يعرض 1 - 20 نتائج من 61 نتيجة بحث عن '"Monroe, Jeremy"', وقت الاستعلام: 0.61s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المساهمون: Freitag, Michael, National Institute of General Medical Sciences, The Sachaefer Research Program, The Hirschl Family Trust

    المصدر: PLOS Genetics ; volume 18, issue 2, page e1010049 ; ISSN 1553-7404

  4. 4
    Academic Journal
  5. 5
    Report
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المساهمون: University of Michigan System ,, 3397796

    Relation: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA; Purchal M. K. , Eyler D. E. , TARDU M., Franco M. K. , Korn M. M. , Khan T., McNassor R., Giles R., Lev K., Sharma H., et al., "Pseudouridine synthase 7 is an opportunistic enzyme that binds and modifies substrates with diverse sequences and structures", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, cilt.119, sa.4, 2022; av_b2eff5a9-4298-4931-b230-522dec91c72d; vv_1032021; http://hdl.handle.net/20.500.12627/184296; https://doi.org/10.1073/pnas.2109708119; 119

  9. 9
    Academic Journal
  10. 10
  11. 11
    Book
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Patent
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Patent
  18. 18
    Patent
  19. 19
    Academic Journal

    مصطلحات موضوعية: mRNA modification, epitranscriptome, Genetics, Science

    وصف الملف: application/pdf

    Relation: Jones, Joshua D.; Monroe, Jeremy; Koutmou, Kristin S. (2020). "A molecular‐level perspective on the frequency, distribution, and consequences of messenger RNA modifications." Wiley Interdisciplinary Reviews: RNA 11(4): n/a-n/a.; https://hdl.handle.net/2027.42/155973; Wiley Interdisciplinary Reviews: RNA; Sendinc, E., Valle‐Garcia, D., Dhall, A., Chen, H., Henriques, T., Navarrete‐Perea, J., … Shi, Y. ( 2019 ). PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Molecular Cell, 75 ( 3 ), 620 – 630 e629. https://doi.org/10.1016/j.molcel.2019.05.030; Wu, R., Li, A., Sun, B., Sun, J. G., Zhang, J., Zhang, T., … Yuan, Z. ( 2019 ). A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Research, 29 ( 1 ), 23 – 41. https://doi.org/10.1038/s41422-018-0113-8; Xiao, W., Adhikari, S., Dahal, U., Chen, Y. S., Hao, Y. J., Sun, B. F., … Yang, Y. G. ( 2016 ). Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Molecular Cell, 61 ( 4 ), 507 – 519. https://doi.org/10.1016/j.molcel.2016.01.012; Xu, L., Liu, X., Sheng, N., Oo, K. S., Liang, J., Chionh, Y. H., … Fu, X. Y. ( 2017 ). Three distinct 3‐methylcytidine (m(3)C) methyltransferases modify tRNA and mRNA in mice and humans. The Journal of Biological Chemistry, 292 ( 35 ), 14695 – 14703. https://doi.org/10.1074/jbc.M117.798298; Yang, X., Yang, Y., Sun, B. F., Chen, Y. S., Xu, J. W., Lai, W. Y., … Yang, Y. G. ( 2017 ). 5‐methylcytosine promotes mRNA export ‐ NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Research, 27 ( 5 ), 606 – 625. https://doi.org/10.1038/cr.2017.55; Yoon, K. J., Ringeling, F. R., Vissers, C., Jacob, F., Pokrass, M., Jimenez‐Cyrus, D., … Song, H. ( 2017 ). Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell, 171 ( 4 ), 877 – 889 e817. https://doi.org/10.1016/j.cell.2017.09.003; You, C., Dai, X., & Wang, Y. ( 2017 ). Position‐dependent effects of regioisomeric methylated adenine and guanine ribonucleosides on translation. Nucleic Acids Research, 45 ( 15 ), 9059 – 9067. https://doi.org/10.1093/nar/gkx515; Yuan, F., Bi, Y., Siejka‐Zielinska, P., Zhou, Y. L., Zhang, X. X., & Song, C. X. ( 2019 ). Bisulfite‐free and base‐resolution analysis of 5‐methylcytidine and 5‐hydroxymethylcytidine in RNA with peroxotungstate. Chemical Communications, 55 ( 16 ), 2328 – 2331. https://doi.org/10.1039/C9CC00274J; Zaccara, S., Ries, R. J., & Jaffrey, S. R. ( 2019 ). Reading, writing and erasing mRNA methylation. Nature Reviews. Molecular Cell Biology, 20 ( 10 ), 608 – 624. https://doi.org/10.1038/s41580-019-0168-5; Zhang, C., Samanta, D., Lu, H., Bullen, J. W., Zhang, H., Chen, I., … Semenza, G. L. ( 2016 ). Hypoxia induces the breast cancer stem cell phenotype by HIF‐dependent and ALKBH5‐mediated m(6)A‐demethylation of NANOG mRNA. Proceedings of the National Academy of Sciences of the United States of America, 113 ( 14 ), E2047 – E2056. https://doi.org/10.1073/pnas.1602883113; Zhang, L. S., Liu, C., Ma, H., Dai, Q., Sun, H. L., Luo, G., … He, C. ( 2019 ). Transcriptome wide mapping of internal N(7)‐methylguanosine methylome in mammalian mRNA. Molecular Cell, 74 ( 6 ), 1304 – 1316 e1308. https://doi.org/10.1016/j.molcel.2019.03.036; Zhang, X., Wei, L. H., Wang, Y., Xiao, Y., Liu, J., Zhang, W., … Jia, G. ( 2019 ). Structural insights into FTO’s catalytic mechanism for the demethylation of multiple RNA substrates. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 8 ), 2919 – 2924. https://doi.org/10.1073/pnas.1820574116; Zhao, X., Yang, Y., Sun, B. F., Shi, Y., Yang, X., Xiao, W., … Yang, Y. G. ( 2014 ). FTO‐dependent demethylation of N6‐methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research, 24 ( 12 ), 1403 – 1419. https://doi.org/10.1038/cr.2014.151; Zhao, Y., Karijolich, J., Glaunsinger, B., & Zhou, Q. ( 2016 ). Pseudouridylation of 7SK snRNA promotes 7SK snRNP formation to suppress HIV‐1 transcription and escape from latency. EMBO Reports, 17 ( 10 ), 1441 – 1451. https://doi.org/10.15252/embr.201642682; Zheng, G., Dahl, J. A., Niu, Y., Fedorcsak, P., Huang, C. M., Li, C. J., … He, C. ( 2013 ). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell, 49 ( 1 ), 18 – 29. https://doi.org/10.1016/j.molcel.2012.10.015; Zhong, X., Yu, J., Frazier, K., Weng, X., Li, Y., Cham, C. M., … Leone, V. ( 2018 ). Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation. Cell Reports, 25 ( 7 ), 1816–1828 e1814. https://doi.org/10.1016/j.celrep.2018.10.068; Zhou, H., Kimsey, I. J., Nikolova, E. N., Sathyamoorthy, B., Grazioli, G., McSally, J., … Al‐Hashimi, H. M. ( 2016 ). m(1)A and m(1)G disrupt A‐RNA structure through the intrinsic instability of Hoogsteen base pairs. Nature Structural & Molecular Biology, 23 ( 9 ), 803 – 810. https://doi.org/10.1038/nsmb.3270; Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S. R., & Qian, S. B. ( 2015 ). Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature, 526 ( 7547 ), 591 – 594.; Zhu, Y., Zhou, G., Yu, X., Xu, Q., Wang, K., Xie, D., … Wang, L. ( 2017 ). LC‐MS‐MS quantitative analysis reveals the association between FTO and DNA methylation. PLoS One, 12 ( 4 ), e0175849. https://doi.org/10.1371/journal.pone.0175849; Zielinska, D. F., Gnad, F., Wisniewski, J. R., & Mann, M. ( 2010 ). Precision mapping of an in vivo N‐glycoproteome reveals rigid topological and sequence constraints. Cell, 141 ( 5 ), 897 – 907. https://doi.org/10.1016/j.cell.2010.04.012; Alon, S., Garrett, S. C., Levanon, E. Y., Olson, S., Graveley, B. R., Rosenthal, J. J. C., & Eisenberg, E. ( 2015 ). The majority of transcripts in the squid nervous system are extensively recoded by A‐to‐I RNA editing. eLife, 4, e05198. https://doi.org/10.7554/eLife.05198.001; Amort, T., Rieder, D., Wille, A., Khokhlova‐Cubberley, D., Riml, C., Trixl, L., … Lusser, A. ( 2017 ). Distinct 5‐methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biology, 18 ( 1 ), 1. https://doi.org/10.1186/s13059-016-1139-1; Angelova, M. T., Dimitrova, D. G., Dinges, N., Lence, T., Worpenberg, L., Carre, C., & Roignant, J. Y. ( 2018 ). The emerging field of epitranscriptomics in neurodevelopmental and neuronal disorders. Frontiers in Bioengineering and Biotechnology, 6, 46. https://doi.org/10.3389/fbioe.2018.00046; Anstee, Q. M., & Day, C. P. ( 2012 ). S‐adenosylmethionine (SAMe) therapy in liver disease: A review of current evidence and clinical utility. Journal of Hepatology, 57 ( 5 ), 1097 – 1109. https://doi.org/10.1016/j.jhep.2012.04.041; Arango, D., Sturgill, D., Alhusaini, N., Dillman, A. A., Sweet, T. J., Hanson, G., … Oberdoerffer, S. ( 2018 ). Acetylation of cytidine in mRNA promotes translation efficiency. Cell, 175 ( 7 ), 1872 – 1886 e1824. https://doi.org/10.1016/j.cell.2018.10.030; Baeza, J., Dowell, J. A., Smallegan, M. J., Fan, J., Amador‐Noguez, D., Khan, Z., & Denu, J. M. ( 2014 ). Stoichiometry of site‐specific lysine acetylation in an entire proteome. The Journal of Biological Chemistry, 289 ( 31 ), 21326 – 21338. https://doi.org/10.1074/jbc.M114.581843; Bajad, P., Jantsch, M. F., Keegan, L., & O’Connell, M. ( 2017 ). A to I editing in disease is not fake news. RNA Biology, 14 ( 9 ), 1223 – 1231. https://doi.org/10.1080/15476286.2017.1306173; Baudin‐Baillieu, A., Fabret, C., Liang, X. H., Piekna‐Przybylska, D., Fournier, M. J., & Rousset, J. P. ( 2009 ). Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy. Nucleic Acids Research, 37 ( 22 ), 7665 – 7677. https://doi.org/10.1093/nar/gkp816; Bazak, L., Haviv, A., Barak, M., Jacob‐Hirsch, J., Deng, P., Zhang, R., … Levanon, E. Y. ( 2014 ). A‐to‐I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Research, 24 ( 3 ), 365 – 376. https://doi.org/10.1101/gr.164749.113; Berman, H., Henrick, K., & Nakamura, H. ( 2003 ). Announcing the worldwide protein data Bank. Nature Structural Biology, 10 ( 12 ), 980. https://doi.org/10.1038/nsb1203-980; Carlile, T. M., Martinez, N. M., Schaening, C., Su, A., Bell, T. A., Zinshteyn, B., & Gilbert, W. V. ( 2019 ). mRNA structure determines modification by pseudouridine synthase 1. Nature Chemical Biology, 15 ( 10 ), 966 – 974. https://doi.org/10.1038/s41589-019-0353-z; Carlile, T. M., Rojas‐Duran, M. F., Zinshteyn, B., Shin, H., Bartoli, K. M., & Gilbert, W. V. ( 2014 ). Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 515 ( 7525 ), 143 – 146. https://doi.org/10.1038/nature13802; Carpy, A., Krug, K., Graf, S., Koch, A., Popic, S., Hauf, S., & Macek, B. ( 2014 ). Absolute proteome and phosphoproteome dynamics during the cell cycle of schizosaccharomyces pombe (fission yeast). Molecular & Cellular Proteomics, 13 ( 8 ), 1925 – 1936. https://doi.org/10.1074/mcp.M113.035824; Castello, A., Hentze, M. W., & Preiss, T. ( 2015 ). Metabolic enzymes enjoying new partnerships as RNA‐binding proteins. Trends in Endocrinology and Metabolism, 26 ( 12 ), 746 – 757. https://doi.org/10.1016/j.tem.2015.09.012; Chan, C. T., Dyavaiah, M., DeMott, M. S., Taghizadeh, K., Dedon, P. C., & Begley, T. J. ( 2010 ). A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genetics, 6 ( 12 ), e1001247. https://doi.org/10.1371/journal.pgen.1001247; Charette, M., & Gray, M. W. ( 2000 ). Pseudouridine in RNA: What, where, how, and why. IUBMB Life, 49 ( 5 ), 341 – 351. https://doi.org/10.1080/152165400410182; Chen, K., Lu, Z., Wang, X., Fu, Y., Luo, G. Z., Liu, N., … He, C. ( 2015 ). High‐resolution N(6) ‐methyladenosine (m(6) A) map using photo‐crosslinking‐assisted m(6) A sequencing. Angewandte Chemie (International Ed. in English), 54 ( 5 ), 1587 – 1590. https://doi.org/10.1002/anie.201410647; Choi, J., Ieong, K. W., Demirci, H., Chen, J., Petrov, A., Prabhakar, A., … Puglisi, J. D. ( 2016 ). N(6)‐methyladenosine in mRNA disrupts tRNA selection and translation‐elongation dynamics. Nature Structural & Molecular Biology, 23 ( 2 ), 110 – 115. https://doi.org/10.1038/nsmb.3148; Choi, J., Indrisiunaite, G., DeMirci, H., Ieong, K. W., Wang, J., Petrov, A., … Puglisi, J. D. ( 2018 ). 