يعرض 1 - 9 نتائج من 9 نتيجة بحث عن '"Morales, Laura Daniela"', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Book
  4. 4
  5. 5
    Dissertation/ Thesis

    المساهمون: Rojas Rodríguez, Luz Damaris

    جغرافية الموضوع: Tuluá, Valle del Cauca, Colombia

    وصف الملف: PDF; 83 Páginas; application/pdf

    Relation: http://hdl.handle.net/20.500.12993/2960; Instname:Unidad Central del Valle del Cauca; reponame:Repositorio Institucional Unidad Central del Valle del Cauca; repourl:https://repositorio.uceva.edu.co/

  6. 6

    المساهمون: orcid:0000-0002-9666-1246, orcid:0000-0002-9964-6009, orcid:0000-0003-0839-4190, orcid:0000-0002-4700-5939, orcid:0000-0002-9875-2221, orcid:0000-0003-2202-740X, orcid:0000-0001-6207-8338, orcid:0000-0003-1888-2315, orcid:0000-0003-4865-4540, orcid:0000-0002-3890-908X, orcid:0000-0003-1854-7007, orcid:0000-0001-6204-2378, orcid:0000-0001-6990-8007, orcid:0000-0003-2890-2180, orcid:0000-0003-1320-2288, orcid:0000-0002-2898-9063, orcid:0000-0002-2057-7603, orcid:0000-0002-9416-385X, https://scholar.google.es/citations?user=nL4pzJYAAAAJ&hl=es, https://scholar.google.com/citations?user=eGfZK3oAAAAJ&hl=es, https://scholar.google.es/citations?user=gCI5rpQAAAAJ&hl=es, https://scholar.google.com/citations?user=u_Eyf5YAAAAJ&hl=es, https://scholar.google.ch/citations?user=L-LltmAAAAAJ&hl=en, https://scholar.google.es/citations?user=EbODLxcAAAAJ&hl=es, https://scholar.google.com/citations?user=ytyjO5EAAAAJ&hl=es, https://scholar.google.com/citations?user=xTHjn5YAAAAJ&hl=es, https://scholar.google.com/citations?user=ynsiIEsAAAAJ, https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=es, https://scholar.google.com/citations?user=IedqDeEAAAAJ&hl=es, https://scholar.google.es/citations?user=us9b9-EAAAAJ&hl=es, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001579173, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000982431, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000956090, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895342, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000875910, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001343767, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000162655, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000057932, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001567062, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001370447, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001403214, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000947229, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167150, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000105899, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000105961, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000575283, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000027200, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001184784, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000376140, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000627046, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001415023, https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000007939

    جغرافية الموضوع: CRAI-USTA Bogotá

    وصف الملف: application/pdf

    Relation: Unidad de planeación Minero Energética (UPME), “Informe Mensual de Variables de Generación y del Mercado Eléctrico Colombiano - Diciembre de 2016,” Subdirección Energía Eléctrica - Grup. Generación, no. 69, p. 15, 2016.; P. J. Ginter VJ, “Robust gain scheduled control of a hydrokinetic turbine,” Control Syst Technol IEEE Trans, no. 19:805-17, 2011.; M. I. Yuce and A. Muratoglu, “Hydrokinetic ener- gy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, 2015.; E. D. Roberto Ortiz, “Diseño de una turbina hi- drocinética de eje horizontal para microgeneración de energía eléctrica,” Universidad Santo Tomás, 2017.; M. Ghasemian, Z. N. Ashrafi, and A. Sedaghat, “A review on computational fluid dynamic simulation te- chniques for Darrieus vertical axis wind turbines,” Ener- gy Convers. Manag., vol. 149, pp. 87–100, 2017.; C. Daskiran, J. Riglin, W. Schleicher, and A. Ozte- kin, “Transient analysis of micro-hydrokinetic turbines for river applications,” Ocean Eng., vol. 129, no. Novem- ber 2016, pp. 291–300, 2017.; J. Riglin, F. Carter, N. Oblas, W. C. Schleicher, C. Daskiran, and A. Oztekin, “Experimental and numerical characterization of a full-scale portable hydrokinetic turbine prototype for river applications,” Renew. Energy, vol. 99, pp. 772–783, 2016.; A. Muratoglu and M. Ishak Yuce, “Design of a Ri- ver Hydrokinetic Turbine Using Optimization and CFD Simulations,” J. Energy Eng., vol. 143, no. Muratoglu 2014, pp. 1–11, 2017.; L. Wang, R. Quant, and A. Kolios, “Fluid structu- re interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA,” J. Wind Eng. Ind. Ae- rodyn., vol. 158, pp. 11–25, 2016.; M. H. Giahi and A. Jafarian Dehkordi, “Investiga- ting the influence of dimensional scaling on aerodyna- mic characteristics of wind turbine using CFD simula- tion,” Renew. Energy, vol. 97, pp. 162–168, 2016.; D. Vučina, I. Marinić-Kragić, and Z. Milas, “Nu- merical models for robust shape optimization of wind turbine blades,” Renew. Energy, vol. 87, pp. 849–862, 2016.; ANSYS 18 Theory guide, “ANSYS, A.” Ansys Inc., U.S.A., 2017.; W, Schleicher. D. Riglin, A. Oztekin, "“Nume- rical characterization of a preliminary portable micro- hydrokinetic turbine rotor design,” renew Energy, vol. 76, pp. 234–241, 2015.; I. S. Stachlewska, M. Costa-Surós, y D. Althau- sen, «Raman lidar water vapor profiling over Warsaw, Poland», Atmospheric Res., vol. 194, pp. 258-267, sep. 2017.; C. Landeros-Sánchez, A. García-Saldaña, I. Ni- kolskii-Gavrilov, M. del R. Castañeda-Chávez, J. M. Hernández-Pérez, y G. Sánchez-Ocaña, Tendencias del cambio climático: una revisión. 2016.; J. A. Santiago-Lastra, M. López, y S. López, Ten- dencias del cambio climático global y los eventos ex- tremos asociados. 