-
1Academic Journal
المؤلفون: Maldonado, D, Vinuesa Sanz, Guillermo, Aldana, S, Aguirre, F.L., Cantudo, A, García García, Héctor, González, M. B., Jiménez Molinos, Francisco, Campabadal Segura, Francesca, Miranda, E., Dueñas Carazo, Salvador, Castán Lanaspa, María Helena, Roldán, J.B.
مصطلحات موضوعية: Dynamical systems, Circuits and Systems, Resistive switching, Kinetic Monte Carlo, Conmutación resistiva, Montecarlo cinético, 2203 Electrónica
وصف الملف: application/pdf
Relation: https://www.sciencedirect.com/science/article/pii/S1369800123005711?via%3Dihub; https://doi.org/10.1016/j.mssp.2023.107878; Materials Science in Semiconductor Processing, 2024, vol. 169, 107878; https://uvadoc.uva.es/handle/10324/62918; 107878; Materials Science in Semiconductor Processing; 169
-
2Conference
مصطلحات موضوعية: Covid 19, Epidemias, Montecarlo Cinético, Modelo SIR, Montecarlo Kinetic, SIR model, SARS-CoV-2
Relation: http://hdl.handle.net/11086/19997; https://www.youtube.com/watch?v=cKytzmGBqR4; https://eciperu.net/wp-content/uploads/2020/12/Libro-de-resumenes-ECI-2021-de-verano.pdf
-
3Dissertation/ Thesis
المؤلفون: Ortiz González, Angel Santiago
المساهمون: Restrepo-Parra, Elisabeth, Amaya-Roncancio, Sebastian, Pcm Computational Applications, Ortiz González, Angel Santiago 0000-0003-4304-9894, Ortiz González, Angel Santiago https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001824074, Ortiz González, Angel Santiago 58632146200
مصطلحات موضوعية: 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados, Montecarlo Cinético, Teoría del Funcional de la densidad, Películas delgadas, Multiescala, Cálculos ab initio, Crecimiento, Kinetic Montecarlo, Density Funcional Theory, Thin Films, Ab intio Calculations, Multiscale, Growth
وصف الملف: xxi, 106 páginas; application/pdf
Relation: Wolfram Quester. Sketch pseudopotentials, 2006.; Richard LeSar. Kinetic monte carlo. Introduction to Computational Materials Science, pages 183–195, 3 2013.; Nikolaos Cheimarios, Deifilia To, George Kokkoris, George Memos, and Andreas G. Boudouvis. Monte carlo and kinetic monte carlo models for deposition processes: A review of recent works. Frontiers in Physics, 9:165, 4 2021.; Peifeng Zhang, Xiaoping Zheng, Suoping Wu, Jun Liu, and Deyan He. Kinetic monte carlo simulation of cu thin film growth. Vacuum, 72:405–410, 1 2004.; F. Nita, C. Mastail, and G. Abadias. Three-dimensional kinetic monte carlo simulations of cubic transition metal nitride thin film growth. Physical Review B, 93, 2 2016.; K. Sbiaai, H. Ataalite, M. Dardouri, A. Hasnaoui, and A. Fathi. Investigation of growth mode and surface roughness during homoepitaxial growth of silver metal using kinetic monte carlo simulation. Materials Today: Proceedings, 66:459–465, 1 2022.; W. Lengauer. Transition metal carbides, nitrides, and carbonitrides. Handbook of Ceramic Hard Materials, pages 202–252, 3 2008.; N. Kazama, Neil Heiman, R. L. White, N. Kazama, Neil Heiman, and R. L. White. Magnetic properties of amorphous fec thin films. Journal of Applied Physics, 49:1706–1708, 1978.; S. M. Kang, S. G. Yoon, S. J. Suh, and D. H. Yoon. Control of electrical resistivity of tan thin films by reactive sputtering for embedded passive resistors. Thin Solid Films, 516:3568–3571, 4 2008.; Marcus Turowski, Marco Jup´e, Henrik Ehlers, Thomas Melzig, Andreas Pflug, and Detlev Ristau. Simulation in thin film technology. Optical Systems Design 2015: Advances in Optical Thin Films V, 9627:962707, 9 2015.; V. A. Vasil’ev and P. S. Chernov. Modeling the growth of thin-film surfaces. Mathematical Models and Computer Simulations, 4:622–628, 11 2012.; Sebastián Roncancio-Amaya. Modelación