2’‐O‐methylation in mRNA disrupts tRNA decoding during translation elongation. Nature Structural & Molecular Biology, 25 ( 3 ), 208 – 216. https://doi.org/10.1038/s41594-018-0030-z; Chu, J. M., Ye, T. T., Ma, C. J., Lan, M. D., Liu, T., Yuan, B. F., & Feng, Y. Q. ( 2018 ). Existence of internal N7‐methylguanosine modification in mRNA determined by differential enzyme treatment coupled with mass spectrometry analysis. ACS Chemical Biology, 13 ( 12 ), 3243 – 3250. https://doi.org/10.1021/acschembio.7b00906; Cohn, W. E., & Volkin, E. ( 1951 ). Nucleoside‐5′ ‐phosphates from ribonucleic acid. Nature, 167, 483 – 484.; Cross, R. ( 2019 ). Epitranscriptomics: The new RNA code and the race to drug it. Chemistry and Engineering News, 97 ( 7 ).; Frye, M., Harada, B. T., Behm, M., & He, C. ( 2018 ). RNA modifications modulate gene expression during development. Science, 361 ( 6409 ), 1346 – 1349. https://doi.org/10.1126/science.aau1646; Cui, Q., Shi, H., Ye, P., Li, L., Qu, Q., Sun, G., … Shi, Y. ( 2017 ). m(6)A RNA methylation regulates the self‐renewal and tumorigenesis of glioblastoma stem cells. Cell Reports, 18 ( 11 ), 2622 – 2634. https://doi.org/10.1016/j.celrep.2017.02.059; Cui, X., Liang, Z., Shen, L., Zhang, Q., Bao, S., Geng, Y., … Yu, H. ( 2017 ). 5‐Methylcytosine RNA methylation in Arabidopsis thaliana. Molecular Plant, 10 ( 11 ), 1387 – 1399. https://doi.org/10.1016/j.molp.2017.09.013; Dai, Q., Moshitch‐Moshkovitz, S., Han, D., Kol, N., Amariglio, N., Rechavi, G., … He, C. ( 2017 ). Nm‐seq maps 2’‐O‐methylation sites in human mRNA with base precision. Nature Methods, 14 ( 7 ), 695 – 698. https://doi.org/10.1038/nmeth.4294; Dai, X., Wang, T., Gonzalez, G., & Wang, Y. ( 2018 ). Identification of YTH domain‐containing proteins as the readers for N1‐methyladenosine in RNA. Analytical Chemistry, 90 ( 11 ), 6380 – 6384. https://doi.org/10.1021/acs.analchem.8b01703; Danecek, P., Nellaker, C., McIntyre, R. E., Buendia‐Buendia, J. E., Bumpstead, S., Ponting, C. P., … Adams, D. J. ( 2012 ). High levels of RNA‐editing site conservation amongst 15 laboratory mouse strains. Genome Biology, 13 ( 4 ), 26. https://doi.org/10.1186/gb-2012-13-4-r26; Davis, D. R. ( 1995 ). Stabilization of RNA stacking by pseudouridine. Nucleic Acids Research, 23 ( 24 ), 5020 – 5026. https://doi.org/10.1093/nar/23.24.5020; Davis, F. F., & Worthington Allen, F. ( 1957 ). Ribonucleic acids from yeast which contain a fifth nucleotide. Journal of Biological Chemistry, 227, 907 – 915.; De Jesus, D. F., Zhang, Z., Kahraman, S., Brown, N. K., Chen, M., Hu, J., … Kulkarni, R. N. ( 2019 ). m6A mRNA methylation regulates human β‐cell biology in physiological states and in type 2 diabetes. Nature Metabolism, 1, 765 – 774. https://doi.org/10.1038/s42255-019-0089-9; Delatte, B., Wang, F., Ngoc, L. V., Collignon, E., Bonvin, E., Deplus, R., … Fuks, F. ( 2016 ). RNA biochemistry. Transcriptome wide distribution and function of RNA hydroxymethylcytosine. Science, 351 ( 6270 ), 282 – 285. https://doi.org/10.1126/science.aac5253; Demirci, H., Murphy, F. t., Belardinelli, R., Kelley, A. C., Ramakrishnan, V., Gregory, S. T., … Jogl, G. ( 2010 ). Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function. RNA, 16 ( 12 ), 2319 – 2324. https://doi.org/10.1261/rna.2357210; Deng, X., Chen, K., Luo, G. Z., Weng, X., Ji, Q., Zhou, T., & He, C. ( 2015 ). Widespread occurrence of N6‐methyladenosine in bacterial mRNA. Nucleic Acids Research, 43 ( 13 ), 6557 – 6567. https://doi.org/10.1093/nar/gkv596; Desrosiers, R., Friderici, K., & Rottman, F. ( 1974 ). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proceedings of the National Academy of Sciences of the United States of America, 71 ( 10 ), 3971 – 3975. https://doi.org/10.1073/pnas.71.10.3971; Dominissini, D., Moshitch‐Moshkovitz, S., Schwartz, S., Salmon‐Divon, M., Ungar, L., Osenberg, S., … Rechavi, G. ( 2012 ). Topology of the human and mouse m6A RNA methylomes revealed by m6A‐seq. Nature, 485 ( 7397 ), 201 – 206. https://doi.org/10.1038/nature11112; Dominissini, D., Nachtergaele, S., Moshitch‐Moshkovitz, S., Peer, E., Kol, N., Ben‐Haim, M. S., … He, C. ( 2016 ). The dynamic N(1)‐methyladenosine methylome in eukaryotic messenger RNA. Nature, 530 ( 7591 ), 441 – 446. https://doi.org/10.1038/nature16998; Duan, H. C., Wei, L. H., Zhang, C., Wang, Y., Chen, L., Lu, Z., … Jia, G. ( 2017 ). ALKBH10B is an RNA N(6)‐methyladenosine demethylase affecting arabidopsis floral transition. Plant Cell, 29 ( 12 ), 2995 – 3011. https://doi.org/10.1105/tpc.16.00912; Edupuganti, R. R., Geiger, S., Lindeboom, R. G. H., Shi, H., Hsu, P. J., Lu, Z., … Vermeulen, M. ( 2017 ). N(6)‐methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural & Molecular Biology, 24 ( 10 ), 870 – 878. https://doi.org/10.1038/nsmb.3462; Eyler, D. E., Franco, M. K., Batool, Z., Wu, M. Z., Debuke, M. L., Dobosz‐Bartoszek, M., … Koutmou, K. S. ( 2019 ). Pseudouridinylation of mRNA coding sequences alters translation. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 46 ), 23068 – 23074. https://doi.org/10.1073/pnas.1821754116; Fan, Y., Evans, C. R., Barber, K. W., Banerjee, K., Weiss, K. J., Margolin, W., … Ling, J. ( 2017 ). Heterogeneity of stop codon readthrough in single bacterial cells and implications for population fitness. Molecular Cell, 67 ( 5 ), 826 – 836 e825. https://doi.org/10.1016/j.molcel.2017.07.010; Fan, Y., Wu, J., Ung, M. H., De Lay, N., Cheng, C., & Ling, J. ( 2015 ). Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Research, 43 ( 3 ), 1740 – 1748. https://doi.org/10.1093/nar/gku1404; Fernandez, I. S., Ng, C. L., Kelley, A. C., Wu, G., Yu, Y. T., & Ramakrishnan, V. ( 2013 ). Unusual base pairing during the decoding of a stop codon by the ribosome. Nature, 500 ( 7460 ), 107 – 110. https://doi.org/10.1038/nature12302; Ferreira, P. G., Oti, M., Barann, M., Wieland, T., Ezquina, S., Friedlander, M. R., … Sammeth, M. ( 2016 ). Sequence variation between 462 human individuals fine‐tunes functional sites of RNA processing. Scientific Reports, 6, 32406. https://doi.org/10.1038/srep32406; Fustin, J. M., Kojima, R., Itoh, K., Chang, H. Y., Ye, S., Zhuang, B., … Okamura, H. ( 2018 ). Two Ck1delta transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 23 ), 5980 – 5985. https://doi.org/10.1073/pnas.1721371115; Garcia‐Campos, M. A., Edelheit, S., Toth, U., Safra, M., Shachar, R., Viukov, S., … Schwartz, S. ( 2019 ). Deciphering the "m(6)A code" via antibody‐independent quantitative profiling. Cell, 178 ( 3 ), 731 – 747 e716. https://doi.org/10.1016/j.cell.2019.06.013; Garrett, S., & Rosenthal, J. J. ( 2012 ). RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science, 335 ( 6070 ), 848 – 851. https://doi.org/10.1126/science.1212795; Gerber, A. P., Herschlag, D., & Brown, P. O. ( 2004 ). Extensive association of functionally and cytotopically related mRNAs with Puf family RNA‐binding proteins in yeast. PLoS Biology, 2 ( 3 ), E79. https://doi.org/10.1371/journal.pbio.0020079; Gilbert, W. V., Bell, T. A., & Schaening, C. ( 2016 ). Messenger RNA modifications: Form, distribution, and function. Science, 352 ( 6292 ), 1408 – 1412. https://doi.org/10.1126/science.aad8711; Grozhik, A. V., & Jaffrey, S. R. ( 2018 ). Distinguishing RNA modifications from noise in epitranscriptome maps. Nature Chemical Biology, 14 ( 3 ), 215 – 225. https://doi.org/10.1038/nchembio.2546; Hansen, B. K., Gupta, R., Baldus, L., Lyon, D., Narita, T., Lammers, M., … Weinert, B. T. ( 2019 ). Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nature Communications, 10 ( 1 ), 1055. https://doi.org/10.1038/s41467-019-09024-0; Haussmann, I. U., Bodi, Z., Sanchez‐Moran, E., Mongan, N. P., Archer, N., Fray, R. G., & Soller, M. ( 2016 ). m(6)A potentiates Sxl alternative pre‐mRNA splicing for robust Drosophila sex determination. Nature, 540 ( 7632 ), 301 – 304. https://doi.org/10.1038/nature20577; Helm, M., & Alfonzo, J. D. ( 2017 ). Posttranscriptional RNA modifications: Playing metabolic games in a cell’s chemical Legoland. Chemical Biology, 21 ( 2 ), 174 – 185.; Helm, M., & Motorin, Y. ( 2017 ). Detecting RNA modifications in the epitranscriptome: Predict and validate. Nature Reviews. Genetics, 18 ( 5 ), 275 – 291. https://doi.org/10.1038/nrg.2016.169; Hentze, M. W., Castello, A., Schwarzl, T., & Preiss, T. ( 2018 ). A brave new world of RNA‐binding proteins. Nature Reviews. Molecular Cell Biology, 19 ( 5 ), 327 – 341. https://doi.org/10.1038/nrm.2017.130; Hoernes, T. P., Clementi, N., Faserl, K., Glasner, H., Breuker, K., Lindner, H., … Erlacher, M. D. ( 2016 ). Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Research, 44 ( 2 ), 852 – 862. https://doi.org/10.1093/nar/gkv1182; Hoernes, T. P., Clementi, N., Juen, M. A., Shi, X., Faserl, K., Willi, J., … Erlacher, M. D. ( 2018 ). Atomic mutagenesis of stop codon nucleotides reveals the chemical prerequisites for release factor‐mediated peptide release. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 3 ), E382 – E389. https://doi.org/10.1073/pnas.1714554115; Hoernes, T. P., Heimdorfer, D., Kostner, D., Faserl, K., Nussbaumer, F., Plangger, R., … Erlacher, M. D. ( 2019 ). Eukaryotic translation elongation is modulated by single natural nucleotide derivatives in the coding sequences of mRNAs. Genes (Basel), 10 ( 2 ). https://doi.org/10.3390/genes10020084; Hoernes, T. P., Huttenhofer, A., & Erlacher, M. D. ( 2016 ). mRNA modifications: Dynamic regulators of gene expression? RNA Biology, 13 ( 9 ), 760 – 765. https://doi.org/10.1080/15476286.2016.1203504; Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., … Chen, J. ( 2018 ). Recognition of RNA N(6)‐methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 20 ( 3 ), 285 – 295. https://doi.org/10.1038/s41556-018-0045-z; Huang, T., Chen, W., Liu, J., Gu, N., & Zhang, R. ( 2019 ). Genome‐wide identification of mRNA 5‐methylcytosine in mammals. Nature Structural & Molecular Biology, 26 ( 5 ), 380 – 388. https://doi.org/10.1038/s41594-019-0218-x; Huber, S. M., van Delft, P., Mendil, L., Bachman, M., Smollett, K., Werner, F., … Balasubramanian, S. ( 2015 ). Formation and abundance of 5‐hydroxymethylcytosine in RNA. Chembiochem, 16 ( 5 ), 752 – 755. https://doi.org/10.1002/cbic.201500013; Hudson, B. H., & Zaher, H. S. ( 2015 ). O6‐Methylguanosine leads to position‐dependent effects on ribosome speed and fidelity. RNA, 21 ( 9 ), 1648 – 1659. https://doi.org/10.1261/rna.052464.115; Ingolia, N. T., Ghaemmaghami, S., Newman, J. R., & Weissman, J. S. ( 2009 ). Genome‐wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324 ( 5924 ), 218 – 223. https://doi.org/10.1126/science.1168978; Jain, M., Olsen, H. E., Paten, B., & Akeson, M. ( 