2018.; J. L. D. Quesada y A. E. de N. y Certificación, Hue- lla ecológica y desarrollo sostenible. AENOR-Asocia- ción Española de Normalización y Certificación, 2009.; A. Michopoulos, I. Ziogou, M. Kerimis, y T. Za- chariadis, «A study on hot-water production of hotels in Cyprus: Energy and environmental considerations», Energy Build., vol. 150, pp. 1-12, sep. 2017.; Consejería de Economía y Hacienda, Guía Bási- ca de Calderas Industriales Eficientes. Gráficas Arias Montano. S.A., 2012.; H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, y L. L. Baxter, «The implications of chlorine-associated corrosion on the operation of biomass-fired boilers», Prog. Energy Combust. Sci., vol. 26, n.o 3, pp. 283-298, jun. 2000.; R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hos- sain, y S. Mekhilef, «A review on biomass as a fuel for boilers», Renew. Sustain. Energy Rev., vol. 15, n.o 5, pp. 2262-2289, jun. 2011.; Colombia Ministerio de Medio Ambiente y Desa- rrollo Territorial, «Resolución 909 de 2008 por la cual se establecen las normas y estándares de emisión ad- misibles de contaminantes a la atmósfera por fuentes fijas y se dictan otras disposiciones.» [En línea]. Dispo- nible en: http://www.minambiente.gov.co/images/nor- mativa/app/resoluciones/f0-Resoluci%C3%B3n%20 909%20de%202008%20%20-%20Normas%20y%20es- tandares%20de%20emisi%C3%B3n%20Fuentes%20 fijas.pdf. [Accedido: 10-jul-2018].; C. Cardona, D. Sánchez, y O. Sánchez, Análisis de ciclo de vida y su aplicación a la producción de bioe- tanol: Una aproximación cualitativa, vol. 43. 2007.; ISO, «ISO 14040. Environmental manage- ment-Life cycle assessment-Principles and fra- mework.», Environ. Manag.-Life Cycle Assess.-Princ. Framew. Eur. Comm. Stand., 2006.; IHOBE, S.A. Sociedad Pública de Gestión Am- biental, Manual práctico de ecodiseño. Operativa de implantación en 7 pasos. 2000.; REN21. (2016). Renewables 2016 Global Status Report. Obtenido de http://www.ren21.net/wp-content/ uploads/2016/05/GSR_2016_Full_Report_lowres.pdf; UPME. (2015). Atlas Potencial Hidroenergético de Colombia. Obtenido de http://www1.upme.gov.co/ Documents/Atlas/Atlas_p25-36.pdf; Palacios Sierra, R. A. (2013). Inventario Docu- mentado de Represas en Colombia. Obtenido de Re- positorio Universidad Militar Nueva Granada: http://re- pository.unimilitar.edu.co/bitstream/10654/11360/1/ PalaciosSierraRicardoAndres2013.pdf; MME & UPME. (2017). Registro de Proyectos de Generación Inscripción según requisitos de las Resolu- ciones UPME No. 0520, No. 0638 de 2007 y No. 0143 de 2016. Obtenido de http://www.siel.gov.co/Genera- cion_sz/Inscripcion/2017/Registro_Proyectos_Gene- racion_Mayo2017.pdf; UCA. (2000). Centrales Hidroeléctricas. Obte- nido de Universidad Centroamericana José Simeón Cañas: http://www.uca.edu.sv/facultad/clases/ing/ m200018/doc1.pdf; Goldsmith, E., & Hildyard, N. (1984). The social and environmental effects of large dams. Camelford, Cornwall: Wadebridge Ecological Centre.; Úsuga Montolla, E. (2014). Impactos sociales y económicos de la hidroeléctrica en Ituango. Obteni- do de Univesridad de Medellín, Facultad de Ciencias Económicas, Administrativas y Contables: http://re- pository.udem.edu.co/bitstream/handle/11407/2154/ TG_AE_3.pdf?sequence=1&isAllowed=y; Pielke Sr. et al. (2011). Land use/land cover chan- ges and climate: modeling analysis and observational evidence. WIREs Clim Change, 2: 828-850.; Iglesias Carvajal, S. (2011). Guía de Impacto Ambiental Para Centrales Hidroeléctricas. Obtenido de Universidad Tecnológica de Pereira, Facultad de Tecnología: http://repositorio.utp.edu.co/dspace/bits- tream/handle/11059/2314/3337932I24.pdf;jsessioni- d=F2029B5631750D535EBB673F32390CF3?sequen- ce=1; Hossain, F., Jeyachandran, I., & Pielke Sr., R. (2010). Dam safety effects due to human alteration of extreme precipitation. WATER RESOURCES RESEARCH, VOL. 46, W03301, doi:10.1029/2009WR007704.; World Commission on Dams. (2000). Dams and Development: A New Framework for Decision-Ma- king. London and Sterling, VA: Earthscan Publications Ltd. Obtenido de https://www.internationalrivers.org/ sites/default/files/attached-files/world_commission_ on_dams_final_report.pdf; Degu et al. (2011). The influence of large dams on surrounding climate and precipitation pa- tterns. Geophysical Research Letters, 38, L04405, doi:10.1029/2010GL046482.; Woldemichael, A., Hossain, F., & Pielke Sr., R. (2014). Evaluation of surface properties and atmos- pheric disturbances caused by post-dam alterations of land use/land cover. Hydrology and Earth System Sciences, 18, 3711–3732.; Tullos D. et al. (2010). Perspectives on the Sa- lience and Magnitude of Dam Impacts for Hydro Deve- lopment Scenarios in China. Water Alternatives, 3(2): 71-90.; Kum, Gülşen. (2016). The Influence of Dams on Surrounding Climate: The Case of Keban Dam - Bara- jların Çevre İklime Etkisi: Keban Barajı Örneği. Gazian- tep University Journal of Social Sciences, 15(1):193- 204.; MinAmbiente. (26 de Julio de 2017). Resolu- ción 1519 del 2017. Obtenido de Términos de referen- cia EIA: http://www.minambiente.gov.co/images/nor- mativa/app/resoluciones/39RES%201519%20de%20 2017.pdf; Arango, C., Dorado, J., Guzmán, D., & Ruiz, J. F. (Diciembre de 2012). CAMBIO CLIMÁTIO MÁS PROBA- BLE PARA COLOMBIA A LO LARGO DELSIGLO XXI RES- PECTO AL CLIMA PRESENTE. Obtenido de Grupo de Modelamiento de Tiempo, Clima y Escenarios de Cam- bio Climático; Subdirección de Meteorología – IDEAM: http://www.ideam.gov.co/documents/21021/21138/ Escenarios+Cambio+Climatico+%28Ruiz,+Guz- man,+Arango+y+Dorado%29.pdf/fe5d64fb-3a82- 4909-a861-7b783d0691cb; R Core Team. (2017). R: A language and en- vironment for statistical computing. Obtenido de R Foundation for Statistical Computing, Vienna, Austria: https://www.R-project.org/.; COLA. (2017). The Grid Analysis and Display System (GrADS). Obtenido de Version 2.2.0: http:// cola.gmu.edu/aboutcola.php; Poveda