y simulación de propiedades mecánicas de multicapas de Cr/CrN, 2011.; Jinwoo Park, Byung Deok Yu, and Suklyun Hong. Van der waals density functional theory study for bulk solids with bcc, fcc, and diamond structures. Current Applied Physics, 15:885–891, 8 2015.; Corbett C. Battaile. The kinetic monte carlo method: Foundation, implementation, and application. Computer Methods in Applied Mechanics and Engineering, 197:3386–3398, 7 2008.; Y. G. Zhu and T. L. Wang. Kinetic monte carlo simulation of the initial growth of ag thin films. Applied Surface Science, 324:831–836, 1 2015.; M. F. García, E. Restrepo-Parra, and J. C. Riaño-Rojas. Modeling and simulation of the deposition/relaxation processes of polycrystalline diatomic structures of metallic nitride films. Journal of Crystal Growth, 418:70–78, 5 2015.; R. Tonneau, P. Moskovkin, J. Muller, T. Melzig, E. Haye, S. Konstantinidis, A. Pflug, and S. Lucas. Understanding the role of energetic particles during the growth of tio2 thin films by reactive magnetron sputtering through multi-scale monte carlo simulations and experimental deposition. Journal of Physics D: Applied Physics, 54:155203, 2 2021; Rubenson Mareus, Cédric Mastail, Florin Nita, Anny Michel, and Gr´egory Abadias. Effect of temperature on the growth of tin thin films by oblique angle sputter-deposition: A three-dimensional atomistic computational study. Computational Materials Science, 197, 9 2021.; John A. Purton, Alin M. Elena, and Gilberto Teobaldi. Kinetic monte carlo modeling of oxide thin film growth. Journal of Chemical Physics, 156, 6 2022.; Sangtae Kim, Hyungmin An, Sangmin Oh, Jisu Jung, Byungjo Kim, Sang Ki Nam, and Seungwu Han. Atomistic kinetic monte carlo simulation on atomic layer deposition of tin thin film. Computational Materials Science, 213, 10 2022.; W. J. Rodgers, P. W. May, N. L. Allan, and J. N. Harvey. Three-dimensional kinetic monte carlo simulations of diamond chemical vapor deposition. Journal of Chemical Physics, 142:214707, 6 2015.; Joseph M. Monti, James A. Stewart, Joyce O. Custer, David P. Adams, Diederik Depla, and Rémi Dingreville. Linking simulated polycrystalline thin film microstructures to physical vapor deposition conditions. Acta Materialia, 245, 2 2023.; Hassan Ataalite, Moloudi Dardouri, Abdellatif Hasnaoui, and Khalid Sbiaai. Morphological surface study of silver electrodeposition by kinetic monte carlo-embedded atom method. Physica Status Solidi (B) Basic Research, 259, 7 2022.; Zhaoxia Rao, Tong Su, Thomas Koenig, Gregory B. Thompson, Diederik Depla, and Eric Chason. Effect of processing conditions on residual stress in sputtered transition metal nitrides (tin, zrn and tan): Experiments and modeling. Surface and Coatings Technology, 447:128880, 10 2022.; Audrey Valentin, Ovidiu Brinza, Samir Farhat, Jocelyn Achard, and Fabien Bénédic. 3d kinetic monte-carlo simulations of diamond growth on (1 0 0) surfaces. Diamond and Related Materials, 123, 3 2022.; Adam L. Lloyd, Ying Zhou, Miao Yu, Chris Scott, Roger Smith, and Steven D. Kenny. Reaction pathways in atomistic models of thin film growth. Journal of Chemical Physics, 147, 10 2017.; Shree Ram Acharya and Talat S. Rahman. Toward multiscale modeling of thin-film growth processes using slkmc. Journal of Materials Research, 33:709–719, 3 2018.; S. A. Dokukin, S. V. Kolesnikov, A. M. Saletsky, and A. L. Klavsyuk. Growth of the pt/cu(111) surface alloy: Self-learning kinetic monte carlo simulations. Journal of Alloys and Compounds, 763:719–727, 9 2018.; Shabnam Rasoulian and Luis A. Ricardez-Sandoval. A robust nonlinear model pre dictive controller for a