2016 ). The Oxford nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biology, 17 ( 1 ), 239. https://doi.org/10.1186/s13059-016-1103-0; Jarmoskaite, I., Denny, S. K., Vaidyanathan, P. P., Becker, W. R., Andreasson, J. O. L., Layton, C. J., … Herschlag, D. ( 2019 ). A quantitative and predictive model for RNA binding by human Pumilio proteins. Molecular Cell, 74 ( 5 ), 966 – 981 e918. https://doi.org/10.1016/j.molcel.2019.04.012; Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., … He, C. ( 2011 ). N6‐methyladenosine in nuclear RNA is a major substrate of the obesity‐associated FTO. Nature Chemical Biology, 7 ( 12 ), 885 – 887. https://doi.org/10.1038/nchembio.687; Karijolich, J., & Yu, Y. T. ( 2011 ). Converting nonsense codons into sense codons by targeted pseudouridylation. Nature, 474 ( 7351 ), 395 – 398. https://doi.org/10.1038/nature10165; Kariko, K., Muramatsu, H., Welsh, F. A., Ludwig, J., Kato, H., Akira, S., & Weissman, D. ( 2008 ). Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy, 16 ( 11 ), 1833 – 1840. https://doi.org/10.1038/mt.2008.200; Ke, S., Pandya‐Jones, A., Saito, Y., Fak, J. J., Vagbo, C. B., Geula, S., … Darnell, R. B. ( 2017 ). m(6)A mRNA modifications are deposited in nascent pre‐mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes & Development, 31 ( 10 ), 990 – 1006. https://doi.org/10.1101/gad.301036.117; Kennedy, E. M., Courtney, D. G., Tsai, K., & Cullen, B. R. ( 2017 ). Viral Epitranscriptomics. Journal of Virology, 91 ( 9 ), e02263‐16. https://doi.org/10.1128/JVI.02263-16; Khoddami, V., Yerra, A., Mosbruger, T. L., Fleming, A. M., Burrows, C. J., & Cairns, B. R. ( 2019 ). Transcriptome wide profiling of multiple RNA modifications simultaneously at single‐base resolution. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 14 ), 6784 – 6789. https://doi.org/10.1073/pnas.1817334116; Kim, D. D., Kim, T. T., Walsh, T., Kobayashi, Y., Matise, T. C., Buyske, S., & Gabriel, A. ( 2004 ). Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Research, 14 ( 9 ), 1719 – 1725. https://doi.org/10.1101/gr.2855504; Kowalak, J. A., Pomerantz, S. C., Crain, P. F., & McCloskey, J. A. ( 1993 ). A novel method for the determination of post‐transcriptional modification in RNA by mass spectrometry. Nucleic Acids Research, 21 ( 19 ), 4577 – 4585. https://doi.org/10.1093/nar/21.19.4577; Kretschmer, J., Rao, H., Hackert, P., Sloan, K. E., Hobartner, C., & Bohnsack, M. T. ( 2018 ). The m(6)A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′‐3′ exoribonuclease XRN1. RNA, 24 ( 10 ), 1339 – 1350. https://doi.org/10.1261/rna.064238.117; Lareau, L. F., Hite, D. H., Hogan, G. J., & Brown, P. O. ( 2014 ). Distinct stages of the translation elongation cycle revealed by sequencing ribosome‐protected mRNA fragments. eLife, 3, e01257. https://doi.org/10.7554/eLife.01257; Levanon, E. Y., Eisenberg, E., Yelin, R., Nemzer, S., Hallegger, M., Shemesh, R., … Jantsch, M. F. ( 2004 ). Systematic identification of abundant A‐to‐I editing sites in the human transcriptome. Nature Biotechnology, 22, 1001 – 1005.; Lewis, C. J., Pan, T., & Kalsotra, A. ( 2017 ). RNA modifications and structures cooperate to guide RNA‐protein interactions. Nature Reviews. Molecular Cell Biology, 18 ( 3 ), 202 – 210. https://doi.org/10.1038/nrm.2016.163; Li, L. J., Fan, Y. G., Leng, R. X., Pan, H. F., & Ye, D. Q. ( 2018 ). Potential link between m(6)A modification and systemic lupus erythematosus. Molecular Immunology, 93, 55 – 63. https://doi.org/10.1016/j.molimm.2017.11.009; Li, X., Xiong, X., Wang, K., Wang, L., Shu, X., Ma, S., & Yi, C. ( 2016 ). Transcriptome wide mapping reveals reversible and dynamic N(1)‐methyladenosine methylome. Nature Chemical Biology, 12 ( 5 ), 311 – 316. https://doi.org/10.1038/nchembio.2040; Li, X., Xiong, X., Zhang, M., Wang, K., Chen, Y., Zhou, J., … Yi, C. ( 2017 ). Base‐resolution mapping reveals distinct m(1)A methylome in nuclear‐ and mitochondrial‐encoded transcripts. Molecular Cell, 68 ( 5 ), 993 – 1005 e1009. https://doi.org/10.1016/j.molcel.2017.10.019; Li, X., Zhu, P., Ma, S., Song, J., Bai, J., Sun, F., & Yi, C. ( 2015 ). Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nature Chemical Biology, 11 ( 8 ), 592 – 597. https://doi.org/10.1038/nchembio.1836; Licht, K., Hartl, M., Amman, F., Anrather, D., Janisiw, M. P., & Jantsch, M. F. ( 2019 ). Inosine induces context‐dependent recoding and translational stalling. Nucleic Acids Research, 47 ( 1 ), 3 – 14. https://doi.org/10.1093/nar/gky1163; Lin, S., Choe, J., Du, P., Triboulet, R., & Gregory, R. I. ( 2016 ). The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Molecular Cell, 62 ( 3 ), 335 – 345. https://doi.org/10.1016/j.molcel.2016.03.021; Linder, B., Grozhik, A. V., Olarerin‐George, A. O., Meydan, C., Mason, C. E., & Jaffrey, S. R. ( 2015 ). Single‐nucleotide‐resolution mapping of m6A and m6Am throughout the transcriptome. Nature Methods, 12 ( 8 ), 767 – 772. https://doi.org/10.1038/nmeth.3453; Liu, B., Merriman, D. K., Choi, S. H., Schumacher, M. A., Plangger, R., Kreutz, C., … Al‐Hashimi, H. M. ( 2018 ). A potentially abundant junctional RNA motif stabilized by m(6)A and Mg(2). Nature Communications, 9 ( 1 ), 2761. https://doi.org/10.1038/s41467-018-05243-z; Liu, F., Clark, W., Luo, G., Wang, X., Fu, Y., Wei, J., … He, C. ( 2016 ). ALKBH1‐mediated tRNA demethylation regulates translation. Cell, 167 ( 3 ), 816 – 828 