-
1Dissertation/ Thesis
Thesis Advisors: Prieto Losada, María Henar, Moñino Espino, María José, García Martín, Abelardo, Universidad de Extremadura. Departamento de Ingeniería del Medio Agronómico y Forestal
مصطلحات موضوعية: Riego, Modelos de cultivo, Necesidades hídricas de cultivos, Ciruelo japonés, Irrigation, Crop models, Crop water need, Japanese plum, 3103.05 Técnicas de Cultivo, 3102.05 Riego
URL الوصول: http://hdl.handle.net/10662/1675
-
2Dissertation/ Thesis
المؤلفون: Rodriguez Espinoza, Jeferson
المساهمون: Ramirez Villegas, Julian Armando, Mejía de Tafur, Maria Sara, orcid:0000-0001-5914-6571, 57217764588
مصطلحات موضوعية: 630 - Agricultura y tecnologías relacionadas, Arroz, Rice, Ecofisiología, Ecophysiology, Modelos vegetales, Plant models, Productividad agrícola, Agricultural productivity, Modelos de simulación, Simulation models, Modelos de Cultivo, Algoritmo genetico, Variabilidad climática, Climate Variability, ORYZA, DSSAT, Aquacrop, agroclimR, Crop Modeling, Genetic Algorithm
جغرافية الموضوع: Colombia
وصف الملف: xii, 85 páginas; application/pdf
Relation: Ahmed, M., Asif, M., Hirani, A. H., Akram, M. N., & Goyal, A. (2013). Modeling for agricultural sustainability: A review. Agricultural Sustainability. Elsevier Inc. http://doi.org/10.1016/B978-0-12-404560-6.00007-1; Ali, M. H., & Talukder, M. S. U. (2008). Increasing water productivity in crop production-A synthesis. Agricultural Water Management, 95(11), 1201–1213. http://doi.org/10.1016/j.agwat.2008.06.008; Amiri, E., Razavipour, T., Farid, A., & Bannayan, M. (2011). Effects of Crop Density and Irrigation Management on Water Productivity of Rice Production in Northern Iran: Field and Modeling Approach. Communications in Soil Science and Plant Analysis, 42(17), 2085–2099. http://doi.org/10.1080/00103624.2011.596238; Amiri, E., Rezaei, M., Rezaei, E. E., & Bannayan, M. (2014). Evaluation of Ceres-Rice, Aquacrop and Oryza2000 Models in Simulation of Rice Yield Response to Different Irrigation and Nitrogen Management Strategies. Journal of Plant Nutrition, 37(11), 1749–1769. http://doi.org/10.1080/01904167.2014.888750; Anwar, M. R., Liu, D. L., Macadam, I., & Kelly, G. (2013). Adapting agriculture to climate change: A review. Theoretical and Applied Climatology, 113(1–2), 225–245. http://doi.org/10.1007/s00704-012-0780-1; Belder, P., Bouman, B. A. M., & Spiertz, J. H. J. (2007). Exploring options for water savings in lowland rice using a modelling approach. Agricultural Systems, 92(1–3), 91–114. http://doi.org/10.1016/j.agsy.2006.03.001; Boote, K. J., Jones, J. W., White, J. W., Asseng, S., & Lizaso, J. I. (2013). Putting mechanisms into crop production models. Plant, Cell and Environment, 36(9), 1658–1672. http://doi.org/10.1111/pce.12119; Bouman, B. a. M., & van Laar, H. H. (2006). Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 87(3), 249–273. http://doi.org/10.1016/j.agsy.2004.09.011; Bouman, B. a M., Kropff, M., Tuong, T., Wopereis, M., Ten Berge, H., & van Laar, H. (2001). ORYZA2000: Modeling lowland rice.; Brouder, S. M., & Volenec, J. J. (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiologia Plantarum, 133(4), 705–724. http://doi.org/10.1111/j.1399-3054.2008.01136.x; Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., … Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 5(2), 1–6. http://doi.org/10.1038/nclimate2100; Camargo, G. G. T., & Kemanian, A. R. (2016). Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129. http://doi.org/10.1016/j.agrformet.2016.01.013; Cao, H., Hanan, J. S., Liu, Y., Liu, Y., Yue, Y., Zhu, D., … Bao, T. (2012). Comparison of Crop Model Validation Methods. Journal of Integrative Agriculture, 11(8), 1274–1285. http://doi.org/10.1016/S2095-3119(12)60124-5; Cleves Leguízamo, J. A., Martínez Bernal, L. F., & Toro C., J. (2016). Los balances hídricos agrícolas en modelos de simulación agroclimáticos. Una revisión analítica. Revista Colombiana de Ciencias Hortícolas, 10(1), 149–163. http://doi.org/10.17584/rcch.2016v10i1.4460; Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Pati??o, V. H., … Jimenez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE, 11(8). http://doi.org/10.1371/journal.pone.0161620; Cortés, C., Bernal, J., Díaz, E., & Méndez, J. (2013). uso del modelo AquaCrop para estimar rendimientos para el cultivo de arroz en los Departamentos de Tolima y Meta, 53. Retrieved from http://www.fao.org/docrep/field/009/i3430s/i3430s.pdf; DANE, & FEDEARROZ. (2016). 4 ° Censo Nacional Arrocero 2016. Retrieved from http://www.dane.gov.co/; Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., … Sheffield, J. (2015). The Global Gridded Crop Model Intercomparison: Data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 8(2), 261–277. http://doi.org/10.5194/gmd-8-261-2015; Ewert, F., Ro??tter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., … Asseng, S. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 72. http://doi.org/10.1016/j.envsoft.2014.12.003; FAO. (2009). How to Feed the World in 2050. Insights from an Expert Meeting at FAO, 2050(1), 1–35. http://doi.org/10.1111/j.1728-4457.2009.00312.x; Ge, H., Ma, F., Li, Z., & Du, C. (2021). Global sensitivity analysis for ceres-rice model under different cultivars and specific-stage variations of climate parameters. Agronomy, 11(12). https://doi.org/10.3390/agronomy11122446; Gonzalez-Dugo, V., Durand, J.-L., & Gastal, F. (2010). Water deficit and nitrogen nutrition of crops. A review. Agronomy for Sustainable Development, 30(3), 529–544. http://doi.org/10.1051/agro/2009059; Guo, D., Zhao, R., Xing, X., & Ma, X. (2020). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115–1133. https://doi.org/10.1080/03650340.2019.1657845; Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., … Thorburn, P. (2015). Environmental Modelling & Software Agricultural production systems modelling and software : Current status and future prospects *, (2014), 1–11.; Iizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., … Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5(May), 3712. http://doi.org/10.1038/ncomms4712; IPCC. (2014). Cambio Climático 2014: Informe de síntesis / Resumen para responsables de políticas. Cambio Climático 2001: Informe de Síntesis, 2–38. http://doi.org/10.1016/S1353-8020(09)70300-1; Janssen, S. J. C., Porter, C. H., Moore, A. D., Athanasiadis, I. N., Foster, I., Jones, J. W., & Antle, J. M. (2017). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.017; Jin, X. L., Feng, H. K., Zhu, X. K., Li, Z. H., Song, S. N., Song, X. Y., . & Guo, W. S. (2014). Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PloS one, 9(1), e86938.; Jing, Q. (2007). Improving resource use efficiency in rice-based cropping systems: Experimentation and modelling. Production Ecology and Resource Conservation (Vol. Ph.D.).; Jones, J. ., Hoogenboom, G., Porter, C. ., Boote, K. J., Batchelor, W. ., Hunt, L. ., … Ritchie, J. . (2003). The DSSAT cropping system model. European Journal of Agronomy (Vol. 18). http://doi.org/10.1016/S1161-0301(02)00107-7; Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Brief history of agricultural systems modeling. Agsy. http://doi.org/10.1016/j.agsy.2016.05.014; Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.021; Kadiyala, M. D. M., Jones, J. W., Mylavarapu, R. S., Li, Y. C., & Reddy, M. D. (2012). Identifying irrigation and nitrogen best management practices for aerobic rice-maize cropping system for semi-arid tropics using CERES-rice and maize models. Agricultural Water Management, 149, 23–32. http://doi.org/10.1016/j.agwat.2014.10.019; Kar, G., Kumar, A., & Chandra Bhaskar Burla, B. (2009). Simulation of growth and productivity of rice (Oryza sativa) under tropical monsoon climate. Indian Journal of Agronomy, 54(1), 52–57.; Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Advances in Agronomy (1st ed., Vol. 111). Elsevier Inc. http://doi.org/10.1016/B978-0-12-387689-8.00004-7; Larijani, B. A., Sarvestani, Z. T., Nematzadeh, G., Manschadi, a. M., & Amiri, E. (2011). Simulating Phenology, Growth and Yield of Transplanted Rice at Different Seedling Ages in Northern Iran Using ORYZA2000. Rice Science, 18(4), 321–334. http://doi.org/10.1016/S1672-6308(12)60011-0; Li, T., Angeles, O., Marcaida Iii, M., Manalo, E., Manalili, M. P., Radanielson, A., & Mohanty, S. (2017). From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology, 237, 246–256. http://doi.org/10.1016/j.agrformet.2017.02.025; Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K. J., Adam, M., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. http://doi.org/10.1111/gcb.12758; Li, T., Raman, A. K., Marcaida, M., Kumar, A., Angeles, O., & Radanielson, A. M. (2013). Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Research, 149, 312–321. http://doi.org/10.1016/j.fcr.2013.05.006; Liu, J., Liu, Z., Zhu, A. X., Shen, F., Lei, Q., & Duan, Z. (2019). Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of the Total Environment, 651, 953–968. https://doi.org/10.1016/j.scitotenv.2018.09.254; Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water Footprint of crop productions: A review. Science of the Total Environment, 548–549, 236–251. http://doi.org/10.1016/j.scitotenv.2016.01.022; Maniruzzaman, M., Talukder, M. S. U., Khan, M. H., Biswas, J. C., & Nemes, A. (2015). Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agricultural Water Management, 159, 331–340. http://doi.org/10.1016/j.agwat.2015.06.022; Matthews, R. B., Rivington, M., Muhammed, S., Newton, A. C., & Hallett, P. D. (2013). Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security, 2(1), 24–28. http://doi.org/10.1016/j.gfs.2012.11.009; McCall, J. (2005). Genetic algorithms for modelling and optimisation. Journal of computational and Applied Mathematics, 184(1), 205-222.; Mishra, A., Singh, R., Raghuwanshi, N. S., Chatterjee, C., & Froebrich, J. (2013). Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. The Science of the Total Environment, 468–469 Su, S132-8. http://doi.org/10.1016/j.scitotenv.2013.05.080; Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production , supply , trade , and consumption, 7–14. http://doi.org/10.1111/nyas.12540; Neto, D. D. (2010). Calibração e avaliação do modelo ORYZA-APSIM para o arroz de terras altas no Brasil 1 Calibration and evaluation of the ORYZA-APSIM crop model for upland rice in Material e métodos, 605–613.; Nissanka, S. P., Karunaratne, A. S., Perera, R., Weerakoon, W. M. W., Thorburn, P. J., & Wallach, D. (2015). Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling and Software, 70, 128–137. http://doi.org/10.1016/j.envsoft.2015.04.007; Porter, C. H., Villalobos, C., Holzworth, D., Nelson, R., White, J. W., Athanasiadis, I. N., … Jones, J. W. (2014). Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling and Software, 62, 495–508. http://doi.org/10.1016/j.envsoft.2014.09.004; Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agronomy Journal, 101(3), 438–447. http://doi.org/10.2134/agronj2008.0140s; Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989. http://doi.org/10.1038/ncomms6989; Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., … Winter, J. M. (2012). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 1–17. http://doi.org/10.1016/j.agrformet.2012.09.011; Saadati, Z., Pirmoradian, N., & Rezaei, M. (2011). CALIBRATION AND EVALUATION OF AquaCrop MODEL IN RICE GROWTH SIMULATION UNDER DIFFERENT IRRIGATION; Sánchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: A review. Global Change Biology, 20(2), 408–417. http://doi.org/10.1111/gcb.12389; Sanint, L. (2010). Nuevos retos y grandes oportunidades tecnológicas para los sistemas arroceros: Produccion, seguridad alimentaria y disminucion de la pobreza en América Latina y el Caribe. Produccion eco-eficiente del arroz en América latina. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/2010_Degiovanni-Produccion_eco-eficiente_del_arroz.pdf; Scrucca L (2013). “GA: A Package for Genetic Algorithms in R.” Journal of Statistical Software, 53(4), 1–37. doi:10.18637/jss.v053.i04.; Scrucca L (2017). “On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution.” The R Journal, 9(1), 187–206. doi:10.32614/RJ-2017-008.; Semenov, M. A., & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology, 73(3–4), 265–283. http://doi.org/10.1016/0168-1923(94)05078-K; Singh, U., Tsuji, G.Y., Godwin, D.C. 1990. Planting new ideas in DSSAT: the CERES-Rice model. Agrotechnology Transfer, 10:1-7. University of Hawaii, Honolulu, Hawaii, USA.; Sotelo, S., Guevara, E., Llanos-Herrera, L., Agudelo, D., Esquivel, A., Rodriguez, J., . & Ramirez-Villegas, J. (2020). Pronosticos AClimateColombia: A system for the provision of information for climate risk reduction in Colombia. Computers and Electronics in Agriculture, 174, 105486. https://doi.org/10.1016/j.compag.2020.105486; Subash, N., & Ram Mohan, H. S. (2012). Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agricultural and Forest Meteorology, 164, 71–81. http://doi.org/10.1016/j.agrformet.2012.05.008; Soundharajan, B., & Sudheer, K. P. (2013). Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework. Paddy and Water Environment, 11(1–4), 59–71. https://doi.org/10.1007/s10333-011-0293-z; Tan, J., Cui, Y., & Luo, Y. (2017). Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. European Journal of Agronomy, 91(August), 54–62. https://doi.org/10.1016/j.eja.2017.09.001; Tan, J., Zhao, S., Liu, B., Luo, Y., & Cui, Y. (2021). Global sensitivity analysis and uncertainty analysis for drought stress parameters in the ORYZA (v3) model. Agronomy Journal, 113(2), 1407–1419. https://doi.org/10.1002/agj2.20580; Tan, J., Cui, Y., & Luo, Y. (2016). Global sensitivity analysis of outputs over rice-growth process in ORYZA model. Environmental Modelling and Software, 83, 36–46. https://doi.org/10.1016/j.envsoft.2016.05.001; Van Nguyen, N., & Ferrero, A. (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1), 1–9. http://doi.org/10.1007/s10333-005-0031-5; Yang, J. M., Yang, J. Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127, 81–89. http://doi.org/10.1016/j.agsy.2014.01.008; XING, H. min, XU, X. gang, LI, Z. hai, CHEN, Y. jin, FENG, H. kuan, YANG, G. jun, & CHEN, Z. xia. (2017). Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test. Journal of Integrative Agriculture, 16(11), 2444–2458. https://doi.org/10.1016/S2095-3119(16)61626-X; https://repositorio.unal.edu.co/handle/unal/85667; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