Jaramillo, G. (2006). El Clima de Antio- quia. Escuela de Geociencias y Medio Ambiente Facul- tad de Minas, Universidad Nacional de Colombia, Sede Medellín, 1-17.; CORNARE. (Febrero de 2006). Actualización del Plan de Manejo y Ordenamiento de la Cuenca Pozo, Municipios de El Peñol y Marinilla, Antioquia. Obtenido de https://www.cornare.gov.co/POMCAS/Documen- tos/El-Pozo.pdf; Chow, V., Maidment, R., & Mays, L. (1994). Hi- drología aplicada. Bogotá: McGrawHill; Houze, R. A. (1997). Stratiform precipitation in regions of convection. Bull. Amer. Meteor. Soc. Vol 78, 2179-95.; Sarochar, R. H., Ciappesoni, H. H., & Ruiz, N. E. (2005). Precipitaciones convectivas y estratiformes en la Pampa Húmeda: una aproximación a su separación y aspectos climatológicos de ambas. Meteorológica Vol. 30, 77-88; H. Oswaldo, B. Ballesteros, G. Esperanza, and L. Aristizabal, “Información Técnica sobre gases de efec- to invernadero y el cambio climático,” 2007.; Naciones Unidas-Asamblea General, “ONU.In- forme Brundtland. (Ago 1987).Informe de la Comisión Mundial sobre Medio Ambiente y Desarrollo,” 1987. [On- line]. Available: https://es.scribd.com/doc/105305734/ ONU-Informe-Brundtland-Ago-1987-Informe-de-la-Co- mision-Mundial-sobre-Medio-Ambiente-y-Desarrollo. [Accessed: 28-Aug-2018].; Naciones Unidas, “Report of the World Commis- sion on Environment and Development: Our Common Future - A/42/427 Annex - UN Documents: Gathering a body of global agreements,” 1987. [Online]. Available: http://www.un-documents.net/wced-ocf.htm. [Acces- sed: 28-Aug-2018].; E. Alternasindd, “Energías Alternas: Propuesta de Investigación y Desarrollo Tecnológico para México,” 2010.; AméricaFotovoltaica, “Energías Renovables Ar- chivos - La Guía Solar,” 2015. [Online]. Available: http:// www.laguiasolar.com/energia-solar/energias-renova- bles/. [Accessed: 27-Aug-2018].; Portafolio, “energias renovables en colombia %7C Innovación %7C Portafolio,” 2016. [Online]. Available: http://www.portafolio.co/innovacion/energias-renova- bles-en-colombia-502061. [Accessed: 27-Aug-2018].; Unidad de planeación minero energética, “Infor- me de Gestión UPME 2017,” 2017.; U. De Planeación and M. Energética, “INSTITU- TO DE HIDROLOGÍA, METEOROLOGIA Y ESTUDIO AM- BIENTALES.”; “LEY 142 DE 1994, Por la cual se establece el régimen de los servicios públicos domiciliarios y se dictan otras disposiciones” Congreso de la República, Santafé de Bogotá, D.C. Diario Oficial No. 41.433 de 11 de julio de 1994.; “LEY 143 DE 1994, Por la cual se establece el régimen para la generación, interconexión, transmi- sión, distribución y comercialización de electricidad en el territorio nacional, se conceden unas autorizaciones y se dictan otras disposiciones en materia energética.” Congreso de la República, Santafé de Bogotá, D.C. Dia- rio Oficial No. 41.434, de 12 de julio de 1994.; Cámara de Comercio de Cali, “Informes Econó- micos - Bioenergía Iniciativa Cluster,” 2016.; “LEY 629 DE 2000, Por medio de la cual se aprueba el "Protocolo de Kyoto de la Convención Mar- co de las Naciones Unidas sobre el Cambio Climático", hecho en Kyoto el 11 de diciembre de 1997.” Congreso de la República, Bogotá, D.C., Publicada en el Diario Ofi- cial 44.272 de diciembre 27 de 2000.; “LEY 697 DE 2001, Mediante la cual se fomenta el uso racional y eficiente de la energía, se promueve la utilización de energías alternativas y se dictan otras disposiciones.” Congreso de la República, Bogotá, D.C., Diario Oficial No. 44.573, de 05 de octubre de 2001.; “LEY_0788_2002, Por la cual se expiden nor- mas en materia tributaria y penal del orden nacional y territorial; y se dictan otras disposiciones.” Congreso de la República, Bogotá, D.C., Diario Oficial No. 45.046 de 27 de diciembre de 2002.; “LEY 1665 DE 2013, por medio de la cual se aprueba el “Estatuto de la Agencia Internacional de Energías Renovables (Irena )”, hecho en Bonn , Alema- nia, el 26 de enero de 2009.” Congreso de la República, Bogotá D.C., Diario Oficial 48.853, julio 16 de 2013.; “LEY 1715 DE 2014. Por medio de la cual se re- gula la integración de las energías renovables no con- vencionales al Sistema Energético Nacional” Congre- so de la República, Bogotá, D.C., Diario Oficial 49.150, mayo 13 de 2014.; BP, “Statistical Review of World Energy 2018,” pp. 1–53, 2018.; RFA, “Industry Statistics,” 2017. [Online]. Availa- ble: https://ethanolrfa.org/resources/industry/statis- tics/. [Accessed: 16-Sep-2018].; S. Fernando, S. Adhikari, C. Chandrapal, and N. Murali, “Biorefineries: Current status, challenges, and future direction,” Energy and Fuels, vol. 20, no. 4, pp. 1727–1737, 2006.; M. G. Papatheofanous, D. P. Koullas, E. G. Koukios, H. Fuglsang, J. R. Schade, and B. Löfqvist, “Biorefining of agricultural crops and residues: Effect of pilot-plant fractionation on properties of fibrous fractions,” Bio- mass and Bioenergy, vol. 8, no. 6, pp. 419–426, 1995.; M. O’Hare, A. E. Farrell, R. J. Plevin, and B. T. Tur- ner, “Creating markets for green biofuels: Measuring and improving environmental performance.,” UC Berkeley: Transportation Sustainability Research Center, Berkeley, California, 2007.; F. Serna, L. Barrera, and H. Montiel, “Impacto So- cial y Económico en el Uso de Biocombustibles,” J. Te- chnol. Manag. Innov., vol. 6, no. 1, pp. 100–114, 2011.; L. N. Manrique-Ramírez et al., “Floricultura co- lombiana en contexto: experiencias y oportunidades en Asia pacífico,” Online J. Mundo Asia Pacifico, vol. 3, no. 5, pp. 52–79, 2014.; B. Quevedo-Hidalgo, P. C. Narvaéz-Rincón, A. M. Pedroza-Rodríguez, and M. E. Velásquez-Lozano, “De- gradation of chrysanthemum (dendranthema grandi- flora) wastes by pleurotus ostreatus for the production of reducing sugars,” Biotechnol. Bioprocess Eng., 2012.; S. Larsson et al., “The generation of fermentation inhibitors during dilute acid hydrolysis of softwood,” En- zyme Microb. Technol., vol. 24, no. (3-4), pp. 151–159, 