multiscale thin film deposition process. Chemical Engineering Science, 136:38–49, 11 2015.; Rubenson Mareus, Cédric Mastail, Fırat Anğay, Noël Brunetière, and Gregory Abadias. Study of columnar growth, texture development and wettability of reactively sputter-deposited tin, zrn and hfn thin films at glancing angle incidence. Surface and Coatings Technology, 399, 10 2020.; Boudjemaa Bouaouina, Cédric Mastail, Aurélien Besnard, Rubenson Mareus, Florin Nita, Anny Michel, and Grégory Abadias. Nanocolumnar tin thin film growth by oblique angle sputter-deposition: Experiments vs. simulations. Materials Design, 160:338–349, 12 2018.; Walter Tewes, Oleg Buller, Andreas Heuer, Uwe Thiele, and Svetlana V. Gurevich. Comparing kinetic monte carlo and thin-film modeling of transversal instabilities of ridges on patterned substrates. Journal of Chemical Physics, 146, 11 2016.; Tung B.T. To, Renan Almeida, Sukarno O. Ferreira, and Fábio D.A. Aarão Reis. Roughness and correlations in the transition from island to film growth: Simulations and application to cdte deposition. Applied Surface Science, 560:149946, 9 2021.; R. Tonneau, P. Moskovkin, A. Pflug, and S. Lucas. Tiox deposited by magnetron sputtering: A joint modelling and experimental study. Journal of Physics D: Applied Physics, 51, 4 2018.; Eric Chason and Allan F. Bower. Kinetic monte carlo simulations of stress and morphology evolution in polycrystalline thin films. Journal of Applied Physics, 125:115304, 3 2019.; Danyun Cai, Yunjie Mo, Xiaofang Feng, Yingyou He, and Shaoji Jiang. Simulation study of temperature-dependent diffusion behaviors of ag/ag(001) at low substrate temperature. Applied Surface Science, 406:277–284, 6 2017.; Datai Hui, Shun Zhou, Changlong Cai, Shigeng Song, Zhentao Wu, Jian Song, Da Zhang, Xiao Meng, Bo Lu, Yingbu Duan, Hayrigul Tursun, and Des Gibson. Modeling and experimental investigations of nanostructured ag thin films produced by oblique-angle deposition and its sers performance. Coatings 2021, Vol. 11, Page 458, 11:458, 4 2021.; Sung Hoon Lee, Hyun Hang Park, Hoon Kim, and Ming Huang Huang. A study of mgf2 thin film growth in the atomic layer deposition process by multi-scale simulations. Computational Materials Science, 191:110327, 4 2021.; Feng Du and Hanchen Huang. A theory of growing crystalline nanorods – mode i. Surface Science, 674:18–24, 8 2018.; Zhengyang Li and Hanchen Huang. Synergy to discovery and innovation — growth of nanorods. Theoretical and Applied Mechanics Letters, 6:249–252, 11 2016.; Chandrabhan Verma, H. Lgaz, D. K. Verma, Eno E. Ebenso, I. Bahadur, and M. A. Quraishi. Molecular dynamics and monte carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review. Journal of Molecular Liquids, 260:99–120, 6 2018.; Xiang He and Zhao Xu Chen. A study on the morphology and catalytic activity of gold nanoparticles by the kinetic monte carlo simulation. Applied Surface Science, 370:433–436, 5 2016.; Hassan Ahmoum, Guojian Li, Yongjun Piao, Shiying Liu, Ralph Gebauer, Mourad Boughrara, Mohd Sukor Su’ait, Mohamed Kerouad, and Qiang Wang. Ab-initio, monte carlo and experimental investigation on structural, electronic and magnetic properties of zn1-xnixo nanoparticles prepared via sol-gel method. Journal of Alloys and Compounds, 854, 2 2021.; Adil Bouhadiche, Soulef Benghorieb, Tahar Touam, Djelloul Mendil, and Azeddine Chelouche. Kinetic monte carlo simulation of self-organized growth of silver nanoparticles in a tio2 matrix. Journal of Crystal Growth, 556:125992, 2 2021.; B. Navinšek, P. Panjan, and I. Milošev. Industrial applications of crn (pvd) coatings, deposited at high and low