يعرض 1 - 20 نتائج من 568 نتيجة بحث عن '"Mora-Flórez, Juan José"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Book

    وصف الملف: 108 páginas; application/pdf

    Relation: [1] T. Adefarati, R. C. Bansal, M. Bettayeb, and R. Naidoo, “Technical, economic, and environmental assessment of the distribution power system with the application of renewable energy technologies,” Renewable Energy, vol. 199, pp. 278–297, 2022.; [2] S. L. Lemos and M. C. C. Rubiano, “Plan nacional de desarrollo 2022-2026: Colombia, potencia mundial de la vida,” Revista Fasecolda, no. 189, pp. 64–69, 2023.; [3] Q. Hassan, P. Viktor, T. J. Al-Musawi, B. M. Ali, S. Algburi, H. M. Alzoubi, A. K. Al-Jiboory, A. Z. Sameen, H. M. Salman, and M. Jaszczur, “The renewable energy role in the global energy transformations,” Renewable Energy Focus, vol. 48, p. 100545, 2024.; [4] H. Ritchie, P. Rosado, and M. Roser, “Energy production and consumption,” Our World in Data, 2024.; [5] A. Aghahosseini, A. Solomon, C. Breyer, T. Pregger, S. Simon, P. Strachan, and A. Jäger-Waldau, “Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness,” Applied energy, vol. 331, p. 120401, 2023.; [6] A. M. López-Grajales, J. W. González-Sanchez, H. A. Cardona-Restrepo, I. A. Isaac-Millan, G. J. López-Jiménez, and O. H. Vasco-Echeverri, “Economy, financial, and regulatory method for the integration of electrical energy storage in a power network,” Journal of Energy Storage, vol. 58, p. 106433, 2023.; [7] L. Z. Velimirović, A. Janjić, and J. D. Velimirović, “Renewable energy integration in smart grids,” in Multi-criteria Decision Making for Smart Grid Design and Operation: A Society 5.0 Perspective, pp. 61–80, Springer, 2023.; [8] M. Shafiullah, S. D. Ahmed, and F. A. Al-Sulaiman, “Grid integration challenges and solution strategies for solar pv systems: a review,” IEEE Access, vol. 10, pp. 52233–52257, 2022.; [9] R. Štefko, M. Šárpataky, L. Šárpataky, V. Kohan, P. Havran, and M. Kolcun, “Modeling of protection relays and renewable energy sources for microgrid systems,” Acta Electrotechnica et Informatica, vol. 22, no. 3, pp. 9–17, 2022.; [10] A. Hooshyar and R. Iravani, “Microgrid protection,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1332–1353, 2017.; [11] P. H. A. Barra, D. V. Coury, and R. A. S. Fernandes, “A survey on adaptive protection of microgrids and distribution systems with distributed generators,” Renewable and Sustainable Energy Reviews, vol. 118, p. 109524, 2020.; [12] B. Patnaik, M. Mishra, R. C. Bansal, and R. K. Jena, “Ac microgrid protection – a review: Current and future prospective,” Applied Energy, vol. 271, p. 115210, 2020.; [13] C. García-Ceballos, S. Pérez-Londoño, and J. Mora-Flórez, “Compensated fault impedance estimation for distance-based protection in active distribution networks,” International Journal of Electrical Power & Energy Systems, vol. 151, p. 109114, 2023.; [14] U. Bhattarai, T. Maraseni, and A. Apan, “Assay of renewable energy transition: A systematic literature review,” Science of The Total Environment, vol. 833, p. 155159, 2022.; [15] A. A. Memon and K. Kauhaniemi, “A critical review of ac microgrid protection issues and available solutions,” Electric Power Systems Research, vol. 129, pp. 23–31, 2015.; [16] C. García-Ceballos, S. Pérez-Londoño, and J. Mora-Flórez, “Integration of distributed energy resource models in the VSC control for microgrid applications,” Electric Power Systems Research, vol. 196, p. 107278, 2021.; [17] S. Velasco-Gómez, S. Pérez-Londoño, and J. Mora-Floréz, “Unbalance compensated distance relay for active distribution networks,” Energy Reports, vol. 9, pp. 438–446, 2023.; [18] H. Xie, S. Zheng, and M. Ni, “Microgrid development in china: A method for renewable energy and energy storage capacity configuration in a megawatt-level isolated microgrid,” IEEE Electrification Magazine, vol. 5, no. 2, pp. 28–35, 2017.; [19] M. Liu and K. Lo, “Multi-actor perspective, socio-technical barriers, and microgrid development in China,” The Electricity Journal, vol. 35, no. 7, p. 107158, 2022.; [20] W. Feng, M. Jin, X. Liu, Y. Bao, C. Marnay, C. Yao, and J. Yu, “A review of microgrid development in the United States – a decade of progress on policies, demonstrations, controls, and software tools,” Applied Energy, vol. 228, pp. 1656–1668, 2018.; [21] T. M. Guibentif and F. Vuille, “Prospects and barriers for microgrids in Switzerland,” Energy Strategy Reviews, vol. 39, p. 100776, 2022.; [22] V. Harish, N. Anwer, and A. Kumar, “Applications, planning and socio-techno-economic analysis of distributed energy systems for rural electrification in india and other countries: A review,” Sustainable Energy Technologies and Assessments, vol. 52, p. 102032, 2022.; [23] E. Gaona, C. Trujillo, and J. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 125–137, 2015.; [24] W. Guerrero Hernandez A., N. Muñoz-Galeano, E. F. Caicedo-Bravo, P. Maya-Duque, and J. M. López-Lezama, “Sizing assessment of islanded microgrids considering total investment cost and tax benefits in Colombia,” Energies, vol. 15, no. 14, p. 5161, 2022.; [25] A. S. Guerrero Hernandez and L. V. R. de Arruda, “Economic viability and optimization of solar microgrids with hybrid storage in a non-interconnected zone in colombia,” Environment, Development and Sustainability, vol. 23, no. 9, pp. 12842–12866, 2021.; [26] L. Che, M. E. Khodayar, and M. Shahidehpour, “Adaptive protection system for microgrids: Protection practices of a functional microgrid system.,” IEEE Electrification Magazine, vol. 2, no. 1, pp. 66–80, 2014.; [27] G. Muñoz-Arango, J. Mora-Flórez, and S. Pérez-Londoño, “Optimal data-driven adaptive overcurrent relay coordination for active distribution networks,” Electric Power Systems Research, vol. 228, p. 110078, 2024.; [28] C. Battistelli and A. Monti, “Chapter 5 - dynamics of modern power systems,” in Converter-Based Dynamics and Control of Modern Power Systems (A. Monti, F. Milano, E. Bompard, and X. Guillaud, eds.), pp. 91–124, Academic Press, 2021.; [29] J. W. Stevens, R. H. Bonn, J. W. Ginn, S. Gonzalez, and G. A. Kern, “Development and testing of an approach to anti-islanding in utility-interconnected photovoltaic systems,” tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2000.; [30] “IEEE standard conformance test procedures for equipment interconnecting distributed energy resources with electric power systems and associated interfaces,” IEEE Std 1547.1-2020, pp. 1–282, 2020.; [31] K. Kauhaniemi and L. Kumpulainen, “Impact of distributed generation on the protection of distribution networks,” in 2004 Eighth IEE International Conference on Developments in Power System Protection, vol. 1, pp. 315–318 Vol.1, 2004.; [32] L. Kumpulainen and K. Kauhaniemi, “Distributed generation and reclosing coordination,” in Nordic Distribution and Asset Management Conference, Citeseer, 2004.; [33] B. Amanulla, S. Chakrabarti, and S. N. Singh, “Reconfiguration of power distribution systems considering reliability and power loss,” IEEE Transactions on Power Delivery, vol. 27, no. 2, pp. 918–926, 2012.; [34] L.-H. Tsai, “Network reconfiguration to enhance reliability of electric distribution systems,” Electric Power Systems Research, vol. 27, no. 2, pp. 135–140, 1993.; [35] B. Sultana, M. Mustafa, U. Sultana, and A. R. Bhatti, “Review on reliability improvement and power loss reduction in distribution system via network reconfiguration,” Renewable and Sustainable Energy Reviews, vol. 66, pp. 297–310, 2016.; [36] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014.; [37] Y. Yoldaş, A. Önen, S. Muyeen, A. V. Vasilakos, and İrfan Alan, “Enhancing smart grid with microgrids: Challenges and opportunities,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 205–214, 2017.; [38] R. A. Spalding, L. H. L. Rosa, C. F. M. Almeida, R. F. Morais, M. R. Gouvea, N. Kagan, D. Mollica, A. Dominice, L. Zamboni, G. H. Batista, J. P. Silva, L. A. Costa, and M. A. P. Fredes, “Fault location, isolation and service restoration (flisr) functionalities tests in a smart grids laboratory for evaluation of the quality of service,” in 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), pp. 879–884, 2016.; [39] N. D. Hatziargyriou, Microgrids: Architectures and Control. Wiley - IEEE, Wiley, 2014.; [40] S. Beheshtaein, M. Savaghebi, J. M. Guerrero, R. Cuzner, and J. C. Vasquez, “A secondary-control based fault current limiter for four-wire three phase inverter-interfaced dgs,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2363–2368, 2017.; [41] S. AG, “Overcurrent and feeder protection – SIPROTEC 7SJ82,” 2024. [Online; accessed 2024-04-14].; [42] A. Barranco-Carlos, C. Orozco-Henao, J. Marín-Quintero, J. Mora-Flórez, and A. Herrera-Orozco, “Adaptive protection for active distribution networks: An approach based on fuses and relays with multiple setting groups,” IEEE Access, vol. 11, pp. 31075–31091, 2023.; [43] S. A. Gopalan, V. Sreeram, and H. H. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 222–228, 2014.; [44] B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 988–997, 2017.; [45] B. Grisales-Soto, S. Pérez-Londoño, and J. Mora-Flórez, “Low computational burden adaptive overcurrent protection for active distribution networks,” International Transactions on Electrical Energy Systems, vol. 2023, 2023.; [46] S. Kar, S. R. Samantaray, and M. D. Zadeh, “Data-mining model based intelligent differential microgrid protection scheme,” IEEE Systems Journal, vol. 11, no. 2, pp. 1161–1169, 2017.; [47] W.-J. Tang and H.-T. Yang, “Data mining and neural networks based self-adaptive protection strategies for distribution systems with dgs and fcls,” Energies, vol. 11, no. 2, p. 426, 2018.; [48] J. Orozco-Álvarez, A. Herrera-Orozco, and J. Mora-Flórez, “Communication-less adaptive directional overcurrent protection strategy considering islanded mode detection in active distribution networks,” Results in Engineering, vol. 20, p. 101538, 2023.; [49] S. Shen, D. Lin, H. Wang, P. Hu, K. Jiang, D. Lin, and B. He, “An adaptive protection scheme for distribution systems with dgs based on optimized thevenin equivalent parameters estimation,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 411–419, 2017.; [50] P. Anderson, C. Henville, R. Rifaat, B. Johnson, and S. Meliopoulos, Power System Protection. IEEE Press Series on Power and Energy Systems, Wiley, 2022.; [51] M. Y. Shih, A. Conde, C. Ángeles Camacho, E. Fernández, Z. Leonowicz, F. Lezama, and J. Chan, “A two stage fault current limiter and directional overcurrent relay optimization for adaptive protection resetting using differential evolution multi-objective algorithm in presence of distributed generation,” Electric Power Systems Research, vol. 190, p. 106844, 2021.; [52] A. Phadke and J. Thorp, Computer Relaying for Power Systems. Wiley, 2009.; [53] H. Lin, K. Sun, Z.-H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids,” IET generation, transmission & distribution, vol. 13, no. 6, pp. 770–779, 2019.; [54] Q. Yang, J. A. Barria, and T. C. Green, “Communication infrastructures for distributed control of power distribution networks,” IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 316–327, 2011.; [55] I. Serban, S. Céspedes, C. Marinescu, C. A. Azurdia-Meza, J. S. Gómez, and D. S. Hueichapan, “Communication requirements in microgrids: A practical survey,” IEEE Access, vol. 8, pp. 47694–47712, 2020.; [56] M. A. Setiawan, F. Shahnia, S. Rajakaruna, and A. Ghosh, “Zigbee-based communication system for data transfer within future microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2343–2355, 2015.; [57] T. Dragičević, P. Siano, and S. S. Prabaharan, “Future generation 5g wireless networks for smart grid: A comprehensive review,” Energies, vol. 12, no. 11, p. 2140, 2019.; [58] T. Mai, A. Haque, T. Vo, P. Nguyen, and M. Pham, “Development of ict infrastructure for physical lv microgrids,” in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / ICPS Europe), pp. 1–6, 2018.; [59] D. Gutierrez-Rojas, P. H. J. Nardelli, G. Mendes, and P. Popovski, “Review of the state of the art on adaptive protection for microgrids based on communications,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1539–1552, 2021.; [60] D. Martin, P. Sharma, A. Sinclair, and D. Finney, “Distance protection in distribution systems: How it assists with integrating distributed resources,” in 2012 65th Annual Conference for Protective Relay Engineers, pp. 166–177, 2012.; [61] A. M. Tsimtsios and V. C. Nikolaidis, “Setting zero-sequence compensation factor in distance relays protecting distribution systems,” IEEE Transactions on Power Delivery, vol. 33, no. 3, pp. 1236–1246, 2017.; [62] Y. Yin, Y. Fu, Z. Zhang, and A. Zamani, “Protection of microgrid interconnection lines using distance relay with residual voltage compensations,” IEEE Transactions on Power Delivery, vol. 37, no. 1, pp. 486–495, 2021.; [63] A. C. Adewole, A. D. Rajapakse, D. Ouellette, and P. Forsyth, “Protection of active distribution networks incorporating microgrids with multi-technology distributed energy resources,” Electric Power Systems Research, vol. 202, p. 107575, 2022.; [64] J. Ma, J. Liu, Z. Deng, S. Wu, and J. S. Thorp, “An adaptive directional current protection scheme for distribution network with dg integration based on fault steady-state component,” International Journal of Electrical Power & Energy Systems, vol. 102, pp. 223–234, 2018.; [65] J. Andruszkiewicz, J. Lorenc, B. Staszak, A. Weychan, and B. Zięba, “Overcurrent protection against multi-phase faults in mv networks based on negative and zero sequence criteria,” International Journal of Electrical Power & Energy Systems, vol. 134, p. 107449, 2022.; [66] P. Mahat, Z. Chen, B. Bak-Jensen, and C. L. Bak, “A simple adaptive overcurrent protection of distribution systems with distributed generation,” IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 428–437, 2011.; [67] A. Soleimanisardoo and H. Kazemi Karegar, “Alleviating the impact of dgs and network operation modes on the protection system,” IET Generation, Transmission & Distribution, vol. 14, no. 1, pp. 21–28, 2020.; [68] A. J. Pansini, Guide to electrical power distribution systems. River Publishers, 2020.; [69] A. Fazanehrafat, S. Javadian, S. Bathaee, and M.