1999.; K.Reczey, Zs.Szengyel, R.Eklund, and G.Zacchi, “Cellulase production by T.reesei,” Bioresour. Technol., vol. 57, pp. 25–30, 1996.; T. Juhász, Z. Szengyel, K. Réczey, M. Siika-Aho, and L. Viikari, “Characterization of cellulases and hemi- cellulases produced by Trichoderma reesei on various carbon sources,” Process Biochem., vol. 40, no. 11, pp. 3519–3525, 2005.; A. Ahamed and P. Vermette, “Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions,” Biochem. Eng. J., vol. 40, no. 3, pp. 399– 407, 2008.; A. Ahamed and P. Vermette, “Effect of culture medium composition on Trichoderma reesei’s mor- phology and cellulase production,” Bioresour. Technol., vol. 100, no. 23, pp. 5979–5987, 2009.; R. K. Sukumaran, R. R. Singhania, G. M. Mathew, and A. Pandey, “Cellulase production using biomass feed stock and its application in lignocellulose saccha- rification for bio-ethanol production,” Renew. Energy, vol. 34, no. 2, pp. 421–424, 2009.; L. Olsson, T. M. I. E. Christensen, K. P. Hansen, and E. A. Palmqvist, “Influence of the carbon source on production of cellulases, hemicellulases and pectina- ses by Trichoderma reesei Rut C-30,” Enzyme Microb. Technol., vol. 33, no. 5, pp. 612–679, 2003.; J. Liu, X. Yuan, G. Zeng, J. Shi, and S. Chen, “Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation,” Process Biochem., vol. 41, no. 11, pp. 2347–2351, 2006.; F. C. Domnigues, J. a. Queiroz, J. M. S. Cabral, and L. P. Fonseca, “The influence of culture conditions on mycelial structure and cellulose production by Tri- choderma reeseiRut C-30,” Enzym. Microb. Technol, vol. 26, pp. 394–401, 2000.; Z. Wen, W. Liao, and S. Chen, “Production of ce- llulase by Trichoderma reesei from dairy manure,” Bio- resour. Technol., vol. 96, no. 4, pp. 491–499, 2005.; M. Chandra, A. Kalra, P. K. Sharma, H. Kumar, and R. S. Sangwan, “Optimization of cellulases produc- tion by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process,” Biomass and Bioenergy, vol. 34, no. 5, pp. 805–811, 2010.; L. Hoyos-Carvajal, S. Orduz, and J. Bissett, “Ge- netic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions,” Fungal Ge- net. Biol., vol. 46, no. 9, pp. 615–631, 2009.; C. M. Marcello, A. S. Steindorff, S. P. da Silva, R. do N. Silva, L. A. Mendes Bataus, and C. J. Ulhoa, “Ex- pression analysis of the exo-β-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum,” Micro- biol. Res., vol. 165, no. 1, pp. 75–81, 2010.; M. F. Ibrahim, M. N. A. Razak, L. Y. Phang, M. A. Hassan, and S. Abd-Aziz, “Crude cellulase from oil palm empty fruit bunch by trichoderma asperellum UPM1 and aspergillus fumigatus UPM2 for fermenta- ble sugars production,” Appl. Biochem. Biotechnol., vol. 170, no. 6, pp. 1320–1335, 2013.; C. Aiello, A. Ferrer, and A. Ledesma, “Effect of alkaline treatments at various temperatures on cellu- lase and biomass production using submerged sugar- cane bagasse fermentation with Trichoderma reesei QM 9414,” Bioresour. Technol., vol. 57, no. 1, pp. 13–18, 1996.; L. Xia and P. Cen, “Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry,” Process Biochem., vol. 34, no. 9, pp. 909–912, 1999.; I. Rodríguez and Y. Piñeros, “Producción de complejos enzimáticos celulolíticos mediante el culti- vo de fase sólida de Trichoderma sp. sobre los racimos vacíos de palma de aceite como sustrato,” Rev. la Fac. Química Farm., no. 22, pp. 35–42, 2007.; Q. Zhang, C. M. Lo, and L. K. Ju, “Factors affec- ting foaming behavior in cellulase fermentation by Tri- choderma reesei Rut C-30,” Bioresour. Technol., vol. 98, no. 4, pp. 753–760, 2007.; C. M. Lo, Q. Zhang, N. V. Callow, and L. K. Ju, “Cellulase production by continuous culture of Tricho- derma reesei Rut C30 using acid hydrolysate prepared to retain more oligosaccharides for induction,” Biore- sour. Technol., vol. 101, no. 2, pp. 717–723, 2010.; K. Rocky-Salimi and Z. Hamidi-Esfahani, “Eva- luation of the effect of particle size, aeration rate and harvest time on the production of cellulase by Tricho- derma reesei QM9414 using response surface me- thodology,” Food Bioprod. Process., vol. 88, no. 1, pp. 61–66, 2010.; F. G. de Siqueira et al., “The potential of agro-in- dustrial residues for production of holocellulase from filamentous fungi,” Int. Biodeterior. Biodegrad., vol. 64, no. 1, pp. 20–26, 2010.; G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Anal. Chem., vol. 31, no. 3, pp. 426–428, 1959; EIA, “International Energy Outlook 2017 Over- view,” U.S. Energy Inf. Adm., vol. IEO2017, no. 2017, p. 143, 2017.; U. S. E. I. Administration, “Annual Energy Outlook 2018 with projections to 2050,” J. Phys. A Math. Theor., vol. 44, no. 8, pp. 1–64, 2018.; EIA, “Short-Term Energy Outlook ( STEO ) Fore- cast highlights,” US EIA - Short-Term Energy Outlook, no. April 2017, pp. 1–48, 2018.; M. Guo, W. Song, and J. Buhain, “Bioenergy and biofuels: History, status, and perspective,” Renewable and Sustainable Energy Reviews. 2015.; A. Molino, S. Chianese, and D. Musmarra, “Bio- mass gasification technology: The state of the art over- view,” J. Energy Chem., vol. 25, no. 1, pp. 10–25, 2016.; M. J. C. van der Stelt, H. Gerhauser, J. H. A. Kiel, and K. J. Ptasinski, “Biomass upgrading by torrefaction for the production of biofuels: A review,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3748–3762, 2011.; B. Acharya, A. Dutta, and J. Minaret, “Review on comparative study of dry and wet torrefaction,” Sus- tain. Energy Technol. Assessments, vol. 12, pp. 26–37, 2015.; D. Nhuchhen, P. Basu, and B. Acharya, “A Com- prehensive Review on Biomass Torrefaction,” Int. J. Re- new. Energy Biofuels, vol. 2014, pp. 1–56, 2014.; M. J. Prins, K. J. Ptasinski, and F. J. J. G. Jans- sen, “More efficient biomass gasification via torrefac- tion,” Energy, vol. 31, no. 15, pp. 3458–3470, 2006.; G. Gordillo and K. Annamalai, “Adiabatic fixed bed gasification of dairy biomass with air and steam,” Fuel, vol. 89, no. 2, pp. 