e816. https://doi.org/10.1016/j.cell.2016.09.038; Liu, N., Parisien, M., Dai, Q., Zheng, G., He, C., & Pan, T. ( 2013 ). Probing N6‐methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA, 19 ( 12 ), 1848 – 1856. https://doi.org/10.1261/rna.041178.113; Lovejoy, A. F., Riordan, D. P., & Brown, P. O. ( 2014 ). Transcriptome wide mapping of pseudouridines: Pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One, 9 ( 10 ), e110799. https://doi.org/10.1371/journal.pone.0110799; Lugowski, A., Nicholson, B., & Rissland, O. S. ( 2018 ). Determining mRNA half‐lives on a transcriptome wide scale. Methods, 137, 90 – 98. https://doi.org/10.1016/j.ymeth.2017.12.006; Ma, C. J., Ding, J. H., Ye, T. T., Yuan, B. F., & Feng, Y. Q. ( 2019 ). AlkB homologue 1 demethylates N(3)‐methylcytidine in mRNA of mammals. ACS Chemical Biology, 14 ( 7 ), 1418 – 1425. https://doi.org/10.1021/acschembio.8b01001; Maraia, R. J., & Arimbasseri, A. G. ( 2017 ). Factors that shape eukaryotic tRNAomes: Processing, modification and anticodon‐codon use. Biomolecules, 7 ( 1 ), E26. https://doi.org/10.3390/biom7010026; Martinez‐Perez, M., Aparicio, F., Lopez‐Gresa, M. P., Belles, J. M., Sanchez‐Navarro, J. A., & Pallas, V. ( 2017 ). Arabidopsis m(6)A demethylase activity modulates viral infection of a plant virus and the m(6)A abundance in its genomic RNAs. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 40 ), 10755 – 10760. https://doi.org/10.1073/pnas.1703139114; Mauger, D. M., Cabral, B. J., Presnyak, V., Su, S. V., Reid, D. W., Goodman, B., … McFadyen, I. J. ( 2019 ). mRNA structure regulates protein expression through changes in functional half‐life. Proceedings of the National Academy of Sciences of the United States of America, 116 ( 48 ), 24075 – 24083. https://doi.org/10.1073/pnas.1908052116; Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., & Jaffrey, S. R. ( 2012 ). Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell, 149 ( 7 ), 1635 – 1646. https://doi.org/10.1016/j.cell.2012.05.003; Molinie, B., Wang, J., Lim, K. S., Hillebrand, R., Lu, Z. X., Van Wittenberghe, N., … Giallourakis, C. C. ( 2016 ). m(6)A‐LAIC‐seq reveals the census and complexity of the m(6)A epitranscriptome. Nature Methods, 13 ( 8 ), 692 – 698. https://doi.org/10.1038/nmeth.3898; Morse, D. P., & Bass, B. L. ( 1997 ). Detection of inosine in messenger RNA by inosine‐specific cleavage. Biochemistry, 36 ( 28 ), 8429 – 8434. https://doi.org/10.1021/bi9709607; Motorin, Y., & Helm, M. ( 2019 ). Methods for RNA modification mapping using deep sequencing: Established and new emerging technologies. Genes (Basel), 10 ( 1 ), E35. https://doi.org/10.3390/genes10010035; Nachtergaele, S., & He, C. ( 2017 ). The emerging biology of RNA post‐transcriptional modifications. RNA Biology, 14 ( 2 ), 156 – 163. https://doi.org/10.1080/15476286.2016.1267096; Nakamoto, M. A., Lovejoy, A. F., Cygan, A. M., & Boothroyd, J. C. ( 2017 ). mRNA pseudouridylation affects RNA metabolism in the parasite Toxoplasma gondii. RNA, 23 ( 12 ), 1834 – 1849. https://doi.org/10.1261/rna.062794.117; Nishikura, K. ( 2016 ). A‐to‐I editing of coding and non‐coding RNAs by ADARs. Nature Reviews. Molecular Cell Biology, 17 ( 2 ), 83 – 96. https://doi.org/10.1038/nrm.2015.4; Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L. J., … Mann, M. ( 2010 ). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling, 3 ( 104 ), ra3. https://doi.org/10.1126/scisignal.2000475; Pan, T. ( 2018 ). Modifications and functional genomics of human transfer RNA. Cell Research, 28 ( 4 ), 395 – 404. https://doi.org/10.1038/s41422-018-0013-y; Pandey, R. R., & Pillai, R. S. ( 2019 ). Counting the cuts: MAZTER‐Seq quantifies m(6)A levels using a methylation‐sensitive ribonuclease. Cell, 178 ( 3 ), 515 – 517. https://doi.org/10.1016/j.cell.2019.07.006; Patil, D. P., Pickering, B. F., & Jaffrey, S. R. ( 2018 ). Reading m(6)A in the transcriptome: m(6)A‐binding proteins. Trends in Cell Biology, 28 ( 2 ), 113 – 127. https://doi.org/10.1016/j.tcb.2017.10.001; Paul, M. S. ( 1998 ). Inosine exists in mRNA at tissue‐specific levels and is most abundant in brain mRNA. The EMBO Journal, 17 ( 4 ), 1120 – 1127. https://doi.org/10.1093/emboj/17.4.1120; Peer, E., Rechavi, G., & Dominissini, D. ( 2017 ). Epitranscriptomics: Regulation of mRNA metabolism through modifications. Current Opinion in Chemical Biology, 41, 93 – 98. https://doi.org/10.1016/j.cbpa.2017.10.008; Pendleton, K. E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., Tu, B. P., & Conrad, N. K. ( 2017 ). The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell, 169 ( 5 ), 824 – 835 e814. https://doi.org/10.1016/j.cell.2017.05.003; Peng, X., Xu, X., Wang, Y., Hawke, D. H., Yu, S., Han, L., … Mills, G. B. ( 2018 ). A‐to‐I RNA editing contributes to proteomic diversity in cancer. Cancer Cell, 33 ( 5 ), 817 – 828 e817. https://doi.org/10.1016/j.ccell.2018.03.026; Perry, R. P., & Kelley, D. E. ( 1974 ). Existence of methylated messenger RNA in mouse L cells. Cell, 1 ( 1 ), 37 – 42. https://doi.org/10.1016/0092-8674(74)90153-6; Perry, R. P., Kelley, D. E., Friderici, K., & Rottman, F. ( 1975 ). The methylated constituents of L cell messenger RNA: Evidence for an unusual cluster at the 5′ terminus. Cell, 4 ( 4 ), 387 – 394. https://doi.org/10.1016/0092-8674(75)90159-2; Phizicky, E. M., & Hopper, A. K. ( 2015 ). tRNA processing, modification, and subcellular dynamics: Past, present, and future. RNA, 21 ( 4 ), 483 – 485. https://doi.org/10.1261/rna.049932.115; Pietrocola, F., Galluzzi, L., Bravo‐San