-R. Haghifam, “Maintaining the recloser-fuse coordination in distribution systems in presence of DG by determining DG’s size,” in IET 9th International Conference on Developments in Power Systems Protection (DPSP 2008), pp. 132–137, IET, 2008.; [70] S. Ghobadpour, M. Gandomkar, and J. Nikoukar, “Determining optimal size of superconducting fault current limiters to achieve protection coordination of fuse-recloser in radial distribution networks with synchronous DGs,” Electric Power Systems Research, vol. 185, p. 106357, 2020.; [71] A. Elmitwally, E. Gouda, and S. Eladawy, “Restoring recloser-fuse coordination by optimal fault current limiters planning in dg-integrated distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 77, pp. 9–18, 2016.; [72] M. N. Alam, B. Das, and V. Pant, “Protection scheme for reconfigurable radial distribution networks in presence of distributed generation,” Electric Power Systems Research, vol. 192, p. 106973, 2021.; [73] CREG, “Resolución 121 de 2017,” 2017.; [74] CREG, “Resolución 030 de 2018,” 2018.; [75] CREG, “Resolución 281 de 2015,” 2015.; [76] CREG, “Resolución 174 de 2018,” 2018.; [77] W. Wang, Y. Xu, and M. Khanna, “A survey on the communication architectures in smart grid,” Computer networks, vol. 55, no. 15, pp. 3604–3629, 2011.; [78] H. Salazar Isaza, R. A. Hincapié Isaza, A. Arias Londoño, D. Paredes Cortés, and L. S. Peña, “Apoyo en el estudio y elaboración de las bases para proponer el agente que debe desarrollar la implementación de la infraestructura de medición avanzada,” tech. rep., Universidad Tecnológica de Pereira, 2019.; [79] CREG, “Resolución 002 de 2022,” 2022.; [80] Ministerio de Minas y Energía, “Resolución CREG No.015 De 2018,” tech. rep., 2018.; [81] M. Gottschalk, M. Uslar, and C. Delfs, The Use Case and Smart Grid Architecture Model Approach The IEC 62559-2 Use Case Template and the SGAM Applied in Various Domains. 2017.; [82] Graphic Resources LLC., “Freepik,” 2014.; [83] I. E. A. (IEA), “Global energy review: CO2 emissions in 2020,” 2021. [Online; accessed 2021-08-24].; [84] I. E. A. (IEA), “After steep drop in early 2020, global carbon dioxide emissions have rebounded strongly,” 2021. [Online; accessed 2021-08-25].; [85] R. Turconi, A. Boldrin, and T. Astrup, “Life cycle assessment (lca) of electricity generation technologies: Overview, comparability and limitations,” Renewable and Sustainable Energy Reviews, vol. 28, pp. 555–565, 2013.; [86] I. E. A. (IEA), “Electricity market report – july 2021,” Tech. Rep. July, France, 2021.; [87] E. Nam and T. Jin, “Mitigating carbon emissions by energy transition, energy efficiency, and electrification: Difference between regulation indicators and empirical data,” Journal of Cleaner Production, vol. 300, p. 126962, 2021.; [88] P. Bertoldi and R. Mosconi, “Do energy efficiency policies save energy? a new approach based on energy policy indicators (in the eu member states),” Energy Policy, vol. 139, no. January, p. 111320, 2020.; [89] F. deLlano Paz, P. Martínez Fernandez, and I. Soares, “Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues,” Energy, vol. 115, pp. 1347–1360, 2016.; [90] N. Unidas, “¿qué es el acuerdo de parís?,” 2021. [Online; accessed 2021-08-24].; [91] IEA, “World energy outlook 2020,” 2020. [Online; accessed 2021-06-04].; [92] E. Marrasso, C. Roselli, and M. Sasso, “Electric efficiency indicators and carbon dioxide emission factors for power generation by fossil and renewable energy sources on hourly basis,” Energy Conversion and Management, vol. 196, pp. 1369–1384, 9 2019.; [93] F. Greer, P. Raftery, and A. Horvath, “Considerations for estimating operational greenhouse gas emissions in whole building life-cycle assessments,” Building and Environment, p. 111383, 2024.; [94] P. M. De Oliveira-De Jesus, “Effect of generation capacity factors on carbon emission intensity of electricity of latin america amp; the caribbean, a temporal ida-lmdi analysis,” Renewable and Sustainable Energy Reviews, vol. 101, pp. 516–526, 3 2019.; [95] B. Ang and B. Su, “Carbon emission intensity in electricity production: A global analysis,” Energy Policy, vol. 94, pp. 56–63, 7 2016.; [96] I. E. Agency, “Indicadores de eficiencia energética: Fundamentos estadísticos,” IEA Publications, pp. 1–211, 2016.; [97] X. Wang, Y. Lu, C. Chen, X. Yi, and H. Cui, “Total-factor energy efficiency of ten major global energy-consuming countries,” Journal of Environmental Sciences, vol. 137, pp. 41–52, 2024.; [98] UPME, “Balance Energético Colombiano (BECO) - Consulta,” 2020.; [99] UPME, “Plan energetico nacional colombia: Ideario energético 2050,” Unidad de Planeación Minero Energética, Republica de Colombia, p. 184, 2015.; [100] M. G. Patterson, “What is energy efficiency? concepts, indicators and methodological issues,” Energy Policy, vol. 24, no. 5, pp. 377–390, 1996.; [101] M. Wünsch, R. Offermann, K. Weinert, F. Seefeldt, and I. Ziegenhagen, “Benefits of energy efficiency on the german power sector,” Agora Energiewende, no. April, 2014.; [102] T. Jin, “Impact of heat and electricity consumption on energy intensity: A panel data analysis,” Energy, vol. 239, p. 121903, 1 2022.; [103] XM, “Capacidad efectiva por tipo de generación,” 2021. [Online; accessed 2021-07-31].; [104] H. Al Garni, A. Kassem, A. Awasthi, D. Komljenovic, and K. Al-Haddad, “A multicriteria decision making approach for evaluating renewable power generation sources in saudi arabia,” Sustainable Energy Technologies and Assessments, vol. 16, pp. 137–150, 2016.; [105] Y. Soler-Castillo, J. C. Rimada, L. Hernández, and G. Martínez-Criado, “Modelling of the efficiency of the photovoltaic modules: Grid-connected plants to the Cuban national electrical system,” Solar Energy, vol. 223, pp. 150–157, 2021.; [106] H. Dargahi and K. B. Khameneh, “Energy intensity determinants in an energy-exporting developing economy: Case of iran,” Energy, vol. 168, pp. 1031–1044, 2 2019.; [107] U. de Planeación Minero Energética, “Consultoría técnica para el fortalecimiento y mejora de la base de datos de factores de emisión de los combustibles colombianos - fecoc,” tech. rep., 2016.; [108] F. Dong, B. Yu, T. Hadachin, Y. Dai, Y. Wang, S. Zhang, and R. Long, “Drivers of carbon emission intensity change in china,” Resources, Conservation and Recycling, vol. 129, pp. 187–201, 2 2018.; [109] Ministerio de Minas y Energía, “Resolución CREG No.097 de 2008,” tech. rep., 2008.; [110] Comisión de Regulación de Energía y Gas - CREG, “Resolución CREG No. 025 de 1995,” 1995.; [111] F. Lucero García and M. V. Toasa Yujato, Manual de estadísticas energéticas. 2017.; [112] T. Chalá and V. García, “Pérdidas en distribución de energía eléctrica,” Master’s thesis, 2012.; [113] XM, “Liquidación y Administración de Cuentas (LAC),” 2023.; [114] D. J. Romero-López and A. Vargas-Rojas, “Modelo de incentivos para la reducción de pérdidas de energía eléctrica en Colombia,” Revista de la Maestría en Derecho Económico, vol. 6, no. 6, pp. 221–257, 2013.; [115] I. A. E. Agency, Energy indicators for sustainable development: guidelines and methodologies. 2005.; [116] I. E. Agency, “Indicadores de eficiencia energética: Bases esenciales para el establecimiento de políticas,” IEA Publications, p. 182, 2015.; [117] Ministerio de Minas y Energía, “Resolución CREG No.133 de 2013,” tech. rep., 2013.; [118] Ministerio de Minas y Energía, “Resolución CREG No.174 De 2011,” tech. rep., 2011.; [119] ANDI, “Informe encuesta de calidad de la energía. septiembre 2020,” tech. rep., 2020.; [120] CREG, “Resolución 058 de 2008,” 2008.; [121] Ministerio de Minas y Energía, “Resolución CREG No.109 De 2019,” tech. rep., 2019.; [122] A. N. de Industriales, “Informe nacional de competitividad 2019 - 2020,” 2020.; [123] M. de energía and UPME, “Inflación de energía en Colombia,” 9 2020.; [124] E. F. S. Úbeda, J. P. G. A. M. S. Roque, E. Chueca, and M. Hallack, “Impacto del covid-19 en la demanda de energía eléctrica en latinoamérica y el caribe,” 2021.; [125] A. Damodaran, Investment Valuation Tools and Techniques for Determining the Value of Any Asset, vol. 666. John Wiley & Sons Inc, 2002.; [126] C. Tascheret, G. Rattá, and A. M. Andreoni, “Methodology to determine the optimal electricity distribution tariff using benchmarking techniques,” in 2016 13th International Conference on the European Energy Market (EEM), vol. 2016-July, pp. 1–5, IEEE, IEEE Computer Society, 7 2016.; [127] P. Corredor, U. Helman, D. Jara, and F. A. Wolac, “Misión de transformación energética y modernización de la industria eléctrica: hoja de ruta para la energía del futuro,” 2020.; [128] R. Cruz, H. Torres, M. Montoya, J. Barrientos, L. Pineda, L. Niebles, O. Bedoya, B. Duque, C. Gómez, J. Uribe, and A. Franco, Caracterización del Sector Eléctrico colombiano. SENA, 2013.; [129] S. Chawda, R. Bhakar, and P. Mathuria, “Uncertainty and risk management in electricity market: Challenges and opportunities,” in 2016 national power systems conference (NPSC), pp. 1–6, IEEE, 2016.; [130] J. Cardona, M. Gil, and J. Arbelaéz, “Administración de riesgos financieros en los mercados de energía eléctrica.,” 2019.; [131] CREG, “Circular CREG 037-2006,” 2006.; [132] C. G. Soops, “Sostenibilidad del mercado eléctrico colombiano. implementación de un mercado anónimo y estandarizado de contratos,” 2021.; [133] CREG, “Circular CREG 070-2021,” 2021.; [134] J. Campo and V. Sarmiento, “The relationship between energy consumption and gdp: Evidence from a panel of 10 Latin American countries,” Latin American Journal of Economics, vol. 50, pp. 233–255, 2013.; [135] J. Millán, Entre el mercado y el Estado. Tres décadas de reformas en el sector eléctrico de América Latina. Banco Interamericano de Desarollo, 2006.; [136] M. Santa María, N. Von Der Fehr, J. Millán, J. Benavides, O. Gracia, and E. Schutt, El Mercado de la Energía Eléctrica en Colombia: Características, Evolución e Impacto Sobre Otros Sectores. 2009.; [137] CREG, “Resolución CREG 083-2021,” 2021.; [138] CREG, “Resolución CREG 119-2007,” 2007.; [139] CREG, “Resolución CREG 101-002,” 2022.; [140] I. J. Pérez-Arriaga, Regulation of Power Sector. Springer, 2013.; [141] M. Jonas J, “Ratemaking as climate adaptation governance,” Frontiers in Climate, vol. 3, p. 738972, 2021.; [142] CREG, “Resolución CREG 031-1997,” 1997.; [143] M. Liu, F. F. Wu, and Y. Ni, “A survey on risk management in electricity markets,” in 2006 IEEE Power Engineering Society General Meeting, pp. 1–6, 2006.; [144] C. Guadarrama, A. Viana, J. Gutiérrez, and A. Paz, Renewable energy auctions in Colombia: Context, design and results. IRENA and USAID, 2021.; [145] XM, “Informe de resultados nuevas subasta 2021.” [Online; accessed 2023-09-25].; [146] CREG, “Resolución CREG 114-2018,” 2018.; https://hdl.handle.net/11059/15548; https://doi.org/10.22517/9789587229394; Universidad Tecnológica de Pereira; Repositorio Universidad Tecnológica de Pereira; https://repositorio.utp.edu.co/home