384–391, 2010.; M. A. Nagao and H. H. Hirae, “Macadamia: Cul- tivation and physiology,” CRC. Crit. Rev. Plant Sci., vol. 10, no. 5, pp. 441–470, 1992.; T. P. Xavier, T. S. Lira, M. A. Schettino, and M. A. S. Barrozo, “A study of pyrolysis of Macadamia Nut Shell: Parametric sensitivity analysis of the IPR model,” Brazilian J. Chem. Eng., vol. 33, no. 1, pp. 115–122, 2016.; M. Venkatachalan and S. K. Sathe, “Chemical composition of selected edible nut seeds,” J. Agric. Food Chem., vol. 54, no. 13, pp. 4705–4714, 2006.; A. J. Moreno-Pérez, A. Sánchez-García, J. J. Salas, R. Garcés, and E. Martínez-Force, “Acyl-ACP thioesterases from macadamia (Macadamia tetraphy- lla) nuts: Cloning, characterization and their impact on oil composition,” Plant Physiol. Biochem., vol. 49, no. 1, pp. 82–87, 2011.; S. L. B. Navarro and C. E. C. Rodrigues, “Maca- damia oil extraction methods and uses for the defatted meal byproduct,” Trends Food Sci. Technol., vol. 54, pp. 148–154, 2016.; G. E. J. Poinern, G. Senanayake, N. Shah, X. N. Thi-Le, G. M. Parkinson, and D. Fawcett, “Adsorption of the aurocyanide, Au (CN)2- complex on granular ac- tivated carbons derived from macadamia nut shells - A preliminary study,” Miner. Eng., vol. 24, no. 15, pp. 1694–1702, 2011.; D. b. martinez, “Impacto del pre-tratamiento de la biomasa,” 2013.; D. Mohan, C. U. Pittman, and P. H. Steele, “Pyroly- sis of wood/biomass for bio-oil: A critical review,” Ener- gy and Fuels, vol. 20, no. 3, pp. 848–889, 2006.; G. Lv, S. Wu, and R. Lou, “Kinetic Study of the Thermal Decomposition of Hemicellulose Isolated From Corn Stalk,” BioResources, vol. 5, no. 2, pp. 1281– 1291, 2010.; L. He, J. Yang, and D. Chen, “Hydrogen from Bio- mass: Advances in Thermochemical Processes,” Re- new. Hydrog. Technol. Prod. Purification, Storage, Appl. Saf., pp. 111–133, 2013.; C. Y. Li, J. Y. Wu, C. Chavasint, S. Sampattagul, T. Kiatsiriroat, and R. Z. Wang, “Multi-criteria optimiza- tion for a biomass gasification-integrated combined cooling, heating, and power system based on life-cycle assessment.”; M. M. Ramirez-Corredores, “Pathways and Me- chanisms of Fast Pyrolysis: Impact on Catalyst Re- search,” Role Catal. Sustain. Prod. Bio-Fuels Bio-Che- micals, pp. 161–216, 2013.; S. Zhang, Y. Yan, T. Li, and Z. Ren, “Upgrading of liquid fuel from the pyrolysis of biomass,” Bioresour. Technol., vol. 96, no. 5, pp. 545–550, 2005.; J. Bonilla, “ADIABATIC FIXED-BED GASIFICA- TION OF COLOMBIAN COFFEE HUSK USING AIR- STEAM BLENDS FOR PARTIAL OXIDATION .,” pp. 1–26.; K. Sandeep and S. Dasappa, “First and second law thermodynamic analysis of air and oxy-steam bio- mass gasification,” Int. J. Hydrogen Energy, vol. 39, no. 34, pp. 19474–19484, 2014.; H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, 2007.; S. Vyazovkin, Isoconversional Kinetics of Ther- mally Stimulated Processes. 2015.; T. Ozawa, “A New Method of Analyzing Thermo- gravimetric Data,” Bull. Chem. Soc. Jpn., vol. 38, no. 11, pp. 1881–1886, 1965.; C. D. Doyle, “Estimating isothermal life from thermogravimetric data,” J. Appl. Polym. Sci., vol. 6, no. 24, pp. 639–642, 1962.; J. Flynn and L. A. Wall, “A quick, Direct Method for the Determination of Activation Energy from Ther- mogravimetric Data,” J. Polym. Sci. Part C Polym. Lett., vol. 4, no. 5, pp. 323–328, 1966.; V. Mamleev, S. Bourbigot, M. Le Bras, and J. Le- febvre, “Three Model-Free Methods for Calculating of Activation Energy in TG,” J. Therm. Anal. Calorim., vol. 78, pp. 1009–1027, 2004.; H. E. Kissinger, “Reaction Kinetics in Differen- tial Thermal Analysis,” Anal. Chem., vol. 29, no. 11, pp. 1702–1706, 1957.; M. J. Starink, “A new method for the derivation of activation energies from experiments performed at constant heating rate,” Thermochim. Acta, vol. 288, no. 1–2, pp. 97–104, 1996.; M. J. Starink, “Activation energy determination for linear heating experiments: Deviations due to ne- glecting the low temperature end of the temperature integral,” J. Mater. Sci., vol. 42, no. 2, pp. 483–489, 2007.; ASTM, “ASTM E1757 - 01 Standard Practice for Preparation of Biomass for Compositional Analysis,” vol. 01, no. Reapproved 2015, pp. 18–21, 2015.; K. Raveendran, A. Ganesh, and K. C. Khilar, “Pyrolysis characteristics of biomass and biomass components,” Fuel, vol. 75, no. 8, pp. 987–998, 1996.; S. Vyazovkin, K. Chrissafis, M. L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, and J. J. Suñol, “ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations,” Thermochim. Acta, vol. 590, pp. 1–23, 2014.; S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, “IC- TAC Kinetics Committee recommendations for perfor- ming kinetic computations on thermal analysis data,” Thermochim. Acta, vol. 520, no. 1–2, pp. 1–19, 2011.; X. Yuan, T. He, H. Cao, and Q. Yuan, “Cattle ma- nure pyrolysis: kinetic and thermodynamic analysis with isoconversional methods,” Renew. Energy, vol. 107, pp. 489–496, 2017.; S. D. Stefanidis, K. G. Kalogiannis, E. F. Iliopou- lou, C. M. Michailof, P. A. Pilavachi, and A. A. Lappas, “A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin,” J. Anal. Appl. Pyrolysis, vol. 105, pp. 143–150, 2014.; A. V. Bridgwater, “Review of fast pyrolysis of bio- mass and product upgrading,” Biomass and Bioenergy, vol. 38, pp. 68–94, 2012.; M. Balat, “Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis,” Energy Sources, Part A Recover. Util. Envi- ron. Eff., vol. 30, no. 7, pp. 620–635, 2008.; A. Toledano, L. Serrano, J. Labidi, A. Pineda, A. M. Balu, and R. Luque, “Heterogeneously Catalysed Mild Hydrogenolytic Depolymerisation of Lignin Under Mi- crowave Irradiation with Hydrogen-Donating Solvents,” ChemCatChem, vol. 5, no. 4, pp. 977–985, 2013.; G. T. Austin, Manual de Procesos Químicos en la Industria, 1a (En Esp. México, 1988.; V. Martínez-Merino, M. J. Gil, and A. Cornejo, “Bio- mass Sources for Hydrogen Production,” in Renewable Hydrogen Technologies, Elsevier, 2013, pp. 