 16346. Pickering S., Kshirsagar A., Ruzyllo J., and Xu J. (2012). Patterned mist deposition of tri- colour CdSe/ZnS quantum dot films toward RGB LED devices. Opto-Electron Rev. 20, pp 148 - 152. Ponnusamy B., Sharmistha S., y Avadhesha S. (2007). Sugar-Quantum Dot Conjugates for a Selective and Sensitive Detection of Lectins. Bioconjugate Chem. 18, pp 146 – 151. Safeera T.A., Khanal R., Medvedeva J. E., Martinez A. I., Vinitha G., Anila E.I. (2018). Low temperature synthesis and characterization of zinc gallate quantum dots for optoelectronic applications. J. Alloy Compd. 740, pp 567 - 589. Sagadevan S. y Dakshanamoorthy A. (2012). Nanomaterials for Nonlinear Optical (NLO) Applications: A Review. Rev. Adv. Mater. Sci. 30, pp 243–253. Yamaguchi M., Asano T., y Noda S. (2008). Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. Opt. Express. 16, pp 18067 - 18081. Zrazhevskiy P. y Xiaohu G. (2009). Multifunctional quantum dots for personalized medicine. Nano Today. 4, pp 414 – 428.; https://revistas.eia.edu.co/index.php/reveia/article/download/1257/1195; Núm. 30 , Año 2018; 175; 30; 161; 15; Revista EIA; https://repository.eia.edu.co/handle/11190/5056; https://doi.org/10.24050/reia.v15i30.1257

  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المصدر: Revista Respuestas; ##issue.vol## 14 ##issue.no## 1 (2009); 40-49 ; Respuestas; Vol. 14 Núm. 1 (2009); 40-49 ; 2422-5053 ; 0122-820X

    وصف الملف: application/pdf

    Relation: https://revistas.ufps.edu.co/index.php/respuestas/article/view/524/532; Blakemore, R. P. Magnetotactic bacteria. (1975) Science 190:377–379.; Shüler D., (2002) Int. Microbiol 5:209.; Bazylinski D. A. (1995) ASM News. 61:337.; Bazylinski D. A. and Moskowitz. (1997); Blakemore R. P. (1975) Magnetotactic bacteria. Science 190 (4212), 377–379.; Cox L., Popa R., Bazylinsky D. A., Lanoil B., Douglas S., Belz A., Engler D. and Nealson K. H. (2002) Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci. Geomicrobiol. J. 19:387– 406.; Moench T. T. and Konetzka W. A. (1978) A novel method for the isolation and study of a magnetotactic bacterium. Arch. Microbiol. 119:203–212.; Frankel R.B., Bazylinski D.A., Johnson M.S. and Taylo, B.L. (1997) Magnetoaerotaxis in marine coccoid bacteria. Biophys. J. 73 (2), 994–1000.; Flies C. B., Jonkers H. M., Dirk de Beer, Bosselmann K., Böttcher M. B.,Shüler D. (2005) Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in fresh water microcosms. FEMS Microbiology Ecology 52:185–195. doi:10.1016/ j.femsec.2004.11.006.; Wildenberg J. C., Vano J. A. and Sprott J. C. (2005) Complex spatiotemporaldynamics in Lotka–Volterra ring systems. doi:10.1016/j.ecocom.2005.12.001.; Sprott J. C., Wildenberg J. C. and Azizi Y. (2005) A simple spatiotemporal chaotic Lotka–Volterra model. doi:10.1016/ j.chaos.2005.02.015; Wajnberg E., Salvo de Souza L., Lins de Barros H. and Esquivel D. (1986) A study of magnetic properties of magnetotactic bacteria. Biophys. J. 451 – 455.; Flies C. B., Peplies J. and Shüler D. (2005) Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. d o i : 1 0 . 1 1 2 8 /AEM. 7 1 . 5 . 2 7 2 3 – 2731.2005; Silvera T. S., Martins J. L., Silva K. T., Abreu F. and Lins U. (2007) Microscopy studies on uncultivated magnetotactic bacteria. Modern Research and Educational Topics in Microscopy. 111- 121.; Liu Y., Gao M., Dai S., Peng K. and Jai R. (2005) Characterization of magnetotactic bacteria and their magnetosomes isolated from Tieshan iron ore in Hubei Province of China. 26:597-601. doi:10.1016/ j.msec.2005.07.023.; https://revistas.ufps.edu.co/index.php/respuestas/article/view/524

  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
  15. 15
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
  19. 19
    Academic Journal
  20. 20
    Academic Journal

    وصف الملف: application/pdf

    Relation: Rev. Colomb. Biotecnol.; Mejía, E., Ospina, J. D., Osorno, L., Márquez, M. A., & Morales Aramburo, A. L. (2011). Adaptación de una cepa compatible con Acidithiobacillus ferrooxidans sobre concentrados de calcopirita (CuFeS2), esfalerita (ZnS) y galena (PbS). Revista Colombiana de Biotecnología. 13(1), 132-143.; http://hdl.handle.net/10495/8149