  2. 2
    Dissertation/ Thesis

    المؤلفون: Mora Flórez, Juan José

    المساهمون: University/Department: Universitat de Girona. Departament d'Electrònica, Informàtica i Automàtica

    Thesis Advisors: jjmora@utp.edu.co, Carrillo Caicedo, Gilberto, Colomer, Joan (Colomer Llinàs), Meléndez i Frigola, Joaquim

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 621.3

    وصف الملف: application/pdf

  3. 3
    Electronic Resource

    مصطلحات الفهرس: Trabajo de grado - Maestría

    URL: https://hdl.handle.net/11059/15281
    https://repositorio.utp.edu.co/home
    Bill Chiu, Anjan Bose, Scott Brown, Babu Chalamala, Darcy Immerman, Amin Khodaei, Jay Liu, Jim Mazurek, Damir Novosel, Aleksi Paaso, Farnoosh Rahmatian, Julio Romero Ag¨uero, and Marianna Vaiman. Resilience framework, methods, and metrics for the electricity sector. Industry Technical Support Leadership Committee (ITSLC), 2020.
    Jing Ma and Zengping Wang. Hierarchical Protection for Smart Grids. John Wiley & Sons, 2018.
    Vinicius F. Martins and Carmen L. T. Borges. Active distribution network integrated planning incorporating distributed generation and load response uncertainties. IEEE Transactions on Power Systems, 26(4):2164–2172, 2011.
    Rodrigo Hidalgo, Chad Abbey, and G´eza Jo´os. A review of active distribution networks enabling technologies. In IEEE PES General Meeting, 2010.
    Muhammad Usama, Hazlie Mokhlis, Mahmoud Moghavvemi, Nurulafiqah Nadzirah Mansor, Majed A. Alotaibi, Munir Azam Muhammad, and Abdullah Akram Bajwa. A comprehensive review on protection strategies to mitigate the impact of renewable energy sources on interconnected distribution networks. IEEE Access, 9:35740–35765, 2021.
    Ankan Chandra, G K Singh, and Vinay Pant. Protection of ac microgrid integrated with renewable energy sources – a research review and future trends. Electric Power Systems Research, 193:107036, 2021.
    Bhaskar Patnaik, Manohar Mishra, Ramesh C. Bansal, and Ranjan Kumar Jena. Ac microgrid protection – a review: Current and future prospective. Applied Energy, 271:115210, 2020.
    P.H.A. Barra, D.V. Coury, and R.A.S. Fernandes. A survey on adaptive protection of microgrids and distribution systems with distributed generators. Renewable and Sustainable Energy Reviews, 118:109524, 2020.
    Mir Mohammad Taheri, Heresh Seyedi, Morteza Nojavan, Mortaza Khoshbouy, and Behnam Mohammadi Ivatloo. High-speed decision tree based series-compensated transmission lines protection using differential phase angle of superimposed current. IEEE Transactions on Power Delivery, 33(6):3130–3138, 2018.
    Hamed Abdollahzadeh. A new approach to eliminate impacts of highresistance faults by compensation of traditional distance relays’ input signals. Electric Power Systems Research, 194:107098, 2021.
    Hamed Abdollahzadeh. Distance relaying of untransposed parallel transmission lines in case of phase-phase inter-circuit faults. Electric Power Systems Research, 210:108072, 2022.
    Stuart Borlase. Smart grids: Advanced technologies and solutions. CRC press, 2017.
    Vassilis C. Nikolaidis, Aristotelis M. Tsimtsios, and Anastasia S. Safigianni. Investigating particularities of infeed and fault resistance effect on distance relays protecting radial distribution feeders with dg. IEEE Access, 6:11301–11312, 2018.
    Ali Hooshyar and Reza Iravani. Microgrid protection. Proceedings of the IEEE, 105(7):1332–1353, 2017.
    Ramesh Bansal. Power system protection in smart grid environment. CRC Press, 2019.
    Sudarshan Khond, Vijay Kale, and Makarand Sudhakar Ballal. Nonpilot accelerated trip for distance relays using total relative reactance change in zone ii. Electric Power Systems Research, 218:109171, 2023.
    A. Mohajeri, H. Seyedi, and M. Sabahi. Optimal setting of distance relays quadrilateral characteristic considering the uncertain effective parameters. International Journal of Electrical Power & Energy Systems, 73:1051–1059, 2015.
    Pukar Mahat, Zhe Chen, Birgitte Bak-Jensen, and Claus Leth Bak. A simple adaptive overcurrent protection of distribution systems with distributed generation. IEEE Transactions on Smart Grid, 2(3):428– 437, 2011.
    M. Tavakoli Bina and A. Kashefi. Three-phase unbalance of distribution systems: Complementary analysis and experimental case study. International Journal of Electrical Power and Energy Systems, 33(4):817– 826, 2011.
    C. García-Ceballos, S. Pérez-Londoño, and J. Mora-Flórez. Stability analysis framework for isolated microgrids with energy resources integrated using voltage source converters. Results in Engineering, 19:101252, 2023.
    Mohamed A. Mohamed, Tao Chen, Wencong Su, and Tao Jin. Proactive resilience of power systems against natural disasters: A literature review. IEEE Access, 7:163778–163795, 2019.
    Sakshi Mishra, Kate Anderson, Brian Miller, Kyle Boyer, and Adam Warren. Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies. Applied Energy, 264:114726, 2020.
    Eklas Hossain, Shidhartho Roy, Naeem Mohammad, Nafiu Nawar, and Debopriya Roy Dipta. Metrics and enhancement strategies for grid resilience and reliability during natural disasters. Applied Energy, 290:116709, 2021.
    C García-Ceballos, S Pérez-Londoño, and J Mora-Flórez. Integration of distributed energy resource models in the vsc control for microgrid applications. Electric Power Systems Research, 196:107278, 2021.
    Haobo Zhang, Wang Xiang, Qiteng Hong, and Jinyu Wen. Active phase control to enhance distance relay in converter-interfaced renewable energy systems. International Journal of Electrical Power and Energy Systems, 143:108433, 2022.
    Martin Biller and Johann Jaeger. Protection algorithms for closedring grids with distributed generation. IEEE Transactions on Power Delivery, 37(5):4042–4052, 2022.
    Asma Assouak and Rabah Benabid. A new coordination scheme of directional overcurrent and distance protection relays considering timevoltage- current characteristics. International Journal of Electrical Power and Energy Systems, 150:109091, 2023.
    Muhammad Uzair, Li Li, Mohsen Eskandari, Jahangir Hossain, and Jian Guo Zhu. Challenges, advances and future trends in ac microgrid protection: With a focus on intelligent learning methods. Renewable and Sustainable Energy Reviews, 178:113228, 2023.
    Amin Banaiemoqadam, Ali Hooshyar, and Maher A. Azzouz. A controlbased solution for distance protection of lines connected to converterinterfaced sources during asymmetrical faults. IEEE Transactions on Power Delivery, 35(3):1455–1466, 2020.
    Yingyu Liang, Wulin Li, Zhengjie Lu, Guanjun Xu, and Cong Wang. A new distance protection scheme based on improved virtual measured voltage. IEEE Transactions on Power Delivery, 35(2):774–786, 2020.
    Xiaoyou Zhang, Mohamed Radwan, and Sahar Pirooz Azad. Modified distance protection of transmission lines originating from dfig-based wpps by considering the impact of fault-induced rotor frequency and lvrt requirements. International Journal of Electrical Power and Energy Systems, 147:108911, 2023.
    Reza Bekhradian, Arash Mahari, Moein Abedini, and Majid Sanaye- Pasand. Innovative probabilistic approach to reduce zone-2 time delay setting of distance relays. Electric Power Systems Research, 229:110116, 2024.
    Paul M Anderson. Analysis of faulted power systems, volume 11. John Wiley & Sons, 1995.
    Ruifeng Yan and Tapan Kumar Saha. Investigation of voltage imbalance due to distribution network unbalanced line configurations and load levels. IEEE Transactions on Power Systems, 28(2):1829–1838, 2013.
    Amy Sinclair, Dale Finney, David Martin, and Pankaj Sharma. Distance protection in distribution systems: How it assists with integrating distributed resources. IEEE Transactions on Industry Applications, 50(3):2186–2196, 2014.
    Jing Ma, Wei Ma, Yang Qiu, and James S. Thorp. An adaptive distance protection scheme based on the voltage drop equation. IEEE Transactions on Power Delivery, 30(4):1931–1940, 2015.
    Aristotelis M. Tsimtsios and Vassilis C. Nikolaidis. Setting zerosequence compensation factor in distance relays protecting distribution systems. IEEE Transactions on Power Delivery, 33(3):1236–1246, 2018.
    Amir Ghorbani and Hasan Mehrjerdi. Distance protection with fault resistance compensation for lines connected to pv plant. International Journal of Electrical Power and Energy Systems, 148:108976, 2023.
    Muhammad Uzair, Li Li, Jian Guo Zhu, and Mohsen Eskandari. A protection scheme for ac microgrids based on multi-agent system combined with machine learning. In 2019 29th Australasian Universities Power Engineering Conference (AUPEC), pages 1–6, 2019.
    Khalil El-Arroudi and Géza Joós. Performance of interconnection protection based on distance relaying for wind power distributed generation. IEEE Transactions on Power Delivery, 33(2):620–629, 2018.
    Yujie Yin, Yong Fu, Zhiying Zhang, and Amin Zamani. Protection of microgrid interconnection lines using distance relay with residual voltage compensation. IEEE Transactions on Power Delivery, pages 1–1, 2021.
    Swati A. Lavand and S. A. Soman. Predictive analytic to supervise zone 1 of distance relay using synchrophasors. IEEE Transactions on Power Delivery, 31(4):1844–1854, 2016.
    Amir Ghorbani, Hasan Mehrjerdi, and Majid Sanaye-Pasand. An accurate non-pilot scheme for accelerated trip of distance relay zone-2 faults. IEEE Transactions on Power Delivery, 36(3):1370–1379, 2021.
    Pawel Regulski, Waldemar Rebizant, Matthias Kereit, and Sebastian Schneider. Adaptive reach of the 3rd zone of a distance relay with synchronized measurements. IEEE Transactions on Power Delivery, 36(1):135–144, 2021.
    Aristotelis M. Tsimtsios, George N. Korres, and Vassilis C. Nikolaidis. A pilot-based distance protection scheme for meshed distribution systems with distributed generation. International Journal of Electrical Power & Energy Systems, 105:454–469, 2019.
    Xingxing Jin, Ramakrishna Gokaraju, Rudi Wierckx, and Om Nayak. High speed digital distance relaying scheme using fpga and iec 61850. IEEE Transactions on Smart Grid, 9(5):4383–4393, 2018.
    Aristotelis M. Tsimtsios, Anastasia S. Safigianni, and Vassilis C. Nikolaidis. Generalized distance-based protection design for dg integrated mv radial distribution networks — part i: Guidelines. Electric Power Systems Research, 176:105949, 2019.
    Aristotelis M. Tsimtsios, Anastasia S. Safigianni, and Vassilis C. Nikolaidis. Generalized distance-based protection design for dg integrated mv radial distribution networks — part ii: Application to an actual distribution line. Electric Power Systems Research, 176:105950, 2019.
    Yu Chen, Minghao Wen, Xianggen Yin, Yijun Cai, and Junchao Zheng. Distance protection for transmission lines of dfig-based wind power integration system. International Journal of Electrical Power and Energy Systems, 100:438–448, 2018.
    André Darós Filomena, Rodrigo Hartstein Salim, Mariana Resener, and Arturo Suman Bretas. Ground distance relaying with fault-resistance compensation for unbalanced systems. IEEE Transactions on Power Delivery, 23(3):1319–1326, 2008.
    Rodrigo Hartstein Salim, Denise Pivatto Marzec, and Arturo Suman Bretas. Phase distance relaying with fault resistance compensation for unbalanced systems. IEEE Transactions on Power Delivery, 26(2):1282–1283, 2011.
    Priyanka Mishra, Ashok Kumar Pradhan, and Prabodh Bajpai. Adaptive distance relaying for distribution lines connecting inverterinterfaced solar pv plant. IEEE Transactions on Industrial Electronics, 68(3):2300–2309, 2021.
    Loai Mohamed Ali El-Sayed, Doaa Khalil Ibrahim, Mahmoud Ibrahim Gilany, and Aboul’Fotouh El’Gharably. Enhancing distance relay performance using wide-area protection for detecting symmetrical/unsymmetrical faults during power swings. Alexandria Engineering Journal, 61(9):6869–6886, 2022.
    Guobing Song, Peng Chang, Junjie Hou,Weijia Li, and Chenhao Zhang. A time-domain distance protection method applicable to inverterinterfaced systems. Electric Power Systems Research, 225:109806, 2023.
    Bin Li, Yaru Sheng, Jiawei He, Ye Li, Zhongrun Xie, and Yunzhu Cao. Improved distance protection for wind farm transmission line based on dynamic frequency estimation. International Journal of Electrical Power and Energy Systems, 153:109382, 2023.
    Hamed Abdollahzadeh. A distance protection/fault location algorithm for double-circuit transmission lines with asymmetrical circuits during cross-country faults. International Journal of Electrical Power and Energy Systems, 148:108943, 2023.
    Oscar Danilo Montoya, Andres Arias-Londoño, Luis Fernando Grisales- Noreña, José Angel Barrios, and Harold R Chamorro. Optimal demand reconfiguration in three-phase distribution grids using an mi-convex model. Symmetry, 13(7):1124, 2021.
    W.R. Lachs. A new horizon for system protection schemes. IEEE Transactions on Power Systems, 18(1):334–338, 2003.