87–110.; L. M. Gandía, G. Arzamendi, and P. M. Diéguez, “Renewable Hydrogen Energy,” in Renewable Hydrogen Technologies, Elsevier, 2013, pp. 1–17.; I. Gandarias, S. G. Fernández, M. El Doukkali, J. Requies, and P. L. Arias, “Physicochemical Study of Glycerol Hydrogenolysis Over a Ni–Cu/Al2O3 Catalyst Using Formic Acid as the Hydrogen Source,” Top. Ca- tal., vol. 56, no. 11, pp. 995–1007, 2013.; M. J. Gilkey and B. Xu, “Heterogeneous Catalytic Transfer Hydrogenation as an Effective Pathway in Bio- mass Upgrading,” ACS Catal., vol. 6, no. 3, pp. 1420– 1436, 2016.; I. Gandarias, P. L. Arias, J. Requies, M. El Doukkali, and M. B. Güemez, “Liquid-phase glycerol hydrogenoly- sis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source,” J. Catal., vol. 282, no. 1, pp. 237–247, 2011.; E. Furimsky, “Hydroprocessing challenges in biofuels production,” Catal. Today, vol. 217, pp. 13–56, 2013.; X. Jin, “Catalytic Conversion of Biomass-Derived Polyols to Value-Added Chemicals : Catalysis and Ki- netics Xin Jin Catalytic Conversion of Biomass-Derived Polyols to Value-Added Chemicals : Catalysis and Ki- netics,” 2014.; K. Hwang, I. Choi, H. Choi, J. Han, K. Lee, and J. Lee, “Bio fuel production from crude Jatropha oil; addi- tion effect of formic acid as an in-situ hydrogen sour- ce,” FUEL, vol. 174, pp. 107–113, 2016.; Y. Yang, Q. Wang, H. Chen, and X. Zhang, “En- hancing selective hydroconversion of C 18 fatty acids into hydrocarbons by hydrogen-donors,” FUEL, vol. 133, pp. 241–244, 2014.; M. Kleinert, J. R. Gasson, and T. Barth, “Optimi- zing solvolysis conditions for integrated depolymerisa- tion and hydrodeoxygenation of lignin to produce liquid biofuel,” J. Anal. Appl. Pyrolysis, vol. 85, no. 1–2, pp. 108–117, 2009.; K. Jacobson, K. C. Maheria, and A. Kumar Dalai, “Bio-oil valorization: A review,” Renew. Sustain. Energy Rev., vol. 23, pp. 91–106, 2013.; O. Y. Suárez Palacios, “Producción y Mode- lamiento de Gliceril-esteres como plastificantes del PVC,” 2011.; X. Liu, S. Li, Y. Liu, and Y. Cao, “Formic acid : A versatile renewable reagent for green and sustainable chemical synthesis,” Chinese J. Catal., vol. 36, no. 9, pp. 1461–1475, 2015.; F. Jin, J. Yun, G. Li, A. Kishita, K. Tohji, and H. Enomoto, “Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures,” Green Chem., vol. 10, no. 6, pp. 612–615, 2008.; R. Arslan and Y. Ulusoy, “Utilization of waste coo- king oil as an alternatuve fuel for Turkey,” in 5th Interna- tional Conference on Renewable Energy Research and Applications, ICRERA 2016, 2016, vol. 5, pp. 149–152.; S. Dewang, Suriani, S. Hadriani, E. S. Lestari, Banu, and Diana, “Production from Callophyllum Inophyllum L using Catalyst and Time Variations for Stirring in,” in 6th International Conference on Renewable Energy Re- search and Applications, ICRERA 2017, 2017, vol. 5, pp. 734–738.; A. Hidayat and M. A. Adnan, “Free Fatty Acid Re- moval on Sludge of Palm Oil using Heterogeneous So- lid Catalyst Derived from Palm Empty Fruit Bunch,” Int. J. Renew. Energy Res., vol. 8, no. 2, pp. 986–993, 2018.; E. Bernard, “Biodiesel : Los aspectos mecánicos en los vehículos,” 2014.; X. Wang, Y. Ge, L. Yu, and X. Feng, “Comparison of combustion characteristics and brake thermal effi- ciency of a heavy-duty diesel engine fueled with diesel and biodiesel at high altitude,” Fuel, vol. 107, pp. 852– 858, 2013.; L. P. Lindfors, “High Quality Transportation Fuels From Renewable Feedstock,” in XXIst World Energy Congress Montreal, 2010, pp. 1–12.; H. Aatola, M. Larmi, T. Sarjovaara, and S. Mikko- nen, “Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emis- sion, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500,” SAE Tech. Pap., no. 724, p. 12, 2008.; R. Sotelo-boyás, F. Trejo-zárraga, and F. D. J. Her- nández-loyo, “Hydroconversion of Triglycerides into Green Liquid Fuels,” in Hydrogenation, InTech, Ed. 2012, pp. 187–216.; T. Khammasan and N. Tippayawong, “Light Li- quid Fuel from Catalytic Cracking of Beef Tallow with ZSM-5,” Int. J. Renew. Energy Res., vol. 8, no. 1, pp. 407–413, 2018.; S. Jamilatun and A. Budiman, “Non-Catalytic Slow Pyrolysis of Spirulina Platensis Residue for Pro- duction of Liquid Biofuel,” Int. J. Renew. Energy Res., vol. 7, no. 4, pp. 1901–1908, 2017.; A. Budiman and P. Mulyono, “Silica-Alumina Ba- sed Catalytic Cracking of Bio-Oil Using Double Series Reactor,” Int. J. Energy Res., vol. 8, no. 1, pp. 414–420, 2018.; V. Martínez-Merino, M. J. Gil, and A. Cornejo, “Biomass Sources for Hydrogen Production,” in Re- newable Hydrogen Technologies, Elsevier, 2013, pp. 87–110.; O. Bilgin, “Evaluation of hydrogen energy pro- duction of mining waste waters and pools,” in 4th Inter- national Conference on Renewable Energy Research and Applications, ICRERA 2015, 2015, vol. 4, pp. 557– 561.; S. Mohapatra, “Hydrogen Production Technolo- gies with Specific Reference to Biomass,” Int. J. Renew. Energy Res., vol. 2, no. 3, pp. 416–420, 2012.; L. Ce, O. Ni, and C. Lee, “Hydrogen production from oxidative steam reforming of ethanol on pyro- chlore-type metal oxide ,” in 1th International Conferen- ce on Renewable Energy Research and Applications, ICRERA 2012, 2012, pp. 9–11.; O. Nakagoe, Y. Furukawa, and S. Tanabe, “Hy- drogen production from steam reforming of woody biomass with cobalt catalyst,” in 1th International Con- ference on Renewable Energy Research and Applica- tions, ICRERA 2012, 2012, pp. 2–5.; I. Gandarias, P. L. Arias, J. Requies, M. El Doukkali, and M. B. Güemez, “Liquid-phase glycerol hy- drogenolysis to 1,2-propanediol under nitrogen pressu- re using 2-propanol as hydrogen source,” J. Catal., vol. 282, no. 1, pp. 237–247, 2011.; X. Jin, “Catalytic Conversion of Biomass-Deri- ved Polyols to Value-Added Chemicals : Catalysis and Kinetics Xin Jin Catalytic Conversion of Biomass-Deri- ved Polyols to Value-Added Chemicals : Catalysis and Kinetics,” 2014.; E. Santillan-jimenez and