3Academic Journal
المؤلفون: Héctor Alberto Chica Ramírez, Andrés Javier Peña Quiñones, José Fernando Giraldo Jiménez, Diego Obando Bonilla, Néstor Miguel Riaño Herrera
المصدر: Revista Facultad Nacional de Agronomía Medellín, Vol 67, Iss 2, Pp 7365-7373 (2014)
مصطلحات موضوعية: Series de tiempo, meteorologia, modelos de cultivo, variabilidad climática. / Time series, meteorology, crop models, climate variability., Agriculture, Agriculture (General), S1-972
وصف الملف: electronic resource
-
4Conference
مصطلحات موضوعية: Modelos de cultivo, Impactos climáticos, Variabilidad climática, Agroclimatología, Crop models, Climate impacts, Climate variability, Agroclimatology
Relation: Publicaciones de la Asociación Española de Climatología. Serie A;8; http://hdl.handle.net/20.500.11765/8338
-
5Dissertation/ Thesis
-
6Academic Journal
المؤلفون: Chica Ramírez, Héctor Alberto, Peña Quiñones, Andrés Javier, Giraldo Jiménez, José Fernando, Obando Bonilla, Diego, Riaño Herrera, Néstor Miguel
المصدر: Revista Facultad Nacional de Agronomía Medellín; Vol. 67 No. 2 (2014); 7365-7373 ; Revista Facultad Nacional de Agronomía Medellín; v. 67 n. 2 (2014); 7365-7373 ; Revista Facultad Nacional de Agronomía Medellín; Vol. 67 Núm. 2 (2014); 7365-7373 ; 2248-7026 ; 0304-2847
مصطلحات موضوعية: Time series, meteorology, crop models, climate variability, Series de tiempo, meteorologia, modelos de cultivo, variabilidad climática
وصف الملف: application/pdf
Relation: https://revistas.unal.edu.co/index.php/refame/article/view/44179/45464; Cao Abad, R. 2002 Introducción a la simulación y teoría de colas. Primera edición. NETBIBLO, S.L., Coruña. 217 p.; Charles, S., J. Hughes and P. Guttorp. 1997. Non homogeneous Hidden Markov model for Precipitation. NRCSE-TRS No. 004.; Espinosa, E., M. Cantú, M. y V. Leiva. 2004. Caracterización y aplicación de la distribución Birnbaum-Saunders como modelo de tiempos de vida. Revista Agraria -Nueva Época- 1(1): 19-27.; Fowler, H.J., C.G. Kilsby, P.E. O'Connell and A. Burton. 2005. A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change. Journal of Hydrology 308(1-4): 50-66.; Gálvez, G., A. Sigarroa, T. López, J. Fernández y J. Fernández. 2010. Modelación de cultivos agrícolas. Algunos ejemplos. Cultivos Tropicales 31(3): 60-65.; Grondona, M., G. Podestá, M. Bidegain, M. Marino and H. Hordij. 2000. A stochastic precipitation generator conditioned on ENSO phase: A case study in southeastern South America. Journal of Climate 13(16): 2973-2986.; Jones, P. and P. Thornton. 1999. Fitting a third-order Markov rainfall model to interpolated climate surfaces. Agricultural and Forest Meteorology 97(3): 213231.; Jones, P. and P. Thornton. 2000. MarkSim: Software to generate daily weather data for Latin America and Africa. Agronomy Journal 92(3): 445-453.; León. G., J. Zea y J. Eslava. 2000. Circulación general del trópico y la zona de confluencia intertropical en Colombia. Meteorología Colombiana 1:31-38.; Maravall, A. and D. Peña. 1992. Missing observations and additive outliers in time series models. Working papers statistics and econometric series 92-40 (28). Universidad Carlos III, Madrid. 