  4. 4
    Electronic Resource

    مصطلحات الفهرس: Trabajo de grado - Maestría

    URL: https://hdl.handle.net/11059/15279
    https://repositorio.utp.edu.co/home
    [Agency, 2021] Agency, I. E. (2021). Word Energy Outlook 2021. IEA Publications.
    [Alam, 2019] Alam, M. N. (2019). Adaptive protection coordination scheme using numerical directional overcurrent relays. IEEE Transactions on Industrial Informatics, 15(1):64–73.
    [Bahadornejad and Ledwich, 2003] Bahadornejad, M. and Ledwich, G. (2003). System thevenin impedance estimation using signal processing on load bus data. In 2003 Sixth International Conference on Advances in Power System Control, Operation and Management ASDCOM 2003 (Conf. Publ. No. 497), volume 1, pages 274–279.
    [Bisheh et al., 2023] Bisheh, H., Fani, B., Shahgholian, G., Sadeghkhani, I., and Guerrero, J. M. (2023). An adaptive fuse-saving protection scheme for active distribution networks. International Journal of Electrical Power & Energy Systems, 144:108625.
    [Blackburn and Domin, 2014] Blackburn, J. L. and Domin, T. J. (2014). Protective relaying: principles and applications. CRC press.
    [Bukhari et al., 2017] Bukhari, S. B. A., Saeed Uz Zaman, M., Haider, R., Oh, Y.-S., and Kim, C.-H. (2017). A protection scheme for microgrid with multiple distributed generations using superimposed reactive energy. International Journal of Electrical Power & Energy Systems, 92:156–166.
    [Dagenhart, 1999] Dagenhart, J. (1999). The 40-ohm ground fault phenomenon. In 1999 Rural Electric Power Conference (Cat. No. 99CH36302), pages C4/1–C4/3.
    [Decreto 0929, 2023] Decreto 0929 (2023). Decreto 0929 del 2023 — Ministerio de Minas y Energa.
    [Decreto 2236, 2023] Decreto 2236 (2023). Decreto 2236 del 2023 — Ministerio de Minas y Energa .
    [Esmaeili Dahej et al., 2018] Esmaeili Dahej, A., Esmaeili, S., and Hojabri, H. (2018). Co-optimization of protection coordination and power quality in microgrids using unidirectional fault current limiters. IEEE Transactions on Smart Grid, 9(5):5080–5091.
    [Fusco et al., 2000] Fusco, G., Losi, A., and Russo, M. (2000). Constrained least squares methods for parameter tracking of power system steady-state equivalent circuits. IEEE Transactions on Power Delivery, 15(3):1073–1080.
    [Gashteroodkhani et al., 2019] Gashteroodkhani, O., Majidi, M., Fadali, M., Etezadi-Amoli, M., and Maali-Amiri, E. (2019). A protection scheme for microgrids using time-time matrix z-score vector. International Journal of Electrical Power & Energy Systems, 110:400–410.
    [Ghotbi-Maleki et al., 2021] Ghotbi-Maleki, M., Chabanloo, R. M., Zeineldin, H. H., and Hosseini Miangafsheh, S. M. (2021). Design of setting groupbased overcurrent protection scheme for active distribution networks using milp. IEEE Transactions on Smart Grid, 12(2):1185–1193.
    [Grisales-Soto et al., 2024] Grisales-Soto, B., Herrera-Orozco, A., and Mora- Fl´orez, J. (2024). Advanced adjustment of adaptive directional overcurrent relays for active distribution networks in a communication-less strategy. Electric Power Systems Research, 236:110906.
    [H¨ardle and Simar, 2015] H¨ardle, W. K. and Simar, L. (2015). Applied multivariate statistical analysis, fourth edition. Springer.
    [Hatziargyriou, 2014] Hatziargyriou, N. (2014). Microgrids: Architectures and Control. IEEE Press. Wiley.
    [IEC, 2009] IEC (2009). Iec 60255-151:2009 - measuring relays and protection equipment - part 151: Functional requirements. IEC 60255-151:2009, pages 1–63.
    [IEEE, 1996] IEEE (1996). Ieee standard inverse-time characteristic equations for overcurrent relays. IEEE Std C37.112-1996, pages 1–20.
    [IEEE, 2001] IEEE (2001). Ieee recommended practice for protection and coordination of industrial and commercial power systems (ieee buff book). IEEE Std 242-2001 (Revision of IEEE Std 242-1986) [IEEE Buff Book], pages 1–710.
    [IEEE, 2022] IEEE (2022). IEEE PES Test Feeder – IEEE PES AMPS DSAS Test Feeder Working Group.
    [Jena et al., 2018] Jena, M. K., Samantaray, S. R., and Panigrahi, B. K. (2018). A new adaptive dependability-security approach to enhance wide area backup protection of transmission system. IEEE Transactions on Smart Grid, 9(6):6378–6386.
    [Jia et al., 2019] Jia, Q., Dong, X., and Mirsaeidi, S. (2019). A traveling-wavebased line protection strategy against single-line-to-ground faults in active distribution networks. International Journal of Electrical Power & Energy Systems, 107:403–411.
    [Jin et al., 2023] Jin, W., Feng, M., Feng, S., Zhang, S., Li, J., and Lu, Y. (2023). A new differential protection method for distribution networks with dgs based on adaptive braking zone. Electric Power Systems Research, 224:109745.
    [Kayyali and Saleh, 2023] Kayyali, D. and Saleh, K. (2023). Roadmap to modernization of line protection in active distribution systems. International Journal of Electrical Power & Energy Systems, 153:109239.
    [Lai and Zhang, 2022] Lai, L. L. and Zhang, H.-T. (2022). Smart grids to revolutionize chinese cities: Challenges and opportunities. IEEE Power and Energy Magazine, 20(5):26–38.
    [Lawson and Hanson, 1995] Lawson, C. L. and Hanson, R. J. (1995). Solving least squares problems. SIAM.
    [Lin et al., 2021] Lin, X., Ma, X., Wang, Z., Sui, Q., Li, Z., Ye, Y., Wu, Y., Cao, S., and Wang, G. (2021). A novel current amplitude differential protection for active distribution network considering the source-effect of im-type unmeasurable load branches. International Journal of Electrical Power & Energy Systems, 129:106780.
    [Liu et al., 2017] Liu, Z., Su, C., Høidalen, H. K., and Chen, Z. (2017). A multiagent system-based protection and control scheme for distribution system with distributed-generation integration. IEEE Transactions on Power Delivery, 32(1):536–545.
    [Lutz, 2013] Lutz, M. (2013). Learning Python. O’Reilly, Beijing, 5 edition.
    [Maali Amiri and Vahidi, 2020] Maali Amiri, E. and Vahidi, B. (2020). Integrated protection scheme for both operation modes of microgrid using s-transform. International Journal of Electrical Power & Energy Systems, 121:106051.
    [Martinez-Velasco, 2020] Martinez-Velasco, J. A. (2020). Introduction to transients analysis of power systems with atp. Transient analysis of power systems: A practical approach, pages 1–9.
    [Mumtaz et al., 2022] Mumtaz, F., Imran, K., Bukhari, S. B. A., Mehmood, K. K., Abusorrah, A., Shah, M. A., and Kazmi, S. A. A. (2022). A kalman filter-based protection strategy for microgrids. IEEE Access, 10:73243–73256.
    [Ojaghi et al., 2013] Ojaghi, M., Sudi, Z., and Faiz, J. (2013). Implementation of full adaptive technique to optimal coordination of overcurrent relays. IEEE Transactions on Power Delivery, 28(1):235–244.
    [Orozco-Álvarez et al., 2023] Orozco-Álvarez, J., Herrera-Orozco, A., and Mora-Flórez, J. (2023). Communication-less adaptive directional overcurrent protection strategy considering islanded mode detection in active distribution networks. Results in Engineering, 20:101538.
    [Resolución CREG 015, 2018] Resolución CREG 015 (2018). Resolución CREG 015 del 2018 — CREG.
    [Resolución CREG 075, 2021] Resolución CREG 075 (2021). Resolución CREG 075 del 2021 — CREG.
    [Resolución CREG 174, 2021] Resolución CREG 174 (2021). Resolución CREG 174 del 2021 — CREG.
    [Rojni´c et al., 2023] Rojni´c, M., Prenc, R., Topi´c, D., and Strnad, I. (2023). A new methodology for optimization of overcurrent protection relays in active distribution networks regarding thermal stress curves. International Journal of Electrical Power & Energy Systems, 152:109216.
    [Shen et al., 2017] Shen, S., Lin, D., Wang, H., Hu, P., Jiang, K., Lin, D., and He, B. (2017). An adaptive protection scheme for distribution systems with dgs based on optimized thevenin equivalent parameters estimation. IEEE Transactions on Power Delivery, 32(1):411–419.
    [Soni et al., 2023] Soni, A. K., Kumar, A., Panda, R. K., Mohapatra, A., and Singh, S. N. (2023). Adaptive coordination of relays in ac microgrid considering operational and topological changes. IEEE Systems Journal, 17(2):3071–3082.
    [Tsai and Wong, 2008] Tsai, S.-J. S. and Wong, K.-H. (2008). On-line estimation of thevenin equivalent with varying system states. In 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pages 1–7.
    [Yazdaninejadi and Golshannavaz, 2020] Yazdaninejadi, A. and Golshannavaz, S. (2020). Robust protection for active distribution networks with islanding capability: An innovative and simple cost-effective logic for increasing fault currents virtually. International Journal of Electrical Power & Energy Systems, 118:105773.
    [Yousaf et al., 2022] Yousaf, M., Jalilian, A., Muttaqi, K. M., and Sutanto, D. (2022). An adaptive overcurrent protection scheme for dual-setting directional recloser and fuse coordination in unbalanced distribution networks with distributed generation. IEEE Transactions on Industry Applications, 58(2):1831–1842.
    [Zhou et al., 2022] Zhou, C., Zou, G., Du, X., and Zang, L. (2022). Adaptive current differential protection for active distribution network considering time synchronization error. International Journal of Electrical Power & Energy Systems, 140:108085.
    [¨Ozveren and ¨Omer Usta, 2023] ¨Ozveren, F. and ¨Omer Usta (2023). A power based integrated protection scheme for active distribution networks against asymmetrical faults. Electric Power Systems Research, 218:109223.