M. Crocker, “Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation / decarbonyla- tion,” J. Chem. Technol. Biotechnol., no. February, pp. 1–10, 2012.; A. Srifa, K. Faungnawakij, V. Itthibenchapong, and N. Viriya-empikul, “Production of bio-hydrogena- ted diesel by catalytic hydrotreating of palm oil over NiMoS2/c-Al2O3 catalys,” Bioresour. Technol., vol. 158, pp. 81–90, 2014.; G. Knothe, “Biodiesel and renewable diesel: A comparison,” Prog. Energy Combust. Sci., vol. 36, no. 3, pp. 364–373, 2010.; S. Brillouet, E. Baltag, S. Brunet, and F. Richard, “Applied Catalysis B : Environmental Deoxygenation of decanoic acid and its main intermediates over unpro- moted and promoted sulfided catalysts,” "Applied Ca- tal. B, Environ., vol. 148–149, pp. 201–211, 2014.; M. Toba, Y. Abe, H. Kuramochi, M. Osako, T. Mo- chizuki, and Y. Yoshimura, “Hydrodeoxygenation of waste vegetable oil over sulfide catalysts,” Catal. To- day, vol. 164, no. 1, pp. 533–537, 2011.; A. Srifa, K. Faungnawakij, V. Itthibenchapong, and S. Assabumrungrat, “Roles of monometallic ca- talysts in hydrodeoxygenation of palm oil to green die- sel,” Chem. Eng. J., vol. 278, pp. 249–258, 2015.; Linseis, “Simultaneous Thermal Analysis - STA (TGA/DSC),” 2018. [Online]. Available: http://www.lin- seis.com/en/our-products/simultaneous-thermogra- vimetry/.; M. K. Oudenhuijzen, P. J. Kooyman, B. Tappel, J. A. Van Bokhoven, and D. C. Koningsberger, “Understan- ding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2impregnated with [Pt2+(NH3)4](NO3−)2: A combi- nation of HRTEM, mass spectrometry, and quick EXA- FS,” J. Catal., vol. 205, no. 1, pp. 135–146, 2002.; World Energy Conusil, “World Energy Re- sources,” World Energy Counsil, 2016. [Onli- ne]. Available: http://www.springerlink.com/in- dex/10.1007/978-3-642-56342-3.; G. Joshi, J. K. Pandey, S. Rana, and D. S. Rawat, “Challenges and opportunities for the application of biofuel,” Renew. Sustain. Energy Rev., vol. 79, no. March, pp. 850–866, 2017.; A. K. Panda, “Studies on process optimization for production of liquid fuels from waste plastics,” no. July 2011, 2011.; International Energy Agency, “WORLD ENERGY BALANCES: AN OVERVIEW Global trends,” p. 21, 2017.; Worl Energy Council, “World Energy Resources Oil %7C 2016,” p. 91, 2016.; Secretaria Disrital De Ambiente, “Porcentaje de generación de residuos aprovechables por tipo de ma- terial en el sector público Distrital.,” 2016.; A. K. Panda, “Studies on process optimization for production of liquid fuels from waste plastics,” 2011.; S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy Convers. Manag., vol. 115, pp. 308– 326, 2016.; D. A, B. M.A y K. M, «Diesel Fuel From Waste Lu- bricating Oil by Pyrolitic Distillation,» Petroleum Scien- ce and Technology , vol. 33, no 2, pp. 129-138, 2015.; MINISTERIO DE AMBIENTE, VIVIENDA Y DESA- RROLLO TERRITORIAL, «Manual Técnico para el Mane- jo,» Bogota, 2005.; H. G. Anza Cruz, P. D. Orantes Calleja, R. Gon- zález Herrera y A. Ruíz Marín, «BIORREMEDIACIÓN DE SUELOS CONTAMINADOS CON ACEITE AUTOMOTRIZ USADOS MEDIANTE SISTEMA DE BIOPILAS,» ESPA- CIO I+D, vol. 5, no 12, p. 2, 2016.; M. A. Al-Ghouti y L. Al-Atoum, «Virgin and recy- cled engine oil differentiation: A spectroscopic study,» Journal of Environmental Management, vol. 90, no 1, pp. 187-195, 2009.; V. Kanokkantapong, W. Kiatkittipong, Panyapin- yop, P. Wongsuchoto y P. Pavasant, «Used lubricating oil management options based on life cycle thinking,» Resources, conservation and recycling, vol. V, no 53, pp. 294-299, 2009.; E. Delgado, J. Parra, L. Aguilar y D. Guevara, «COMBUSTIBLES ALTERNATIVOS A PARTIR DE ACEI- TES,» Avances en investigación e ingenieria , no 6, pp. 110-115, 2007.; T. D.F., T. P.G y M. M.Hattingh, «Enumeration, iso- lation and identification of sulphate-reducing bacteria of anaerobic digestion,» Water Research, vol. II, no 7, pp. 505-513, 1968.; C. Stan, C. Andreescu y M. Toma, «Some aspects of the regeneration of used motor oil,» Procedia Ma- nunfacturing, no 22, pp. 709-713, 2018.; International Organization for Standardization, Water quality -- Sampling -- Part 3: Preservation and handling of water samples, 5, 2018.; A.-G. Mohammad y A. LinaAl, «Virgin and recy- cled engine oil differentiation: A spectroscopic study,» Journal of Environmental Management, vol. 90, no 1, pp. 187-195, 2009.; O. Arpa, R. Yumrutas y Z. Argunhan, «Experi- mental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission,» Fuel Processing Tech- nology, vol. 91, no 10, pp. 1241-1249, 2010.; Asociación Colombiana del petroleo, Panora- ma general del aceite lubricante usado, Bogota, 2016.; E. Muñoz, D. Montoya y A. Muñoz, «PLANTEA- MIENTO Y SOLUCIÓN DE LA PROBLEMATICA DE LOS USADOS EN COLOMBIA,» Medellin, 2017.; K. Hakuta, H. Masaki, M. Nagura, N. Umeya- ma, and K. Nagai, “Evaluation of Various Photovoltaic Power Generation Systems,” Inst. Electr. Electron. Eng. IEEEXplore, no. 2015 IEEE International Telecommuni- cations Energy Conference (INTELEC), pp. 1–4, 2015.; O. I. Adekol, A. M. Almaktoof, and A. K. Raji, “De- sign of a Smart Inverter System for Photovoltaic Sys- tems Application,” IEEEXplore, no. 2016 International Conference on the Industrial and Commercial Use of Energy (ICUE), pp. 310–217, 2015.; A. Alcaldia de monteria, “Primer colegio con ener- gía solar en el país,” 2017.; E. Celsia Solar grupo Argos, “Empezó a generar energía Celsia Solar Yumbo, primera granja fotovoltai- ca de Colombia,” 1, 2017.; I. Instituto Colombiano de Normas Técnicas and I. Instituto de Ciencias Nucleares y Energías Alternati- vas, “Evaluación de la eficiencia de los sistemas sola- res fotovoltaicos y sus componentes. NTC 4405,” Icon- tec Internacional. p. 7, 1998.; I. IEEE Power Engineering society, “IEEE Recom- mended Practices and Requirement for Harmonic Con- trol in Electrical Power Systems STD IEEE-519-1992.” p. 101, 1992.; M. Barajas and B. Sánchez, “Contaminación ar- mónica