53 p.; Mood, A. and F. Graybill. 1963. Introduction to the Theory of Statistics. Second edition. McGraw-Hill Book Company, Inc. New York. 443 p.; Moreno, L. 1993. Procesos Estocásticos. Primera edición. Universidad Nacional de Colombia, Bogotá, 151 p.; Peña, A. 2000. Incidencia de los fenómenos El Niño y La Niña sobre el clima del valle del río Cauca. Trabajo de Grado. Ingeniería Agronómica. Universidad Nacional de Colombia, Palmira 110 p.; Schneider, T. 2001. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. Journal of Climate 14(5): 853-871.; Trenberth, K. 1997. The definition of El Niño. Bulletin of American Meteorological Society 78(12): 2771-2777.; Wei, W. 1990. Time Series Analysis. Addison-Wesley Publishing Company, USA. 478 p.; Wilks, D. 1995. Statistical Methods in Atmospheric Sciences. Academic Press, USA. 467 p.; https://revistas.unal.edu.co/index.php/refame/article/view/44179
-
7Academic Journal
المؤلفون: Chica Ramírez, Héctor Alberto, Peña Quiñones, Andrés Javier, Giraldo Jiménez, José Fernando, Obando Bonilla, Diego, Riaño Herrera, Néstor Miguel
مصطلحات موضوعية: Series de tiempo, meteorologia, modelos de cultivo, variabilidad climática. / Time series, meteorology, crop models, climate variability
وصف الملف: application/pdf
Relation: http://revistas.unal.edu.co/index.php/refame/article/view/44179; Universidad Nacional de Colombia Revistas electrónicas UN Revista Facultad Nacional de Agronomía Medellín; Revista Facultad Nacional de Agronomía Medellín; Revista Facultad Nacional de Agronomía Medellín; Vol. 67, núm. 2 (2014); 7365-7373 2248-7026 0304-2847; Chica Ramírez, Héctor Alberto and Peña Quiñones, Andrés Javier and Giraldo Jiménez, José Fernando and Obando Bonilla, Diego and Riaño Herrera, Néstor Miguel (2014) Suemulador: herramienta para la simulación de datos faltantes en series climáticas diarias de zonas ecuatoriales suemulador: a tool for missing data simulation of climatic series in equatorial zones. Revista Facultad Nacional de Agronomía Medellín; Vol. 67, núm. 2 (2014); 7365-7373 2248-7026 0304-2847 .; https://repositorio.unal.edu.co/handle/unal/74894; http://bdigital.unal.edu.co/39371/
-
8Academic Journal
المؤلفون: Andrade, André Santana, Santos, Patricia Menezes, Pezzopane, José Ricardo Macedo, Araujo, Leandro Coelho de, Pedreira, Bruno Carneiro, Pedreira, Carlos Guilherme Silveira, Lara, Márcio André Stefanelli
المصدر: Grass and Forage Science
مصطلحات موضوعية: Agricultural production systems simulator, Crop models, Grass, Pasture, Plantas forrageiras - Crescimento, Biomassa, Simulador de sistemas de produção agrícola, Modelos de cultivo, Gramíneas tropicais, Pastagens
Relation: ANDRADE, A. S. et al. Simulating tropical forage growth and biomass accumulation: an overview of model development and application. Grass And Forage Science, [S.I.], v. 71, n. 1, p. 54-65, 2016. DOI: http://dx.doi.org/10.1111/gfs.12177.; http://dx.doi.org/10.1111/gfs.12177; http://repositorio.ufla.br/jspui/handle/1/45494
-
9
المؤلفون: Chica Ramírez, Héctor Alberto, Peña Quiñones, Andrés Javier, Giraldo Jiménez, José Fernando, Obando Bonilla, Diego, Riaño Herrera, Néstor Miguel
المصدر: Revista Facultad Nacional de Agronomía Medellín, Volume: 67, Issue: 2, Pages: 7365-7373, Published: JUN 2014
مصطلحات موضوعية: climate variability, meteorologia, Time series, modelos de cultivo, variabilidad climática, meteorology, Series de tiempo, crop models
وصف الملف: text/html