temperatures. Surface and Coatings Technology, 97:182–191, 12 1997.; A. Baptista, F. J.G. Silva, J. Porteiro, J. L. Míguez, G. Pinto, and L. Fernandes. On the physical vapour deposition (pvd): Evolution of magnetron sputtering processes for industrial applications. Procedia Manufacturing, 17:746–757, 1 2018.; Andresa Baptista, Francisco Silva, Jacobo Porteiro, José Míguez, and Gustavo Pinto. Sputtering physical vapour deposition (pvd) coatings: A critical review on process improvement and market trend demands. Coatings 2018, Vol. 8, Page 402, 8:402, 11 2018.; Robert G. Parr. Density functional theory of atoms and molecules. Horizons of Quantum Chemistry, pages 5–15, 1980.; Kyle A. Baseden and Jesse W. Tye. Introduction to density functional theory: Calculations by hand on the helium atom. Journal of Chemical Education, 91:2116–2123, 12 2014.; Arefa Hossain. Introduction to density functional theory, 11 2009.; M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64:1045, 10 1992.; P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review, 136:B864, 11 1964.; W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Physical Review, 140:A1133, 11 1965.; R. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, 6 2004.; I N Levine. Quantum Chemistry. Pearson, 2014.; A. P. J. Jansen. An introduction to monte carlo simulations of surface reactions. 3 2003.; David S. Sholl and Janice A. Steckel. Density functional theory: A practical introduction. Density Functional Theory: A Practical Introduction, pages 1–238, 8 2009.; John P. Perdew and Wang Yue. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical Review B, 33:8800, 6 1986.; John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 77:3865, 10 1996.; Charles Kittel and Zainab Raheem. Introduction To Solid State Physics 8Th Ed. 7 2019.; P. E. Blöchl, Blchöl, and P. E. Projector augmented-wave method. PhRvB, 50:17953– 17979, 1994.; N W Ashcroft and N D Mermin. Solid State Physics. Holt, Rinehart and Winston, 1976.; Hendrik J. Monkhorst and James D. Pack. Special points for brillouin-zone integrations. Physical Review B, 13:5188, 6 1976.; A. Baldereschi, Baldereschi, and A. Mean-value point in the brillouin zone. PhRvB, 7:5212–5215, 1973.; David Vanderbilt, Vanderbilt, and David. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. PhRvB, 41:7892–7895, 1990.; P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, N. Colonna, I. Carnimeo, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fugallo, F. Giustino, T. Gorni, J Jia, M. Kawamura, H.-Y. Ko, E. K¨u¸c¨ukbenli, M. Marsili, F. Mauri, N. L. Nguyen, H.- V. Nguyen, A. Otero de-la Roza, S. Ponc´e, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, I. Timrov, T. Thonhauser, N. Vast, and X. Wu. Quantum espresso free software, 2009.; Daniel Sheppard, Rye Terrell, and Graeme Henkelman. Optimization methods for finding minimum energy paths. The Journal of chemical physics, 128, 2008.; Graeme Henkelman, Gísli Jóhannesson, and Hannes Jónsson. Methods for finding saddle points and minimum energy paths. Theoretical Methods in Condensed Phase Chemistry, pages 269–302, 12 2002.; Graeme Henkelman and Hannes Jónsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113:9978–9985, 12 2000.; Graeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths, volume 113. AIP Publishing, 12 2000.; HANNES JÓNSSON, GREG MILLS, and KARSTEN W. JACOBSEN. Nudged elastic band method for finding minimum energy paths of transitions. pages 385–404, 6 1998.; Samik Raychaudhuri. Introduction to monte carlo simulation. Oracle Crystal Ball Global Business Unit, 2008.; Thokozani Justin Kunene, Lagouge Kwanda