producida por cargas no lineales de baja po- tencia: modelo matemático y casos prácticos,” Scielo, pp. 189–198, 2010.; V. R. Franca, M. A. Filho, and K. Carneiro De Oli- veira, “Analysis of Power Quality for Photovoltaic Sys- tems Connected to the Grid,” IEEEXplore, p. 5, 2016.; M. Kubat, “Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7.,” The Knowledge Engineering Review, vol. 13, no. 4. p. S0269888998214044, 1999; C. Razo, A. Astete-Miller, A. Saucedo, and C. Lu- deña, “Biocombustibles y su impacto potencial en la estructura agraria, precios y empleo en América Lati- na,” Santiago de Chile, 2007.; A. Ladino and H. B. Jason, “Diseño de Reactor por Cavitación Hidrodinámica Mediante CFD para Apli- caciones de Producción de Biodiesel,” Universidad de Cali, 2014.; L. López, J. Bocanegra, and D. Malagón-rome- ro, “Obtención de biodiesel por transesterificación de aceite,” Ing. y Univ., vol. 19, no. 1, pp. 155–172, 2015.; R. Alarcón, D. Malagón-Romero, and A. Ladino, “Biodiesel production from waste frying oil and palm oil mixtures,” Chem. Eng. Trans., vol. 57, pp. 571–576, 2017.; D. Rodríguez, J. Riesco, and D. Malagon-Romero, “Production of Biodiesel from Waste Cooking Oil and Castor Oil Blends,” Chem. Eng. Trans., vol. 57, pp. 679– 684, 2017.; H. G. Romero, “Evaluación de la política de Bio- combustibles en Colombia,” 2012.; P. R. Gogate, “Cavitational reactors for process intensification of chemical processing applications: A critical review,” Chem. Eng. Process., vol. 47, pp. 515– 527, 2008.; P. R. Gogate, R. Tayal, and A. Pandit, “Cavitation: A technology on the horizon,” Curr. Sci., pp. 35–46, 2006.; A. Pandit and P. R. Gogate, “A review and assess- ment of hydrodynamic cavitation as a technology for the future,” Ultrason. Sonochemistry, vol. 12, pp. 21– 27, 2005.; H. D. Inc., “Hydro Dynamics Inc.,” Hydro Dyna- mics Inc., 2014.; C. T. Inc., “Cavitation Technologies Inc.,” Cavita- tion Technol. Inc., 2014.; Piedmont biofuels., “Piedmont biofuels.,” Pied- mont biofuels., 2014.; L. M. Florez, “Biocombustibles de segunda ge- neración,” Universidad Autónoma de Occidente, Cali, Colombia, 2007.; U. and F. Bariloche, “PEN 2010-2030,” UNAL Fund. Bariloche, 2009.; J.-M. Michelle and J.-P. Franc, Fundamentals of Cavitation. 2005.; J. Wang, J. Ji, Y. Li, Y. Yu, and Z. Xu, “Preparation of biodiesel with the help of ultrasonic and hydrodyna- mic cavitation,” Ultrasonics, pp. 411–414, 2006.; A. Demirbas, “Comparison of transesterifica- tion methods for production of biodiesel from vegeta- ble oils and fats,” Elsevier, vol. 49, no. 1, pp. 125–130, 2008.; E. M. Nada, “The Manufacture of Biodiesel from the used vegetable oil,” EISOIh, 2011.; P. Castro, J. Coello, and L. Castillo, “Opciones para la producción y uso del biodiésel en el Perú,” Solu- ciones Prácticas - ITDG, 2007.; M. C. Math, S. P. Kumar, and S. V. Chetty, “Te- chnologies for biodiesel production from used cooking oil — A review,” Energy Sustain. Dev., vol. 14, no. 4, pp. 339–345, 2010.; H. Incorporated and P. Eisenberg, “Cavitation.”; G. L. Maddikeri, P. R. Gogate, and A. B. Pandit, “Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil,” Fuel, vol. 137, pp. 285–292, 2014.; L. F. Chuah, S. Yusup, A. R. Abd Aziz, A. Bokhari, and M. Z. Abdullah, “Cleaner production of methyl ester using waste cooking oil derived from palm olein using a hydrodynamic cavitation reactor,” J. Clean. Prod., vol. 112, pp. 4505–4514, 2016.; Rodríguez Amaya, Alejandro Sierra Alarcón, Adriana Fernanda Ortiz Castillo, Daniela Gaona-Corral, Luis Andrés Gómez-Torres, Luisa Marina Garzón Cortés, Giovanna del pilar Marín Martínez, Diego Alejandro Castiblanco Garzón, Cristian Leonardo Ortiz Yepes, Nathalie Luque Bernal, Gabriel Santiago Ospina Molina, Jonathan Medina Gamba, Andrés Felipe Guevara Umaña, Andrés Ricardo Aparicio Gallo, Andrea Suesca Díaz, Adriana Quevedo Hidalgo, Balkys Esmeralda Velásquez Lozano, Mario Enrique Bonilla-Páez, Javier Alejandro López Santamaría, Camilo Andrés Hernández Solórzano, Laura Carolina Mayorga Betancourt, Manuel Alejandro Perdomo Morales, Laura Daniela Vargas Sáenz, Julio Cesar Narváez Rincón, Paulo Cesar Cadavid Estrada, Juan Guillermo Castellanos Niño, Carlos Julio Albarracín Norena, Ana María Suarez Palacios, Oscar Yesid Cadavid Estrada, Juan Guillermo González Carmona, Jair Orlando Martínez Saavedra, José Mateo Trujillo, Carlos Alexander Bernal Bermúdez, Andrés David Blanco Gómez, María Alejandra Malagón Romero, Dionisio Humberto Cuesta, Diana Lozano Florez, Daniel Paez Morales, Adriana Ines Fuentes Velandia, Juan de Dios Orjuela Cañón, Álvaro David Tangarife Escobar, Héctor Iván Gómez, Luis-Clavijo Andrés. (2018). Construyendo la Energía sostenible en Colombia; http://hdl.handle.net/11634/27476; https://doi.org/10.15332/dt.inv.2020.01231

  7. 7
    Academic Journal
  8. 8
    Academic Journal

    وصف الملف: application/pdf

    Relation: info:eu-repo/semantics/altIdentifier/url/https://rbej.biomedcentral.com/articles/10.1186/s12958-022-00894-6; http://hdl.handle.net/11336/211157; Vallcaneras, Sandra; Morales, Laura Daniela; Delsouc, María Belén; Ramirez, Darío Alejandro; Filippa, Veronica Palmira; et al.; Interplay between nitric oxide and gonadotrophin-releasing hormone in the neuromodulation of the corpus luteum during late pregnancy in the rat; BioMed Central; Reproductive Biology And Endocrinology; 20; 1; 1-2022; 1-12; CONICET Digital; CONICET

  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0016648016302003; http://hdl.handle.net/11336/67081; Delsouc, María Belén; Morales, Laura Daniela; Vallcaneras, Sandra; Bronzi, Cynthia Daniela; Anzulovich Miranda, Ana Cecilia; et al.; Participation of the extrinsic cholinergic innervation in the action of nitric oxide on the ovarian steroidogenesis in the first proestrous in rats; Academic Press Inc Elsevier Science; General and Comparative Endocrinology; 236; 9-2016; 54-62; CONICET Digital; CONICET