  5. 5
    Electronic Resource

    مصطلحات الفهرس: Trabajo de grado - Maestría

    URL: https://hdl.handle.net/11059/15138
    https://repositorio.utp.edu.co/home
    Adam Hirsch, Yael Parag, and Josep Guerrero. Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and sustainable Energy reviews, 90:402–411, 2018.
    Ali Hooshyar and Reza Iravani. Microgrid protection. Proceedings of the IEEE, 105(7):1332–1353, 2017.
    Bhaskar Patnaik, Manohar Mishra, Ramesh C Bansal, and Ranjan Kumar Jena. Ac microgrid protection–a review: Current and future prospective. Applied Energy, 271:115210, 2020.
    Pedro Henrique Aquino Barra, Denis Vinicius Coury, and Ricardo Augusto Souza Fernandes. A survey on adaptive protection of microgrids and distribution systems with distributed generators. Renewable and Sustainable Energy Reviews, 118:109524, 2020.
    Mahamad Nabab Alam, Biswarup Das, and Vinay Pant. An interior point method based protection coordination scheme for directional overcurrent relays in meshed networks. International Journal of Electrical Power & Energy Systems, 81:153–164, 2016.
    Tapaswini Biswal and SK Parida. A novel high impedance fault detection in the micro-grid system by the summation of accumulated difference of residual voltage method and fault event classification using discrete wavelet transforms and a decision tree approach. Electric Power Systems Research, 209:108042, 2022.
    Siavash Beheshtaein, Robert Cuzner, Mehdi Savaghebi, Saeed Golestan, and JosepMGuerrero. Fault location in microgrids: a communication-based high-frequency impedance approach. IET Generation, Transmission & Distribution, 13(8):1229–1237, 2019.
    Mansour Ojaghi and Vahid Mohammadi. Use of clustering to reduce the number of different setting groups for adaptive coordination of overcurrent relays. IEEE Transactions on Power Delivery, 33(3):1204–1212, 2017.
    Seyyed Mohammad Ebrahim Ghadiri and Kazem Mazlumi. Adaptive protection scheme for microgrids based on som clustering technique. Applied soft computing, 88:106062, 2020.
    Mahamad Nabab Alam, Saikat Chakrabarti, and Ashok Kumar Pradhan. Protection of networked microgrids using relays with multiple setting groups. IEEE Transactions on Industrial Informatics, 18(6):3713–3723, 2021.
    Arash Samadi and Reza Mohammadi Chabanloo. Adaptive coordination of overcurrent relays in active distribution networks based on independent change of relays’ setting groups. International Journal of Electrical Power & Energy Systems, 120:106026, 2020.
    Qinghua Lai, Zhe Zhang, Kehan Xu, and Xianggen Yin. A new method of fault direction identification for different types of renewable energy source integrations. IEEE Transactions on Power Delivery, 37(4):2932–2941, 2021.
    Sachintha Kariyawasam and Athula D Rajapakse. A negative sequence admittance based algorithm for identifying fault direction in the presence of inverter based resources. IEEE Access, 11:26530–26540, 2023.
    Mohammad Sadegh Payam, Haidar Samet, Teymoor Ghanbari, and Mohsen Tajdinian. Fault direction identification utilizing new current-based index founded on rate of change of fault current. Electric Power Systems Research, 201:107511, 2021.
    Fatih ¨Ozveren and ¨Omer Usta. A power based integrated protection scheme for active distribution networks against asymmetrical faults. Electric Power Systems Research, 218:109223, 2023.
    CREG. Resolución 121 de 2017, 2017. Gestornormativo.creg.gov.co. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion creg- 0121 2017.htm (Accedido Mar. 15, 2024).
    CREG. Resolución 030 de 2018, 2018. Gestornormativo.creg.gov.co. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion creg- 0030 2018.htm (Accedido Mar. 15, 2024).
    CREG. Resolución 174 de 2021, 2021. Gestornormativo.creg.gov.co. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion creg- 0174 2021.htm (Accedido Mar. 15, 2024).
    Wenye Wang, Yi Xu, and Mohit Khanna. A survey on the communication architectures in smart grid. Computer networks, 55(15):3604–3629, 2011.
    Harold Salazar and Ricardo Hincapie. Apoyo en el estudio y elaboracion de las bases para proponer el agente que debe desarrollar la implementacion de la infraestructura de medici´on avanzada. Universidad Tecnol´ogica de Pereira, 2019.
    CREG. Documento 002 de 2022, 2022. Gestornormativo.creg.gov.co. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion creg- 101- 1 2022.htm (Accedido Mar. 15, 2024).
    CREG. Documento 015 de 2018, 2018. Gestornormativo.creg.gov.co. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion creg- 0015 2018.htm (Accedido Mar. 15, 2024).
    Xiaoning Kang, Carl EK Nuworklo, Browh Serge Tekpeti, and Mostafa Kheshti. Protection of micro-grid systems: a comprehensive survey. The Journal of Engineering, 2017(13):1515–1518, 2017.
    Amir Mohammad Entekhabi-Nooshabadi, Hamed Hashemi-Dezaki, and Seyed Abbas Taher. Optimal microgrid’s protection coordination considering n-1 contingency and optimum relay characteristics. Applied Soft Computing, 98:106741, 2021.
    Mahmood Sadoughi, Mehrdad Hojjat, and Mohamad Hosseini Abardeh. Smart overcurrent relay for operating in islanded and grid-connected modes of a micro-grid without needing communication systems. Energy Systems, pages 1–21, 2020.
    Mahdi Ghotbi-Maleki, Reza Mohammadi Chabanloo, Hatem H Zeineldin, and Seyed Mohammad Hosseini Miangafsheh. Design of setting group-based overcurrent protection scheme for active distribution networks using milp. IEEE Transactions on Smart Grid, 12(2):1185–1193, 2020.
    Thiramuni Sisitha Sameera Senarathna and Kullappu Thantrige Manjula Udayanga Hemapala. Optimized adaptive overcurrent protection using hybridized nature-inspired algorithm and clustering in microgrids. Energies, 13(13):3324, 2020.
    Amirhossein Ataee-Kachoee, Hamed Hashemi-Dezaki, and Abbas Ketabi. Optimized adaptive protection coordination of microgrids by dual-setting directional overcurrent relays considering different topologies based on limited independent relays’ setting groups. Electric Power Systems Research, 214:108879, 2023.
    Hadi Bisheh, Bahador Fani, Ghazanfar Shahgholian, Iman Sadeghkhani, and Josep M Guerrero. An adaptive fuse-saving protection scheme for active distribution networks. International Journal of Electrical Power & Energy Systems, 144:108625, 2023.
    PG McLaren, GW Swift, Z Zhang, E Dirks, RP Jayasinghe, and I Fernando. A new directional element for numerical distance relays. IEEE Transactions on Power Delivery, 10(2):666–675, 1995.
    Ali Hooshyar and Reza Iravani. A new directional element for microgrid protection. IEEE Transactions on Smart Grid, 9(6):6862–6876, 2017.
    Ke Jia, Zhe Yang, Yu Fang, Tianshu Bi, and Mark Sumner. Influence of inverter-interfaced renewable energy generators on directional relay and an improved scheme. IEEE Transactions on Power Electronics, 34(12):11843–11855, 2019.
    Rudranarayan Pradhan and Premalata Jena. An innovative fault direction estimation technique for ac microgrid. Electric Power Systems Research, 215:108997, 2023.
    Yiqing Liu, Qingxiu Du, Jiahui Xue, Xing Li, Di Yan, and Linxian Wang. Improvement of directional relays based on constant impedance angle control of inverter interfaced distributed generations. International Journal of Electrical Power & Energy Systems, 153:109372, 2023.
    G Suryanarayana, G Kesava Rao, S Sarangi, and P Raja. Directional relaying using parameter estimation approach. International Journal of Electrical Power & Energy Systems, 107:597–604, 2019.
    Syed Basit Ali Bukhari, Chul-Hwan Kim, Khawaja Khalid Mehmood, Raza Haider, and Muhammad Saeed Uz Zaman. Convolutional neural network-based intelligent protection strategy for microgrids. IET Generation, Transmission & Distribution, 14(7):1177–1185, 2020.
    Rabih A Jabr and Izudin Dˇzafi´c. A fortescue approach for real-time short circuit computation in multiphase distribution networks. IEEE Transactions on Power Systems, 30(6):3276– 3285, 2014.
    Jeff Roberts and Armando Guzman. Directional element design and evaluation. In proceedings of the 21st Annual Western Protective Relay Conference, Spokane, WA, 1994.
    G Muñoz-Arango, J Mora-Flórez, and S Pérez-Londoño. Optimal data-driven adaptive overcurrent relay coordination for active distribution networks. Electric Power Systems Research, 228:110078, 2024.
    Giovanni Muñoz-Arango, Juan Mora-Flórez, and Sandra Pérez-Londoño. A power-based fault direction estimation method for active distribution networks. Results in Engineering, page 101754, 2024.
    Giovanni Muñoz-Arango and Juan Mora-Flórez. Protection schemes for active distribution networks: implementation opportunities and current requirements in the colombian context. In 2022 IEEE ANDESCON, pages 1–6. IEEE, 2022.
    Giovanni Muñoz-Arango, Juan Mora-Flórez, Sandra Pérez-Londoño, and Cesar Orozco- Henao. Use of optimization, clustering, and classification techniques in active distribution network protection: A qualitative analysis. In 2022 IEEE ANDESCON, pages 1–6. IEEE, 2022.
    Michael G. Pecht and Myeongsu Kang. Machine Learning: Data Pre-processing, volume I. Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things. IEEE, pages 111–130. 2019.
    Muhammad Rizwan Asif, Thue S Bording, Adrian S Barfod, Denys J Grombacher, Pradip K Maurya, Anders V Christiansen, Esben Auken, and Jakob J Larsen. Effect of data preprocessing on the performance of neural networks for 1-d transient electromagnetic forward modeling. IEEE Access, 9:34635–34646, 2021.
    Jiawei Han, Jian Pei, and Hanghang Tong. Data mining: concepts and techniques. Morgan kaufmann, 2022.
    Mohammad Amin Jarrahi, Haidar Samet, and Teymoor Ghanbari. Protection framework for microgrids with inverter-based dgs: A superimposed component and waveform similarity-based fault detection and classification scheme. IET Generation, Transmission & Distribution, 2022.
    Masoud Ahmadipour, Muhammad Murtadha Othman, Rui Bo, Zainal Salam, Hussein Mohammed Ridha, and Kamrul Hasan. A novel microgrid fault detection and classification method using maximal overlap discrete wavelet packet transform and an augmented lagrangian particle swarm optimization-support vector machine. Energy Reports, 8:4854– 4870, 2022.
    Yaguo Lei, Bin Yang, Xinwei Jiang, Feng Jia, Naipeng Li, and Asoke K Nandi. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138:106587, 2020.
    José L. Garcia-Balboa, Maria V. Alba-Fernandez, Francisco J. Ariza-L´opez, and Jos´o Rodriguez-Avi. Homogeneity test for confusion matrices: A method and an example. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pages 1203–1205, 2018.
    Muhammad Yousaf, Kashem M Muttaqi, and Danny Sutanto. An investigative analysis of the protection performance of unbalanced distribution networks with higher concentration of distributed energy resources. IEEE Transactions on Industry Applications, 58(2):1771– 1782, 2022.
    C García-Ceballos, S Pérez-Londoño, and J Mora-Flórez. Integration of distributed energy resource models in the vsc control for microgrid applications. Electric Power Systems Research, 196:107278, 2021.
    C García-Ceballos, S Pérez-Londoño, and J Mora-Flórez. Compensated fault impedance estimation for distance-based protection in active distribution networks. International Journal of Electrical Power & Energy Systems, 151:109114, 2023.
    Ke Jia, Chenjie Gu, Tianshu Bi, H Wei, and Q Yang. Fault characteristics and line protection within the collection system of a large-scale photovoltaic power plant. Trans. China Electrotech. Soc., 32(9):189–198, 2017.
    Jin He, Zhixuan Li, Weixi Li, Jinhua Zou, Xiaoyu Li, and Fulei Wu. Fast short-circuit current calculation of unbalanced distribution networks with inverter-interfaced distributed generators. International Journal of Electrical Power & Energy Systems, 146:108728, 2023.
    Reza Mohammadi, Hossein Abyaneh, Farzad Razavi, Majid Al-Dabbagh, and Seyed Sadeghi. Optimal relays coordination efficient method in interconnected power systems. Journal of Electrical Engineering, 61(2):75–83, 2010.
    Reza Mohammadi, Hossein Askarian Abyaneh, Hossein Mahdinia Rudsari, Saied Hamid Fathi, and Hasan Rastegar. Overcurrent relays coordination considering the priority of constraints. IEEE Transactions on Power Delivery, 26(3):1927–1938, 2011.
    Mahdi Ghotbi-Maleki, Reza Mohammadi Chabanloo, Hossein Askarian Abyaneh, and Mohammad Zamani. Considering transient short-circuit currents of wind farms in overcurrent relays coordination using binary linear programming. International Journal of Electrical Power & Energy Systems, 131:107086, 2021.
    Mahamad Nabab Alam. Adaptive protection coordination scheme using numerical directional overcurrent relays. IEEE Transactions on Industrial Informatics, 15(1):64–73, 2018.
    Mahamad Nabab Alam, Biswarup Das, and Vinay Pant. A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination. Electric Power Systems Research, 128:39–52, 2015.
    Adeyemi Charles Adewole, Athula D Rajapakse, Dean Ouellette, and Paul Forsyth. Protection of active distribution networks incorporating microgrids with multi-technology distributed energy resources. Electric Power Systems Research, 202:107575, 2022.
    Muhammad Sohail Ibrahim, Wei Dong, and Qiang Yang. Machine learning driven smart electric power systems: Current trends and new perspectives. Applied Energy, 272:115237, 2020.
    Siddhartha Deb Roy, Sanjoy Debbarma, and Josep M Guerrero. A data-driven algorithm to detect false data injections targeting both frequency regulation and market operation in power systems. International Journal of Electrical Power & Energy Systems, 143:108409, 2022.
    Mingze Gao, Shibo Pan, Sirui Chen, Yanan Li, Nan Pan, Dilin Pan, and Xin Shen. Identification method of electrical load for electrical appliances based on k-means++ and gcn. IEEE Access, 9:27026–27037, 2021.
    Ivan W Selesnick and C Sidney Burrus. Generalized digital butterworth filter design. IEEE Transactions on signal processing, 46(6):1688–1694, 1998.
    Amir Hossein Nazari Tajani, Ali Bamshad, and Navid Ghaffarzadeh. A novel differential protection scheme for ac microgrids based on discrete wavelet transform. Electric Power Systems Research, 220:109292, 2023.
    Mohammad Amin Jarrahi and Haidar Samet. Modal current and cumulative sum based fault detection approach in transmission lines. International Journal of Emerging Electric Power Systems, 19(6):20180037, 2018.
    Haidar Samet, Teymoor Ghanbari, Mohammad Amin Jarrahi, and Hamid Jafarabadi Ashtiani. Efficient current-based directional relay algorithm. IEEE Systems Journal, 13(2):1262–1272, 2018.
    Alexander Eigeles Emanuel. On the definition of power factor and apparent power in unbalanced polyphase circuits with sinusoidal voltage and currents. IEEE Transactions on Power Delivery, 8(3):841–852, 1993.
    John J Grainger and William D Stevenson Jr. Power system analysis. McGraw-Hill series in electrical and computer engineering, 1994.

  6. 6
    Academic Journal
  7. 7
    Book

    المساهمون: Luis Miguel Vargas Valencia, David Restrepo Suárez

    وصف الملف: 255 páginas; application/pdf

    Relation: Colección Trabajos de investigación; J. Das, Power System Protective Relaying. CRC Press, 2017.; A. Dos Santos and M. C. De Barros, “Stochastic modeling of power system faults,” Electr. Power Syst. Res., vol. 126, pp. 29–37, 2015; G. Morales-España, J. Mora-Flórez, and H. Vargas-Torres, “Elimination of multiple estimation for fault location in radial power systems by using fundamental single-end measurements,” IEEE Trans. Power Deliv., vol. 24, no. 3, pp. 1382–1389, Jun. 2009.; G. Kjolle, O. Gjerde, B. Hjartsjo, H. Engen, L. Haarla, L. Koivisto, and P. Lindblad, “Protection system faults–a comparative review of fault statistics,” in 2006 Int. Conf. on Probab. Meth. App. to Power Syst. Stockholm, Sweden: IEEE, 2006, pp. 1–7.; P. Heine and M. Lehtonen, “Voltage sag distributions caused by power system faults,” IEEE Trans. on Power Syst., vol. 18, no. 4, pp. 1367–1373, 2003.; S. Babu, E. Shayesteh, and P. Hilber, “Analysing correlated events in power system using fault statistics,” in 2016 Int. Conf. on Prob. Meth. App. to Power Syst. (PMAPS), Beijing, China, Dec. 2016, pp. 1–6.; J. L. Blackburn and T. J. Domin, Protective relaying: principles and applications. CRC Press, 2015.; T. Gonen, Modern power system analysis. CRC Press, 2013.; P. M. Anderson, Analysis of faulted power systems. IEEE Press New York, 1995, vol. 445.; A. Acosta, Introducción al análisis de circuitos eléctricos: un enfoque generalizado. Pereira: Editorial Universidad Tecnológica de Pereira, 2017.; N. Tleis, Power systems modelling and fault analysis: theory and practice. Elsevier, 2007.; G. Kindermann, Curto-circuito. Saggra Luzzatto, 1997.; C. L. Fortescue, “Method of symmetrical co-ordinates applied to the solution of polyphase networks,” Trans. of the Am. Inst of Elect. Eng., vol. 37, no. 2, pp. 1027–1140, 1918.; R. Le Doeuff and M. E. H. Zaïm, Rotating Electrical Machines. Wiley Online Library, 2010.; J. A. Melkebeek, Electrical Machines and Drives. Springer, 2018.; S. Perez-Londoño and J. López-Quintero, Transformadores eléctricos. Pereira: Editorial Universidad Tecnológica de Pereira, 2018.; J. Winders, Power transformers: principles and applications. CRC Press, 2002.; J. Grainger andW. Stevenson, Análisis de sistemas de potencia. McGraw Hill, 1996.; L. L. J. Muñoz Galeano, N. and F. Villada Duque, “Metodología para la determinación del desplazamiento angular en transformadores trifásicos,” TecnoLógicas, vol. 20, no. 38, pp. 41–53, 2017.; T. Gonen, Electrical power transmission system engineering: analysis and design. CRC Press, 2011.; M. Farzaneh, S. Farokhi, and W. A. Chisholm, Electrical design of overhead power transmission lines. McGraw Hill, 2013.; J. Carson, “Wave propagation in overhead wires with ground return,” Bell Syst. Tech. J., vol. 5, no. 4, pp. 539–554, 1926.; L. Chavarro-Barrera, S. Pérez-Londoño, and J. Mora-Flórez, “An adaptive approach for dynamic load modeling in microgrids,” IEEE Trans. on Smart Grid, Jul. 2021.; W. F. Tinney and C. E. Hart, “Power flow solution by newton’s method,” IEEE Trans. on Power Appar. and Syst., no. 11, pp. 1449–1460, 1967.; N. J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix. Oxford University Press, 1990.; B. D. Anderson, P.M. and A. Shah, “An indefinite admittance network description for fault computation,” IEEE Trans. on Power Appar. and Syst., vol. 89, no. 6, pp. 1215–1219, 1970.; G. Stagg and A. El-Abiad, Computer methods in power systems analysis. McGraw Hill, 1968.; G.-E. M. Gallego, R.A. and A. Escobar-Zuluaga, Flujo de carga en sistemas de transmisión - Modelamiento y análisis. Pereira: Editorial Universidad Tecnológica de Pereira, 2016.; J. Dagenhart, “The 40-ohm ground fault phenomenon,” in 1999 Rur. Electr. Power Conf. (Cat. No. 99CH36302). IEEE, 1999, pp. C4/1–C4/3.; Y. Zhong, X. Kang, Z. Jiao, Z. Wang, and J. Suonan, “A novel distance protection algorithm for the phase-ground fault,” IEEE Trans. on Power Del., vol. 29, no. 4, pp. 1718–1725, 2013.; J. Monticelli, Fluxo de carga em redes de energia elétrica. Blucher, 1983.; https://doi.org/10.22517/9789587225877; Universidad Tecnológica de Pereira; Repositorio Institucional Universidad Tecnológica de Pereira; https://repositorio.utp.edu.co/home; https://hdl.handle.net/11059/13968