Tartibu, Kingsley Ukoba, and Tien Chien Jen. Review of atomic layer deposition process, application and modeling tools. Materials Today: Proceedings, 62:S95–S109, 1 2022.; Pascal Brault, Anne Lise Thomann, Marjorie Cavarroc, and Anne-Lise Thomann. Theory and molecular simulations of plasma sputtering, transport and deposition processes.; José Darío Agudelo Giraldo. Simulación monte carlo del efecto de la rugosidad y las vacancias en el monte carlo simulation of roughness and vacancies effect in magnetic and magnetotransport behavior of la 2/3 ca 1/3 mno 3 /la 1/3 ca 2/3 mno 3 bilayer, 2012.; Arthur F. Voter. Introduction to the kinetic monte carlo method. Radiation Effects in Solids, pages 1–23, 5 2007.; Eugene Ustinov. Kinetic monte carlo approach for molecular modeling of adsorption. Current Opinion in Chemical Engineering, 24:1–11, 6 2019.; Quantum Espresso Team. Pseudo search results - QUANTUM-ESPRESSO. Used to download the Pseudopotentials 2022.; Kokalj A. J. mol. graphics modelling, 1999.; Alexander Stukowski. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool, 1 2010.; Max Bloomfield. Roughness concepts rms, correlation lengths, and the height-height correlation function, 2006.; Thomas Gredig, Evan A. Silverstein, and Matthew P. Byrne. Height-height correlation function to determine grain size in iron phthalocyanine thin films. volume 417. Institute of Physics Publishing, 2013; Matthew Abramson, Hunter J. Coleman, Paul J. Simmonds, Tim P. Schulze, and Christian Ratsch. Kinetic monte carlo simulations of quantum dot self-assembly. Journal of Crystal Growth, 597, 11 2022.; J. G. Keizer, P. M. Koenraad, P. Smereka, J. M. Ulloa, A. Guzman, and A. Hierro. Kinetic monte carlo simulations and cross-sectional scanning tunneling microscopy as tools to investigate the heteroepitaxial capping of self-assembled quantum dots. Physical Review B - Condensed Matter and Materials Physics, 85, 4 2012.; T. P. Schulze and P. Smereka. Kinetic monte carlo simulation of heteroepitaxial growth: Wetting layers, quantum dots, capping, and nanorings. Physical Review B - Condensed Matter and Materials Physics, 86, 12 2012.; Xin Song, Hao Feng, Yu Min Liu, Zhong Yuan Yu, and Hao Zhi Yin. Kinetic monte carlo simulations of three-dimensional self-assembled quantum dot islands. Chinese Physics B, 23, 1 2014.; R. Zhu, E. Pan, and P. W. Chung. Fast multiscale kinetic monte carlo simulations of three-dimensional self-assembled quantum dot islands. Physical Review B - Condensed Matter and Materials Physics, 75, 5 2007.; J. Hoshen and R. Kopelman. Percolation and cluster distribution. i. cluster multiple labeling technique and critical concentration algorithm. Physical Review B, 14:3438, 10 1976.; Fricke Tobin. The hoshen-kopelman algorithm, 2004.; NCN Publications, Bivas Saha, Jagaran Acharya, Timothy D Sands, Umesh Waghmare, and Umesh V Waghmare. Purdue e-pubs electronic structure, phonons, and thermal properties of scn, zrn, and hfn: A first-principles study electronic structure, phonons, and thermal properties of scn, zrn, and hfn: A first-principles study. 2010.; D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, and J. E. Greene. Pathways of atomistic processes on tin(001) and (111) surfaces during film growth: An ab initio study. Journal of Applied Physics, 93:9086–9094, 6 2003.; Q.Y Zhang, J.Y Tang, and G.Q Zhao. Investigation of the energetic deposition of au (001) thin films by molecular-dynamics simulation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 135(1):289– 294, 1998.; https://repositorio.unal.edu.co/handle/unal/86332; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/