Pedro, J. M., Madeo, F., & Kroemer, G. ( 2015 ). Acetyl coenzyme A: A central metabolite and second messenger. Cell Metabolism, 21 ( 6 ), 805 – 821. https://doi.org/10.1016/j.cmet.2015.05.014; Pomerantz, S. C., & Mccloskey, J. A. ( 1990 ). Analysis of RNA hydrolyzates by liquid‐chromatography mass‐spectrometry. Methods in Enzymology, 193, 796 – 824. https://doi.org/10.1016/0076-6879(90)93452-Q; Presnyak, V., Alhusaini, N., Chen, Y. H., Martin, S., Morris, N., Kline, N., … Coller, J. ( 2015 ). Codon optimality is a major determinant of mRNA stability. Cell, 160 ( 6 ), 1111 – 1124. https://doi.org/10.1016/j.cell.2015.02.029; Prus, G., Hoegl, A., Weinert, B. T., & Choudhary, C. ( 2019 ). Analysis and interpretation of protein post‐translational modification site stoichiometry. Trends in Biochemical Sciences, 44 ( 11 ), 943 – 960. https://doi.org/10.1016/j.tibs.2019.06.003; Radhakrishnan, A., Chen, Y. H., Martin, S., Alhusaini, N., Green, R., & Coller, J. ( 2016 ). The DEAD‐box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality. Cell, 167 ( 1 ), 122 – 132 e129. https://doi.org/10.1016/j.cell.2016.08.053; Rajecka, V., Skalicky, T., & Vanacova, S. ( 2019 ). The role of RNA adenosine demethylases in the control of gene expression. Biochimica et Biophysica Acta ‐ Gene Regulatory Mechanisms, 1862 ( 3 ), 343 – 355. https://doi.org/10.1016/j.bbagrm.2018.12.001; Ramaswami, G., Zhang, R., Piskol, R., Keegan, L. P., Deng, P., O’Connell, M. A., & Li, J. B. ( 2013 ). Identifying RNA editing sites using RNA sequencing data alone. Nature Methods, 10 ( 2 ), 128 – 132. https://doi.org/10.1038/nmeth.2330; Ranjan, N., & Rodnina, M. V. ( 2017 ). Thio‐modification of tRNA at the wobble position as regulator of the kinetics of decoding and translocation on the ribosome. Journal of the American Chemical Society, 139 ( 16 ), 5857 – 5864. https://doi.org/10.1021/jacs.7b00727; Roost, C., Lynch, S. R., Batista, P. J., Qu, K., Chang, H. Y., & Kool, E. T. ( 2015 ). Structure and thermodynamics of N6‐methyladenosine in RNA: A spring‐loaded base modification. Journal of the American Chemical Society, 137 ( 5 ), 2107 – 2115. https://doi.org/10.1021/ja513080v; Rottman, F., Shatkin, A. J., & Perry, R. P. ( 1974 ). Sequences containing methylated nucleotides at the 5′ termini of messenger RNAs: Possible implications for processing. Cell, 3 ( 3 ), 197 – 199. https://doi.org/10.1016/0092-8674(74)90131-7; Roundtree, I. A., Evans, M. E., Pan, T., & He, C. ( 2017 ). Dynamic RNA modifications in gene expression regulation. Cell, 169 ( 7 ), 1187 – 1200. https://doi.org/10.1016/j.cell.2017.05.045; Roundtree, I. A., Luo, G. Z., Zhang, Z., Wang, X., Zhou, T., Cui, Y., … He, C. ( 2017 ). YTHDC1 mediates nuclear export of N(6)‐methyladenosine methylated mRNAs. eLife, 6, e31311. https://doi.org/10.7554/eLife.31311; Rueter, S. M., Dawson, T. R., & Emeson, R. B. ( 1999 ). Regulation of alternative splicing by RNA editing. Nature, 399 ( 6731 ), 75 – 80. https://doi.org/10.1038/19992; Russell, S. P., & Limbach, P. A. ( 2013 ). Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC‐UV‐MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 923‐924, 74 – 82. https://doi.org/10.1016/j.jchromb.2013.02.010; Safra, M., Sas‐Chen, A., Nir, R., Winkler, R., Nachshon, A., Bar‐Yaacov, D., … Schwartz, S. ( 2017 ). The m1A landscape on cytosolic and mitochondrial mRNA at single‐base resolution. Nature, 551 ( 7679 ), 251 – 255. https://doi.org/10.1038/nature24456; Sakurai, M., Ueda, H., Yano, T., Okada, S., Terajima, H., Mitsuyama, T., … Suzuki, T. ( 2014 ). A biochemical landscape of A‐to‐I RNA editing in the human brain transcriptome. Genome Research, 24 ( 3 ), 522 – 534. https://doi.org/10.1101/gr.162537.113; Sakurai, M., Yano, T., Kawabata, H., Ueda, H., & Suzuki, T. ( 2010 ). Inosine cyanoethylation identifies A‐to‐I RNA editing sites in the human transcriptome. Nature Chemical Biology, 6 ( 10 ), 733 – 740. https://doi.org/10.1038/nchembio.434; Saletore, Y., Meyer, K., Korlach, J., Vilfan, I. D., Jaffrey, S., & Mason, C. E. ( 2012 ). The birth of the epitranscriptome: Deciphering the function of RNA modifications. Genome Biology, 13 ( 10 ), 175. https://doi.org/10.1186/gb-2012-13-10-175; Schwartz, M. H., & Pan, T. ( 2016 ). Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures. Nucleic Acids Research, 44 ( 1 ), 294 – 303. https://doi.org/10.1093/nar/gkv1379; Schwartz, S. ( 2016 ). Cracking the epitranscriptome. RNA, 22 ( 2 ), 169 – 174. https://doi.org/10.1261/rna.054502.115; Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., Han, D., … He, C. ( 2014 ). N6‐methyladenosine‐dependent regulation of messenger RNA stability. Nature, 505 ( 7481 ), 117 – 120. https://doi.org/10.1038/nature12730; Schwartz, S., Bernstein, D. A., Mumbach, M. R., Jovanovic, M., Herbst, R. H., Leon‐Ricardo, B. X., … Regev, A. ( 2014 ). Transcriptome wide mapping reveals widespread dynamic‐regulated pseudouridylation of ncRNA and mRNA. Cell, 159 ( 1 ), 148 – 162. https://doi.org/10.1016/j.cell.2014.08.028; Sergiev, P. V., Aleksashin, N. A., Chugunova, A. A., Polikanov, Y. S., & Dontsova, O. A. ( 2018 ). Structural and evolutionary insights into ribosomal RNA methylation. Nature Chemical Biology, 14 ( 3 ), 226 – 235. https://doi.org/10.1038/nchembio.2569; Shi, H., Wei, J., & He, C. ( 2019 ). Where, when, and how: Context‐dependent functions of RNA methylation writers, readers, and erasers. Molecular Cell, 74 ( 4 ), 640 – 650. https://doi.org/10.1016/j.molcel.2019.04.025; Shi, L., & Tu, B. P. ( 2015 ). Acetyl‐CoA and the regulation of metabolism: Mechanisms and consequences. Current Opinion in Cell Biology, 33, 125 – 131. https://doi.org/10.1016/j.ceb.2015.02.003; Sibbritt, T., Patel, H. R., & Preiss, T. ( 2013 ). Mapping and significance of the mRNA methylome. WIREs RNA, 4 ( 4 ), 397 – 422. https://doi.org/10.1002/wrna.1166; Singh, G., Pratt, G., Yeo, G. W., & Moore, M. J. ( 2015 ). The clothes make the mRNA: Past and present trends in mRNP fashion. Annual Review of Biochemistry, 84, 325 – 354. https://doi.org/10.1146/annurev-biochem-080111-092106; Spitale, R. C., Flynn, R. A., Zhang, Q. C., Crisalli, P., Lee, B., Jung, J. W., … Chang, H. Y. ( 2015 ). Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 519 ( 7544 ), 486 – 490. https://doi.org/10.1038/nature14263; Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., … Preiss, T. ( 2012 ). Widespread occurrence of 5‐methylcytosine in human coding and non‐coding RNA. Nucleic Acids Research, 40 ( 11 ), 5023 – 5033. https://doi.org/10.1093/nar/gks144; Su, D., Chan, C. T., Gu, C., Lim, K. S., Chionh, Y. H., McBee, M. E., … Dedon, P. C. ( 2014 ). Quantitative analysis of ribonucleoside modifications in tRNA by HPLC‐coupled mass spectrometry. Nature Protocols, 9 ( 4 ), 828 – 841. https://doi.org/10.1038/nprot.2014.047; Sun, H., Zhang, M., Li, K., Bai, D., & Yi, C. ( 2019 ). Cap‐specific, terminal N(6)‐methylation by a mammalian m(6)Am methyltransferase. Cell Research, 29 ( 1 ), 80 – 82. https://doi.org/10.1038/s41422-018-0117-4; Sun, L., Xu, Y., Bai, S., Bai, X., Zhu, H., Dong, H., … Song, C. P. ( 2019 ). Transcriptome wide analysis of pseudouridylation of mRNA and non‐coding RNAs in arabidopsis. Journal of Experimental Botany, 70 ( 19 ), 5089 – 5600. https://doi.org/10.1093/jxb/erz273; Sun, S., & Zhang, H. ( 2015 ). Large‐scale measurement of absolute protein glycosylation stoichiometry. Analytical Chemistry, 87 ( 13 ), 6479 – 6482. https://doi.org/10.1021/acs.analchem.5b01679; Svidritskiy, E., Madireddy, R., & Korostelev, A. A. ( 2016 ). Structural basis for translation termination on a pseudouridylated stop codon. Journal of Molecular Biology, 428 ( 10 Pt B ), 2228 – 2236. https://doi.org/10.1016/j.jmb.2016.04.018; Tardu, M., Jones, J. D., Kennedy, R. T., Lin, Q., & Koutmou, K. S. ( 2019 ). Identification and quantification of modified nucleosides in Saccharomyces cerevisiae mRNAs. ACS Chemical Biology, 14 ( 7 ), 1403 – 1409. https://doi.org/10.1021/acschembio.9b00369; Trixl, L., & Lusser, A. ( 2019 ). The dynamic RNA modification 5‐methylcytosine and its emerging role as an epitranscriptomic mark. WIREs RNA, 10 ( 1 ), e1510. https://doi.org/10.1002/wrna.1510; Tsai, C. F., Wang, Y. T., Yen, H. Y., Tsou, C. C., Ku, W. C., Lin, P. Y., … Chen, Y. J. ( 2015 ). Large‐scale determination of absolute phosphorylation stoichiometries in human cells by motif‐targeting quantitative proteomics. Nature Communications, 6, 6622. https://doi.org/10.1038/ncomms7622; Ule, J., Jensen, K. B., Ruggiu, M., Mele, A., Ule, A., & Darnell, R. B. ( 2003 ). CLIP identifies Nova‐regulated RNA networks in the brain. Science, 302 ( 5648 ), 1212 – 1215. https://doi.org/10.1126/science.1090095; Vaidyanathan, P. P., AlSadhan, I., Merriman, D. K., Al‐Hashimi, H. M., & Herschlag, D. ( 2017 ). Pseudouridine and N(6)‐methyladenosine modifications weaken PUF protein/RNA interactions. RNA, 23 ( 5 ), 611 – 618. https://doi.org/10.1261/rna.060053.116; Walkley, C. R., & Li, J. B. ( 2017 ). Rewriting the transcriptome: Adenosine‐to‐inosine RNA editing by ADARs. Genome Biology, 18 ( 1 ), 205. https://doi.org/10.1186/s13059-017-1347-3; Wang, H., Hu, X., Huang, M., Liu, J., Gu, Y., Ma, L., … Cao, X. ( 2019 ). Mettl3‐mediated mRNA m(6)A methylation promotes dendritic cell activation. Nature Communications, 10 ( 1 ), 1898. https://doi.org/10.1038/s41467-019-09903-6; Wang, R., Luo, Z., He, K., Delaney, M. O., Chen, D., & Sheng, J. ( 2016 ). Base pairing and structural insights into the 5‐formylcytosine in RNA duplex. Nucleic Acids Research, 44 ( 10 ), 4968 – 4977. https://doi.org/10.1093/nar/gkw235; Wang, R., Zhao, B. S., Roundtree, I. A., Zhike, L., Dali, H., Honghui, M., … He, C. ( 2015 ). N6‐methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 161 ( 6 ), 1388 – 1399. https://doi:10.1016/j.cell.2015.05.014; Wang, Y., Zheng, Y., & Beal, P. A. ( 2017 ). Adenosine deaminases that act on RNA (ADARs). Enzyme, 41, 215 – 268. https://doi.org/10.1016/bs.enz.2017.03.006; Wei, J., Liu, F., Lu, Z., Fei, Q., Ai, Y., He, P. C., … He, C. ( 2018 ). Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Molecular Cell, 71 ( 6 ), 973 – 985 e975. https://doi.org/10.1016/j.molcel.2018.08.011; Weinert, B. T., Iesmantavicius, V., Moustafa, T., Scholz, C., Wagner, S. A., Magnes, C., … Choudhary, C. ( 2015 ). Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Molecular Systems Biology, 11 ( 10 ), 833. https://doi.org/10.15252/msb.156513; Wu, C. C., Zinshteyn, B., Wehner, K. A., & Green, R. ( 2019 ). High‐resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Molecular Cell, 73 ( 5 ), 959 – 970 e955. https://doi.org/10.1016/j.molcel.2018.12.009; Wu, R., Haas, W., Dephoure, N., Huttlin, E. L., Zhai, B., Sowa, M. E., & Gygi, S. P. ( 2011 ). A large‐scale method to measure absolute protein phosphorylation stoichiometries. Nature Methods, 8 ( 8 ), 677 – 683. https://doi.org/10.1038/nmeth.1636

  20. 20
    Academic Journal