  8. 8
    Academic Journal

    المصدر: Tecnura Journal; Vol. 25 No. 70 (2021): October - December; 146-165 ; Tecnura; Vol. 25 Núm. 70 (2021): Octubre - Diciembre ; 146-165 ; 2248-7638 ; 0123-921X

    وصف الملف: application/pdf; text/xml

    Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18627/17738; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18627/18068; Alam, M. N. (2019). Adaptive protection coordination scheme using numerical directional overcurrent relays. IEEE Transactions on Industrial Informatics, 15(1), 64-73. https://doi.org/10.1109/TII.2018.2834474; Bansal, R. (2019). Power system protection in smart grid environment. CRC Press. https://doi.org/10.1201/9780429401756; Barra, P., Coury, D., & Fernandes, R. (2020). A survey on adaptive protection of microgrids and distribution systems with distributed generators. Renewable and Sustainable Energy Reviews,118, 109524. https://doi.org/10.1016/j.rser.2019.109524; Borlase, S. (2017). Smart grids: Advanced technologies and solutions. CRC press. Buitrago-Arroyave, L. F., & López-Lezama, J. M. (2013). Valoración de los impactos técnicos de la generación distribuida en sistemas de energía eléctrica. Tecnura, 17(36), 50-60. https://doi.org/10.14483/udistrital.jour.tecnura.2013.2.a04; Carvajal, S., & Marín-Jiménez, J. D. (2013). Impacto de la generación distribuida en el sistema eléctrico de potencia colombiano: un enfoque dinámico. Tecnura, 17(35), 77-89. https://doi.org/10.14483/udistrital.jour.tecnura.2013.1.a07; Chen, Y., Wen, M., Yin, X., Cai, Y., & Zheng, J. (2018). Distance protection for transmission lines of dfig-based wind power integration system. International Journal of Electrical Power Energy Systems, 100, 438-448. doi: https://doi.org/10.1016/j.ijepes.2018.02.041; El-Arroudi, K., & Joós, G. (2018). Performance of interconnection protection based on distance relaying for wind power distributed generation. IEEE Transactions on Power Delivery, 33(2), 620-629. https://doi.org/10.1109/TPWRD.2017.2693292; Ghorbani, A., Mehrjerdi, H., & Sanaye-Pasand, M. (2021). An accurate non-pilot scheme for accelerated trip of distance relay zone-2 faults. IEEE Transactions on PowerDelivery, 36(3), 1370-1379. https://doi.org/10.1109/TPWRD.2020.3007559; Giral, W., Celedón, H., Galvis, E., & Zona, A. (2017). Redes inteligentes en el sistema eléctrico colombiano: revisión de tema. Tecnura, 21(53), 119-137, https://doi.org/10.14483/22487638.12396; Hooshyar, A., & Iravani, R. (2017). Microgrid protection. Proceedings of the IEEE, 105(7), 1332-1353. https://doi.org/10.1109/JPROC.2017.2669342; Jia, J., Yang, G., Nielsen, A. H., & Rønne-Hansen, P. (2019). Impact of vsc control strategies and incorporation of synchronous condensers on distance protection under unbalanced faults. IEEE Transactions on Industrial Electronics, 66(2), 1108-1118. https://doi.org/10.1109/TIE.2018.2835389; Jin, X., Gokaraju, R., Wierckx, R., & Nayak, O. (2018). High speed digital distance relaying scheme using FPGA and IEC 61850. IEEE Transactions on Smart Grid, 9(5), 4383-4393. https://doi.org/10.1109/TSG.2017.2655499; Lavand, S. A., & Soman, S. A. (2016). Predictive analytic to supervise zone 1 of distance relay using synchrophasors. IEEE Transactions on Power Delivery, 31(4), 1844-1854. https://doi.org/10.1109/TPWRD.2016.2521784; Li, H., Deng, C., Zhang, Z., Liang, Y., & Wang, G. (2021). An adaptive fault-component-based current differential protection scheme for distribution networks with inverter-based distributed generators. International Journal of Electrical Power Energy Systems, 128, 106719. https://doi.org/10.1016/j.ijepes.2020.106719; Liang, Y., Li, W., Lu, Z., Xu, G., & Wang, C. (2020). A new distance protection scheme based on improved virtual measured voltage. IEEE Transactions on Power Delivery, 35(2), 774-786. https://doi.org/10.1109/TPWRD.2019.2926295; Liu, S., Jin, X. S., & Gokaraju, R. R. (2019). High-speed distance relaying using least error squares method and testing with FPGA. IET Generation, Transmission & Distribution, 13(16), 3591-3600. https://doi.org/10.1049/iet-gtd.2019.0088; Ma, J., Ma, W., Qiu, Y., & Thorp, J. S. (2015). An adaptive distance protection scheme based on the voltage drop equation. IEEE Transactions on Power Delivery, 30(4), 1931-1940. https://doi.org/10.1109/TPWRD.2015.240495; Ma, J., & Wang, Z. (2018). Hierarchical protection for smart grids. John Wiley & Sons. Mohajeri, A., Seyedi, H., & Sabahi, M. (2015). Optimal setting of distance relays quadrilateral characteristic considering the uncertain effective parameters. International Journal of Electrical Power & Energy Systems, 73, 1051-1059. https://doi.org/10.1016/j.ijepes.2015.06.011; Nikolaidis, V. C., Tsimtsios, A. M., & Safigianni, A. S. (2018). Investigating particularities of infeed and fault resistance effect on distance relays protecting radial distribution feeders with dg. IEEE Access, 6, 11301-11312. https://doi.org/10.1109/ACCESS.2018.2804046; Rafique, Z., Khalid, H. M., & Muyeen, S. M. (2020). Communication systems in distributed generation: A bibliographical review and frameworks. IEEE Access, 8, 207226-207239. https://doi.org/10.1109/ACCESS.2020.3037196; Regulski, P., Rebizant, W., Kereit, M., & Schneider, S. (2021). Adaptive reach of the 3rdzone of a distance relay with synchronized measurements. IEEE Transactions on Power Delivery, 36(1), 135-144. https://doi.org/10.1109/TPWRD.2020.2974587; Sarangi, S., Sahu, B. K., & Rout, P. K. (2021). Review of distributed generator integrated ac microgrid protection: issues, strategies, and future trends. International Journal of Energy Research, 45(10), 14117-14144. https://doi.org/10.1002/er.6689; Sinclair, A., Finney, D., Martin, D., & Sharma, P. (2014). Distance protection in distribution systems: How it assists with integrating distributed resources. IEEE Transactions on Industry Applications, 50(3), 2186-2196. https://doi.org/10.1109/TIA.2013.2288426; Tsimtsios, A. M., Korres, G. N., & Nikolaidis, V. C. (2019). A pilot-based distance protection scheme for meshed distribution systems with distributed generation. International Journal of Electrical Power & Energy Systems, 105, 454-469. https://doi.org/10.1016/j.ijepes.2018.08.022; Tsimtsios, A. M., & Nikolaidis, V. C. (2018). Setting zero-sequence compensation factor in distance relays protecting distribution systems. IEEE Transactions on Power Delivery, 33(3), 1236-1246. https://doi.org/10.1109/TPWRD.2017.2762465; Tsimtsios, A. M., Safigianni, A. S., & Nikolaidis, V. C. (2019a). Generalized distance-based protection design for dg integrated mv radial distribution networks — part i: Guidelines. Electric Power Systems Research, 176, 105949. https://doi.org/10.1016/j.epsr.2019.105949; Tsimtsios, A. M., Safigianni, A. S., & Nikolaidis, V. C. (2019b). Generalized distance-based protection design for dg integrated mv radial distribution networks —part ii: Application to an actual distribution line. Electric Power Systems Research, 176, 105950. https://doi.org/10.1016/j.epsr.2019.105950; Usama, M., Mokhlis, H., Moghavvemi, M., Mansor, N. N., Alotaibi, M. A., Muhammad, M. A., & Bajwa, A. A. (2021). A comprehensive review on protection strategies to mitigate the impact of renewable energy sources on interconnected distribution networks. IEEE Access, 9, 35740-35765. https://doi.org/10.1109/ACCESS.2021.3061919; Vázquez, M. E., Zamora-Méndez, A., Arrieta-Paternina, M. R., Trujillo-Guajardo, L. A., & de la O Serna, J. A. (2020). Dynamic phasor-driven digital distance relays protection. Electric Power Systems Research, 184, 106316. https://doi.org/10.1016/j.epsr.2020.106316; Yin, Y., Fu, Y., Zhang, Z., & Zamani, A. (2021). Protection of microgrid interconnection lines using distance relay with residual voltage compensation. IEEE Transactions on Power Delivery, 9369070. https://doi.org/10.1109/TPWRD.2021.3063684; Zamora-Méndez, A., Arrieta-Paternina, M. R. A., Vázquez, M. E., Ramírez, J. M., & la O de Serna, J. A. (2016). Distance relays based on the taylor–kalman-fourier filter. IEEE Transactions on Power Delivery, 31(3), 928-935. https://doi.org/10.1109/TPWRD.2015.239212; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18627

  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Electronic Resource
  14. 14
    Electronic Resource

    مصطلحات الفهرس: Trabajo de grado - Pregrado

    URL: https://hdl.handle.net/11059/14695
    https://repositorio.utp.edu.co/home
    [1] Notas del curso: Proteccion de Sistemas de Potencia ´ . Profesor Andr´es Ri cardo Herrera Orozco, 2022. [Online]. Available: https://drive.google.com/open?id= 1RVVzb0X6kmQbsUmYxIoIfl3OQjcAPJjg&authuser=arherrera%40utp.edu.co&usp=drive fs
    [2] H. Muda and P. Jena, “Superimposed adaptive sequence current based microgrid protection: A new technique,” IEEE Transactions on Power Delivery, vol. 32, no. 2, pp. 757–767, 2017.
    [3] S. Chakraborty and S. Das, “Communication-less protection scheme for ac microgrids using hybrid tripping characteristic,” Electric Power Systems Research, vol. 187, p. 106453, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0378779620302571
    [4] A. Hooshyar and R. Iravani, “Microgrid protection,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1332–1353, 2017.
    [5] E. C. D. COLOMBIA, “May 2014,” 2014. [Online]. Available: https://www.minenergia.gov. co/documents/10180/23517/22602-11506.pdf
    [6] K. A. Wheeler, S. O. Faried, and M. Elsamahy, “A microgrid protection scheme using differ ential and adaptive overcurrent relays,” in 2017 IEEE Electrical Power and Energy Conference (EPEC), 2017, pp. 1–6.
    [7] Comision de Regulaci ´ on de Energ ´ ´ıa y Gas - CREG, Resolucion 30 de 2018, 2018.
    [8] C. Schwaegerl and L. Tao, Quantification of technical, economic, environmental and social ben efits of microgrid operation, 2013.
    [9] P. H. A. Barra, D. V. Coury, and R. A. S. Fernandes, “A survey on adaptive protection of microgrids and distribution systems with distributed generators,” Renewable and Sustainable Energy Reviews, vol. 118, no. October 2019, p. 109524, 2020. [Online]. Available: https://doi.org/10.1016/j.rser.2019.109524
    [10] B. Patnaik, M. Mishra, R. C. Bansal, and R. K. Jena, “AC microgrid protection – A review: Current and future prospective,” Applied Energy, vol. 271, no. June, p. 115210, 2020. [Online]. Available: https://doi.org/10.1016/j.apenergy.2020.115210
    [11] X. Kang, C. E. K. Nuworklo, B. S. Tekpeti, and M. Kheshti, “Protection of micro-grid systems: a comprehensive survey,” The Journal of Engineering, vol. 2017, no. 13, pp. 1515–1518, 2017.
    [12] J. W. P. Guanoluisa, “Analisis de sistemas de protecci ´ on adaptivos para el sistema de dis- ´ tribucion activo,” Master’s thesis, Maestria en Ingenier ´ ´ıa Electrica. UNIVERSIDAD TECNO LOGICA DE PEREIRA, Febrero 2020.
    [13] CREG, Resolucion N° 098 ´ . Ministerio de Minas y Energ´ıa, 8 2019. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/ 28669c6087eb69be0525846c006e9690/$FILE/Creg098-2019.pdf$
    [14] ——, Resolucion N° 131 ´ . Ministerio de Minas y Energ´ıa, 6 2020. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/ 33d0b0fa08574678052585a50075e521/$FILE/Creg131-2020.pdf$
    [15] Ley de Transicion Energ ´ ´etica. Congreso de la Republica de Colombia, 7 ´ 2021. [Online]. Available: https://dapre.presidencia.gov.co/normativa/normativa/ LEY2099DEL10DEJULIODE2021.pdf
    [16] CREG, Resolucion N° 075 ´ . Ministerio de Minas y Energ´ıa, 6 2021. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/ a0544f39e0d2ae43052586f900034efb/$FILE/Creg075-2021.pdf$
    [17] CONPES, Pol´ıtica de Transicion energ ´ ´etica-CONPES 4075, 2022. [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Conpes/Econmicos/4075.pdf
    [18] A. Chandra, G. K. Singh, and V. Pant, “Protection techniques for DC microgrid- A review,” Electric Power Systems Research, vol. 187, no. June, p. 106439, 2020. [Online]. Available: https://doi.org/10.1016/j.epsr.2020.106439
    [19] Y. Ji, Z. Yuan, J. Zhao, Y. Wang, Y. Zhao, Y. Li, and Y. Han, “An overall control scheme for vsc-based medium-voltage dc power distribution networks,” IET Generation, Transmission Dis tribution, vol. 12, 11 2017.
    [20] H. Muda and P. Jena, “Superimposed Adaptive Sequence Current Based Microgrid Protection: A New Technique,” IEEE Transactions on Power Delivery, vol. 32, no. 2, pp. 757–767, 2017.
    [21] H. K. Zand, K. Mazlumi, and A. Bagheri, “Protection coordination for micro-grids based on multi-objective optimization considering simultaneous uncertainty,” International Conference on Protection and Automation of Power System, IPAPS 2019, pp. 7–11, 2019.
    [22] H. M. Sharaf, H. H. Zeineldin, and E. El-Saadany, “Protection coordination for microgrids with grid-connected and islanded capabilities using communication assisted dual setting directional overcurrent relays,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 143–151, 2018.
    [23] S. Choi and A. P. Meliopoulos, “Effective Real-Time Operation and Protection Scheme of Mi crogrids Using Distributed Dynamic State Estimation,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 504–514, 2017
    [24] S. Chakraborty and S. Das, “Communication-less protection scheme for AC microgrids using hybrid tripping characteristic,” Electric Power Systems Research, vol. 187, no. June, p. 106453, 2020. [Online]. Available: https://doi.org/10.1016/j.epsr.2020.106453
    [25] M. N. Alam, “Overcurrent protection of AC microgrids using mixed characteristic curves of relays,” Computers and Electrical Engineering, vol. 74, pp. 74–88, 2019. [Online]. Available: https://doi.org/10.1016/j.compeleceng.2019.01.003
    [26] M. H. Cintuglu, T. Ma, and O. A. Mohammed, “Protection of Autonomous Microgrids Using Agent-Based Distributed Communication,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 351–360, 2017.
    [27] J. L. Blackburn and T. J. Domin, Protective relaying: principles and applications. CRC press, 2014.
    [28] “Ieee recommended practice for protection and coordination of industrial and commercial power systems (ieee buff book),” IEEE Std 242-2001 (Revision of IEEE Std 242-1986) [IEEE Buff Book], pp. 1–710, 2001.
    [29] “Ieee standard inverse-time characteristic equations for overcurrent relays,” IEEE Std C37.112- 1996, pp. 1–20, 1996.
    [30] “Iec 60255-151:2009 - measuring relays and protection equipment - part 151: Functional requirements,” IEC 60255-151:2009, pp. 1–63, 2009.

  15. 15
    Electronic Resource

    مصطلحات الفهرس: Trabajo de grado - Maestría

    URL: https://hdl.handle.net/11059/14790
    https://repositorio.utp.edu.co/home
    [1] H. J. Laaksonen, “Protection principles for future microgrids,” IEEE Trans actions on Power Electronics, vol. 25, no. 12, pp. 2910–2918, 2010.
    [2] Z. Chengbi, L. Xiaohao, F. Wenwen, M. Hong, and L. Yaoyuan, “Power flow analysis of distribution network containing distributed generation based on sequence operation,” in 2014 International Conference on Power System Technology, 2014, pp. 2580–2584.
    [3] N. K. Roy, H. R. Pota, and M. A. Mahmud, “Dg integration issues in unbal anced multi-phase distribution networks,” in 2016 Australasian Universi ties Power Engineering Conference (AUPEC), 2016, pp. 1–5.
    [4] A. Zamani, T. Sidhu, and A. Yazdani, “A strategy for protection coordina tion in radial distribution networks with distributed generators,” in IEEE PES General Meeting, 2010, pp. 1–8.
    [5] E. Sortomme, S. S. Venkata, and J. Mitra, “Microgrid protection using communication-assisted digital relays,” IEEE Transactions on Power Deliv ery, vol. 25, no. 4, pp. 2789–2796, 2010
    [6] A. Hooshyar and A. Iravani, “Microgrid protection,” in Proceedings of the IEEE, vol. 105, no. 7, July 2017, pp. 1332–1353.
    [7] J. D. Garzon-Hidalgo and A. J. Saavedra-Montes, “A design methodology ´ of microgrids for non-interconnected zones of colombia,” TecnoLogicas ´ , vol. 20, no. 39, pp. 39–53, May 2017. [Online]. Available: https: //revistas.itm.edu.co/index.php/tecnologicas/article/view/687
    [8] D. Lopez-Garc ´ ´ıa, A. Arango-Manrique, and S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the colombian paradigm,” TecnoLogicas ´ , vol. 21, no. 42, pp. 13–30, May 2018. [Online]. Available: https://revistas.itm.edu.co/index.php/tecnologicas/ article/view/774
    [9] A. Sanchez Silvera, J. G. Guarnizo-Mar ´ ´ın, E. F. Forero-Garc´ıa, and D. Montenegro-Mart´ınez, “Decentralized energy management system based on multi-agents to operate multiple microgrids,” TecnoLogicas ´ vol. 24, no. 51, p. e1880, Jun. 2021. [Online]. Available: https: //revistas.itm.edu.co/index.php/tecnologicas/article/view/1880
    [11] G. Kaur, A. Prakash, and K. U. Rao, “A critical review of microgrid adaptive protection techniques with distributed generation,” Renewable Energy Focus, vol. 39, pp. 99–109, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1755008421000405
    [10] A. Usama, A. Mokhlis, A. Moghavvemi, A. Mansor, A. Alotaibi, A. Muham mad, and A. Bajwa, “A comprehensive review on protection strategies to mitigate the impact of renewable energy sources on interconnected distri bution networks,” in IEEE Access, vol. 9, July 2021, pp. 35 740–35 765.
    [12] H. Khalid and A. Shobole, “Existing developments in adaptive smart grid protection: A review,” Electric Power Systems Research, vol. 191, p. 106901, 2021. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0378779620306994
    [13] A. Barra, A. Coury, and A. Fernandes, “A survey on adaptive protection of microgrids and distribution systems with distributed generators,” in Renewable and Sustainable Energy Reviews, vol. 118, February 2020, pp. 1–16.
    [14] A. Coffele, A. Booth, and A. Dysko, “An adaptive overcurrent protection scheme for distribution networks,” in IEEE Transactions on Power Delivery, vol. 30, April 2015, pp. 561–568.
    [15] A. Muda and A. Jena, “Sequence currents based adaptive protection ap proach for dns with distributed energy resources,” in IET Generation Trans mission Distribution, vol. 11, January 2017, pp. 154–1
    [16] ——, “Superimposed adaptive sequence current based microgrid protec tion: A new technique,” in IEEE Transactions on Power Delivery, vol. 32, April 2017, pp. 757–767.
    [17] A. Jain, A. Lubkeman, and A. Lukic, “Dynamic adaptive protection for dis tribution systems in grid-connected and islanded modes,” in IEEE Transac tions on Power Delivery, vol. 34, February 2019, pp. 281–289.
    [18] V. A. Papaspiliotopoulos, G. N. Korres, V. A. Kleftakis, and N. D. Hatziar gyriou, “Hardware-in-the-loop design and optimal setting of adaptive pro tection schemes for distribution systems with distributed generation,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 393–400, 2017.
    [19] F. Coffele, C. Booth, and A. Dy´sko, “An adaptive overcurrent protection scheme for distribution networks,” IEEE Transactions on Power Delivery, vol. 30, no. 2, pp. 561–568, 2015.
    [20] M. N. Alam, “Adaptive protection coordination scheme using numerical directional overcurrent relays,” IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 64–73, 2019.
    [21] A. Nascimento, A. Brito, and A. Souza, “Proposition of an adaptive protec tion scheme for distribution systems with distributed generation,” in IEEE Latin America Transactions, vol. 16, July 2018, pp. 1439–1444.
    [22] A. Singh, A. Vishnuvardhan, and A. Srivani, “Adaptive protection coordina tion scheme for power networks under penetration of distributed energy resources,” in IET Generation, Transmission Distribution, vol. 10, Novem ber 2016, pp. 3919–3929.
    [23] J. A. Montoya-Arias, O. A. Tobar-Rosero, G. D. Zapata-Madrigal, and R. Garc´ıa-Sierra, “An adaptive algorithm for overcurrent protections on the case study ieee9,” TecnoLogicas ´ , vol. 22, no. 45, pp. 45–58, May 2019. [Online]. Available: https://revistas.itm.edu.co/index.php/tecnologicas/ article/view/1335
    [24] J. P. Nascimento, N. S. Brito, and B. A. Souza, “An adaptive overcurrent protection system applied to distribution systems,” Computers Electrical Engineering, vol. 81, p. 106545, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045790619314430
    [25] P. Naveen and P. Jena, “Adaptive protection scheme for microgrid with multiple point of common couplings,” IEEE Systems Journal, vol. 15, no. 4, pp. 5618–5629, 2021
    [26] F. C. Sampaio, R. P. Leao, R. F. Sampaio, L. S. Melo, and G. C. Barroso, “A ˜ multi-agent-based integrated self-healing and adaptive protection system for power distribution systems with distributed generation,” Electric Power Systems Research, vol. 188, p. 106525, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779620303291
    [27] A. Samadi and R. Mohammadi Chabanloo, “Adaptive coordination of overcurrent relays in active distribution networks based on independent change of relays’ setting groups,” International Journal of Electrical Power Energy Systems, vol. 120, p. 106026, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S014206151933532X
    [28] E. Purwar, S. P. Singh, and D. N. Vishwakarma, “A robust protection scheme based on hybrid pick-up and optimal hierarchy selection of re lays in the variable dgs-distribution system,” IEEE Transactions on Power Delivery, vol. 35, no. 1, pp. 150–159, 2020.
    [29] M. Ghotbi-Maleki, R. M. Chabanloo, H. H. Zeineldin, and S. M. Hos seini Miangafsheh, “Design of setting group-based overcurrent protection scheme for active distribution networks using milp,” IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 1185–1193, 2021.
    [30] M. Y. Shih, A. Conde, C. Angeles Camacho, E. Fern ´ andez, Z. Leonowicz, ´ F. Lezama, and J. Chan, “A two stage fault current limiter and directional overcurrent relay optimization for adaptive protection resetting using differential evolution multi-objective algorithm in presence of distributed generation,” Electric Power Systems Research, vol. 190, p. 106844, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S037877962030643X
    [31] M. H. Sadeghi, A. Dastfan, and Y. Damchi, “Robust and adaptive coordination approaches for co-optimization of voltage dip and directional overcurrent relays coordination,” International Journal of Electrical Power Energy Systems, vol. 129, p. 106850, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061521000909
    [32] A. M. Mohamed Salah ELBANA, Nabil ABBASY and N. SHAKER, “Protec tion methodology for modern electric power distribution systems,” Journal of Modern Power Systems and Clean Energy, vol. 7, pp. 887–898, 2019.
    [34] O. V. Gnana Swathika and S. Hemamalini, “Prims-aided dijkstra algorithm for adaptive protection in microgrids,” IEEE Journal of Emerging and Se lected Topics in Power Electronics, vol. 4, no. 4, pp. 1279–1286, 2016.
    [33] V. G. Swathika and S. Hemamalini, “Graph theory and optimization algo rithms aided adaptive protection in reconfigurable microgrid,” Journal of Electrical Engineering Technology, vol. 15, pp. 421–431, 2020.
    [35] H. Z. M. Ghotbi-Maleki, R. M. Chabanloo and S. H. Miangafsheh, “Design of setting group-based overcurrent protection scheme for active distribu tion networks using milp,” IEEE Transactions on Smart Grid, vol. 12, pp. 1185–1193, 2021.
    [36] F. Souza Junior and H. Sanca, “Adaptive overcurrent protection applied to power systems with distributed generation and active network manage ment,” Journal of Control, Automation and Electrical Systems, vol. 32, pp. 1429–1437, 2021.
    [37] F. C. L. T. Felipe B. B. Rolim and M. J. Rider, “Protection methodology for modern electric power distribution systems,” Journal of Control, Automa tion and Electrical Systems, vol. 7, pp. 1377–1388, 2021
    [38] J. M. Tripathi and S. K. Mallik, “An adaptive protection coordination strat egy utilizing user-defined characteristics of docrs in a microgrid,” Electric Power Systems Research, vol. 214, p. 108900, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779622009518
    [39] J. Pinheiro Nascimento, N. Silva Dantas Brito, and B. Alencar de Souza, “Proposition of an adaptive protection scheme for distribution systems with distributed generation,” IEEE Latin America Transactions, vol. 16, no. 5, pp. 1439–1444, 2018.
    [40] S. A. Hosseini, S. H. H. Sadeghi, and A. Nasiri, “Decentralized adaptive protection coordination based on agents social activities for microgrids with topological and operational uncertainties,” IEEE Transactions on In dustry Applications, vol. 57, no. 1, pp. 702–713, 2021.
    [41] M. H. Cintuglu, T. Ma, and O. A. Mohammed, “Protection of autonomous microgrids using agent-based distributed communication,” IEEE Transac tions on Power Delivery, vol. 32, no. 1, pp. 351–360, 2017.
    [42] H. Bisheh, B. Fani, G. Shahgholian, I. Sadeghkhani, and J. M. Guerrero, “An adaptive fuse-saving protection scheme for active distribution networks,” International Journal of Electrical Power Energy Systems, vol. 144, p. 108625, 2023. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0142061522006214
    [43] L. He, Z. Shuai, X. Chu, W. Huang, Y. Feng, and Z. J. Shen, “Waveform difference feature-based protection scheme for islanded microgrids,” IEEE Transactions on Smart Grid, vol. 12, no. 3, pp. 1939–1952, 2021.
    [44] J. Nsengiyaremye, B. C. Pal, and M. M. Begovic, “Microgrid protection using low-cost communication systems,” IEEE Transactions on Power De livery, vol. 35, no. 4, pp. 2011–2020, 2020.
    [45] A. Chandra, G. Singh, and V. Pant, “A novel protection strategy for microgrid based on estimated differential energy of fault currents,” Electric Power Systems Research, vol. 214, p. 108824, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S037877962200877X
    [46] H. M. Sharaf, H. H. Zeineldin, and E. El-Saadany, “Protection coordina tion for microgrids with grid-connected and islanded capabilities using communication assisted dual setting directional overcurrent relays,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 143–151, 2018.
    [47] M. N. Alam, S. Chakrabarti, and A. K. Pradhan, “Protection of networked microgrids using relays with multiple setting groups,” IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 3713–3723, 2022.
    [48] N. K. Sharma and S. R. Samantaray, “Pmu assisted integrated impedance angle-based microgrid protection scheme,” IEEE Transactions on Power De livery, vol. 35, no. 1, pp. 183–193, 2020.
    [49] F. Mumtaz, K. Imran, S. B. A. Bukhari, K. K. Mehmood, A. Abusorrah, M. A. Shah, and S. A. A. Kazmi, “A kalman filter-based protection strategy for microgrids,” IEEE Access, vol. 10, pp. 73 243–73 256, 2022.
    [50] A. Hatata, A. Ebeid, and M. El-Saadawi, “Optimal restoration of direc tional overcurrent protection coordination for meshed distribution system integrated with dgs based on fcls and adaptive relays,” Electric Power Sys tems Research, vol. 205, p. 107738, 2022.

  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
  19. 19
    Book
  20. 20
    Academic Journal

    المصدر: Tecnura Journal; Vol. 19 No. 44 (2015): April - June; 171-190 ; Tecnura; Vol. 19 Núm. 44 (2015): Abril - Junio; 171-190 ; 2248-7638 ; 0123-921X

    وصف الملف: application/pdf; text/html

    Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/8365/9917; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/8365/10962; Abdelaziz, A., Badr, M., & Younes, A. (Nov. 2007). Dynamic load modeling of an Egyptian primary distribution system using neural networks. International Journal of Electrical Power & Energy Systems, 29(9), 637-649.; Abul'Wafa, A. (2012). A network-topology-based load flow for radial distribution networks with composite and exponential load. Electric Power Systems Research, 91, 37-43.; Alinejad, B., Akbari, M., & Kazemi, H. (2012). PMU-based distribution network load modelling using Harmony Search Algorithm. Proceedings of 17th Conference on Electrical Power Distribution Networks, pp. 1-6.; Aree, P. (2014). Power Flow Computation Considering Nonlinear Characteristics of Composite Load Model. Proceedings of the International Electrical Engineering Congress (iEECON), pp. 1-4.; Chen, D., & Mohler, R. (July 2003). Neural-Network-Based Load Modeling and its Use in Voltage Stability Analysis. IEEE Transactions on Control Systems Technology, 11(11), 460-470.; Chen, Q., Ju, P., Shao, Z.-Y., & Wu, F. (2007). Electrical Load Modeling with Considering Distribution Network. Proceedings of 2007 iREP Symposium Bulk Power System Dynamics and Control, pp. 1-6.; Chen, Q., Ju, P., Shi, K., Tang, Y., Shao, Z., & Yang, W. (2010). Parameter estimation and comparison of the load models with considering distribution network directly and indirectly. International Journal of Electrical Power and Energy Systems, 32(9), 965-968.; Choi, B., & Chiang, H. (May 2009). Multiple Solutions and Plateau Phenomenon in Measurement-Based Load Model Development: Issues and Suggestions. IEEE Transactions on Power Systems, 24(2), 824-831.; Choi, B., Chiang, H., & Yu, D. (2009). Trust-Tech based Parameter Estimation and its Application to Power System Load Modeling. Proceedings of IEEE PES General Meeting. Calgary.; Choi, B., Chiang, H., Li, Y., Li, H., Chen, Y., Huang, D., & Lauby, M. (Aug. 2006). Measurement-based Dynamic Load Models: Derivation, Comparison and Validation. IEEE Transactions on Power Systems, 21(3), 1276-1283.; Choi, B.-K., Chiang, H.-D., Li, Y., Chen, Y.-T., Huang, D.-H., & Lauby, M. (2006). Development of Composite Load Models of Power Systems using On-line Measurement Data. Proceedings of IEEE PES General Meeting. Montreal.; De Tuglie, E., Patrono, G., & Torelli, F. (2005). A sensitivity-based approach for static and dynamic load parameter estimation. Proceedings of IEEE Russia Power Tech. St. Petersburg.; Department of Energy and Climate Change (DECC). (2010). Energy Trends: Electricity and Electricity Consumption in the UK. National Statistics Publications.; Diaz, G., González, C., Gómez, J., & Diez, A. (2010). Composite Loads in Stand-Aline Inverter-Based Microgrids-Modeling Procedure and Effects on Load Margin. IEEE Transactions on Power Systems, 25(2), 894-905.; General Electric Company (1987). EPRI Final Report EL-5003: Load modeling for powerflow and transient stability computer studies.; Guoping, S., Jun, L., & Xiangsheng, L. (2011). Load clustering and synthetic modeling based on an improved fuzzy C means clustering algorithm. Proceedings of 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 859-865. Shandong.; Han, D., Ma, J., He, R.-M., & Dong, Z.-Y. (2009). A Real Application of Measurement-Based Load Modeling in Large Scale Power Grids and Its Validation. IEEE Transitions on Power Systems, 24(4), 1756-1764.; He, R.-M., Ma, J., & Hill, D. (May 2006). Composite Load Modeling via Measurement Approach. IEEE Transactions on Power Systems, 21(2), 663-672.; IEEE Task Force on Load Representation for Dynamic Performances. (May 1993). Load representation for dynamic perfomance analysis. IEEE Transactions on Power Systems, 8(2), 472-482.; IEEE Task Force on Load Representation for Dynamic Performances. (Feb. 1995a). Bibliography on load models for power flow and dynamic perfomance simulation. IEEE Transactions on Power Systems, 10(1), 523-538.; IEEE Task Force on Load Representation for Dynamic Performances. (Aug. 1995b). Standard Load Models for Power Flow and Dynamic Performance Simulation. IEEE Transactions on Power Systems, 1302-1313.; Ju, P., Qin, C., Wu, F., Xie, H., & Ning, Y. (2011). Load modeling for wide area power system. Electrical Power and Energy Systems, 33, 909-917.; Ju, P., Wu, F., Shao, Z.-Y., Zhang, X.-P., Fu, H.-J., Zhang, P.-F., Han, J.-D. (Sept. 2007). Composite load models based on field measurements and their applications in dynamic analysis. IET Generation, Transmission and Distribution, 1(5), 724-730.; Kalesar, B., & Seifi, A. (2010). Fuzzy load flow in balanced and unbalanced radial distribution systems incorporating composite load model. Electrical Power and Energy Systems, 17-23.; Kao, W. (Aug. 2001). The Effect of Load Models on Unstable Low-Frequency Oscillation Damping in Taipower System Experience w/wo Power System Stabilizers. IEEE Transactions on Power Systems, 16(3), 463-472.; Keyhani, A., Lu, W., & Heydt, G. (2004). Composite Neural Netwrok Load Models for Power System Stability Analysis. Proceedings of IEEE Power Systems Conference & Exposition, pp. 1159-1163.; Knyazkin, V., Cañizares, C., & Söder, L. (May 2004). On the Parameter Estimation and Modeling of Aggregate Power System Loads. IEEE Transactions on Power Systems, 19(2), 1023-1031.; Kosterev, D., & Meklin, A. (2006). Load Modeling in WECC. Proceedings of Power Systems Conference and Exposition PSCE, pp. 576-581.; Kosterev, D., Meklin, A., Undrill, J., Lesieutre, B., Price, W., Chassin, D., Yang, S. (2008). Load Modeling in Power System Studies: WECC Progress Update. Proceedings of PES General Meeting, pp. 1-8.; Kosterev, D., Taylor, C., & Mittelstadt, W. (Aug. 1999). Model validation for the August 10, 1996 WSCC system outage. IEEE Transactions on Power Systems, 14(3), 967-979.; Kundur, P. (1993). Power System Stability and Control. New York: McGraw-Hill.; Lee, D., Gonzales, L., Periaux, J., & Srinivas, K. (Apr. 2011). Efficient hybrid-game strategies coupled to evolutionary algorithms for robust multidisciplinary design optimization in aerospace engineering. IEEE Transactions on Evolutionary Computation, 15(2), 133-150.; Li, L., Xie, X., Yan, J., & Han, Y. (2007). Fast Online Identification of the Dominant Parameters of Composite Load Model Using Volterra Model and Pattern Classification. Proceedings of IEEE PES General Meeting, pp. 1-8.; Li, X., Wang, L., & Li, P. (2008). The Study on Composite Load Model Structure of Artificial Neural Network. Proceedings of 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. NanJing. pp. 1564-1570.; Ma, J., Han, D., He, R.-M., Dong, Z.-Y., & Hill, D. (2008). Reducing Identified Parameters of Measurement-Based Composite Load Model. IEEE Transactions on Power Systems, 23(1), 76-83.; Ma, J., He, R., & Hill, D. (May 2006). Load Modeling by Finding Support Vectors of Load Data from Field Measurements. IEEE Transactions on Power Systems, 21(2), 726-735.; Ma, J., He, R.-M., & Hill, D. (2007). Measurement-based Load Modeling using Genetic Algorithms. Proceedings of IEEE Congress on Evolutionary Computation, pp. 2909-2916.; Ma, J., Zheng, X.-Y., Tang, Y.-H., & Dong, Z.-Y. (2009). Validating Measurement-Based Composite Load Model. Proceedings of 8th International Conference on Advances in Power System Control, Operation and Management, pp. 1-6.; Maitra, A., Gaikwad, A., Pourbeik, P., & Brooks, D. (2008). Load Model Parameter Derivation Using an Automated Algorithm and Measured Data. Proceedings of IEEE PES Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1-7.; Mauricio, W., & Semlyen, A. (Nov. 1972). Effect of load characteristics on the dynamic stability of power systems. IEEE Transactions on Power Apparatus and Systems, 14(3), 2295-2304.; McDonnell, J., Reynolds, J., & Fogel, D. (1995). Special Session on Applications of evolutionary computation to biology and biochemistry. MIT Press.; Milanovic, J., Yamashita, K., Martinez, S., Djokie, S., & Korunovic, L. (Aug. 2013). International Industry Practice on Power System Load Modeling. IEEE Transactions on Power Systems, 28(3).; Najafabadi, A., & Alouani, A. (2012). Real time estimation of sensitive parameters of composite power system load model. Proceedings of 2012 IEEE Power and Energy Society Transmission and Distribution Conference and Exposition. Orlando. pp. 1-8.; Nozari, F., Kankam, M., & Price, W. (Nov. 1987). Aggregation of Induction Motors for Transient Stability Load Modeling. IEEE Transactions on Power Systems, 2(4), 1096-1103.; Ornata, T., & Uemura, K. (Nov. 1998). Aspects of Voltage Responses of Induction Loads. IEEE Transactions on Power Systems, 13(4), 1337-1344.; Peng, W., Yan-hong, W., Guo-qiang, H., & Rui, M. (2005). Study on the Reduction of Identified Parameters of the Power Load's Aggregated Motor Model with the AIm of Sustaining Its Representabilidad. Proceedings of IEEE PES Transmission and Distribution Conference and Exhibition: Asia and Pacific.; Pereira, L., Kosterev, D., Mackin, P., Davies, D., Undrill, J., & Zhu, W. (Nov. 2002). An Interim Dynamic Induction Motor Model for Stability Studies in the WSCC. IEEE Transactions on Power Systems, 17(4), 1108-1115.; Rifaat, R. (2004). On Composite Load Modeling for Voltage Stability and Under Voltage Load Shedding. Proceedings of IEEE PES General Meeting, pp. 1603-1610).; Rodriguez, L., Perez, S., & Mora, J. (2013). Particle Swarm Optimization applied in Power System Measurement-Based Load Modeling. Proceedings of IEEE Congress on Evolutionary Computation, pp. 2368-2375. Cancún.; Shi, G., Peng, G., & Liu, X. (2012). Comparative Research on Power Load Modeling Method in Power Electrical System. Proceedings of Fifth International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 455-458.; Shi, J., & He, R. (2003). Measurement-based load modeling–model structure. Proceedings of IEEE PowerTech Conference. Bologna.; Son, S., Lee, S., Choi, D., Song, K., Park, J., Kwon, Y., . . . Park, J. (2014). Improvement of Composite Load Modeling Based on Parameter Sensitivity and Dependency Analyses. IEEE Transactions on Power Systems, 242-250.; Song, J., Cotilla-Sanchez, E., & Brekken, T. (2013). Load Modeling Methodologies for Cascading Outage Simulation Considering Power System Stability. 1st IEEE Conference on Technologies for Sustainability (SusTech), pp. 78-85.; University of Washington. (1999). Electrical Engineering. Obtenido de http://www.ee.washington.edu/research/pstca/; Wang, J., Han, M., & Ma, J. (2010). A New Identification Strategy for Improving Convergence Stability of Load Model Parameters. Proceedings of International Conference on Electrical and Control Engineering, pp. 45-148.; Wang, J., Jiang, H., Chang, C., & Liu, A. (Feb. 1994). Development of a frequency-dependent composite load model using measurement approach. IEEE Transactions on Power Systems, 9(3), 1546-1556.; Wang, J., Li, X., Su, S., & Xia, X. (2006). Research on Dunamic Load Modeling Using Back Propagation Neural Network for Electric Power System. Proceedings of International Conference on Power System Technology, pp. 1-4.; Wei-guo, W., Ren-mu, H., & Tie-Qiang, W. (2002). The induction motor model to reflect dynamic mechanism of synthetic load. Automation of Electric Power Systems, 26(4), 23-27.; Wen, J., Jiang, L., Wu, Q., & Cheng, S. (2003). Power System Load Modeling by Learning Based on System Measurements. IEEE Transactions on Power Delivery, 18(2), 364-371.; Wu, Q., Wen, J., Nuttall, K., Shimmin, D., & Cheng, S. (2003). Power System Load Modeling by Evolutionary Computation Based on System Measurements. Electric Power Components and Systems, 31(5), 423-439.; Xin-ran, L., Ren-mu, H., & Zhou, W. (1999). The General Induction Motor Model and its description ability for synthetic loads for electric power system. Journal of North China Electric Power University, 26(1).; Xu, Y., Dong, Z., Meng, K., Yao, W., Zhang, R., & Wong, K. (2014). Multi-Objective Dynamic VAR Planning Against Short-Term Voltage Instability Using a Decomposition-Based Evolutionary Algorithm. IEEE Transactions on Power Systems, 29(6), 2813-2822.; Xu, Y., Si, D., & Qian, Y. (2011). Research on Feasibility of Composite Load Modeling Based on WAMS. Proceedings of 2011 Asia-Pacific Power and Energy Engineering Conference, pp. 1-4. Wuhan.; Yu, X., & Gen, M. (2010). Introduction to Evolutionary Algorithms (Decision Engineering). London: Springer-Verlag.; Zali, S., & Milanovic, J. (2013). Generic Model of Active Distribution Network for Large Power System Stability Studies. IEEE Transactions on Power Systems, 28(3), 3126-3133.; Zhang, P., & Bai, H. (2008). Derivation of Load Model Parameters using Improved Genetic Algorithm. Proceedings of International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 970-977.; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/8365