يعرض 1 - 9 نتائج من 9 نتيجة بحث عن '"Modelos de cultivo"', وقت الاستعلام: 0.68s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    Thesis Advisors: Prieto Losada, María Henar, Moñino Espino, María José, García Martín, Abelardo, Universidad de Extremadura. Departamento de Ingeniería del Medio Agronómico y Forestal

  2. 2
    Dissertation/ Thesis

    المؤلفون: Rodriguez Espinoza, Jeferson

    المساهمون: Ramirez Villegas, Julian Armando, Mejía de Tafur, Maria Sara, orcid:0000-0001-5914-6571, 57217764588

    جغرافية الموضوع: Colombia

    وصف الملف: xii, 85 páginas; application/pdf

    Relation: Ahmed, M., Asif, M., Hirani, A. H., Akram, M. N., & Goyal, A. (2013). Modeling for agricultural sustainability: A review. Agricultural Sustainability. Elsevier Inc. http://doi.org/10.1016/B978-0-12-404560-6.00007-1; Ali, M. H., & Talukder, M. S. U. (2008). Increasing water productivity in crop production-A synthesis. Agricultural Water Management, 95(11), 1201–1213. http://doi.org/10.1016/j.agwat.2008.06.008; Amiri, E., Razavipour, T., Farid, A., & Bannayan, M. (2011). Effects of Crop Density and Irrigation Management on Water Productivity of Rice Production in Northern Iran: Field and Modeling Approach. Communications in Soil Science and Plant Analysis, 42(17), 2085–2099. http://doi.org/10.1080/00103624.2011.596238; Amiri, E., Rezaei, M., Rezaei, E. E., & Bannayan, M. (2014). Evaluation of Ceres-Rice, Aquacrop and Oryza2000 Models in Simulation of Rice Yield Response to Different Irrigation and Nitrogen Management Strategies. Journal of Plant Nutrition, 37(11), 1749–1769. http://doi.org/10.1080/01904167.2014.888750; Anwar, M. R., Liu, D. L., Macadam, I., & Kelly, G. (2013). Adapting agriculture to climate change: A review. Theoretical and Applied Climatology, 113(1–2), 225–245. http://doi.org/10.1007/s00704-012-0780-1; Belder, P., Bouman, B. A. M., & Spiertz, J. H. J. (2007). Exploring options for water savings in lowland rice using a modelling approach. Agricultural Systems, 92(1–3), 91–114. http://doi.org/10.1016/j.agsy.2006.03.001; Boote, K. J., Jones, J. W., White, J. W., Asseng, S., & Lizaso, J. I. (2013). Putting mechanisms into crop production models. Plant, Cell and Environment, 36(9), 1658–1672. http://doi.org/10.1111/pce.12119; Bouman, B. a. M., & van Laar, H. H. (2006). Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 87(3), 249–273. http://doi.org/10.1016/j.agsy.2004.09.011; Bouman, B. a M., Kropff, M., Tuong, T., Wopereis, M., Ten Berge, H., & van Laar, H. (2001). ORYZA2000: Modeling lowland rice.; Brouder, S. M., & Volenec, J. J. (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiologia Plantarum, 133(4), 705–724. http://doi.org/10.1111/j.1399-3054.2008.01136.x; Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., … Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 5(2), 1–6. http://doi.org/10.1038/nclimate2100; Camargo, G. G. T., & Kemanian, A. R. (2016). Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129. http://doi.org/10.1016/j.agrformet.2016.01.013; Cao, H., Hanan, J. S., Liu, Y., Liu, Y., Yue, Y., Zhu, D., … Bao, T. (2012). Comparison of Crop Model Validation Methods. Journal of Integrative Agriculture, 11(8), 1274–1285. http://doi.org/10.1016/S2095-3119(12)60124-5; Cleves Leguízamo, J. A., Martínez Bernal, L. F., & Toro C., J. (2016). Los balances hídricos agrícolas en modelos de simulación agroclimáticos. Una revisión analítica. Revista Colombiana de Ciencias Hortícolas, 10(1), 149–163. http://doi.org/10.17584/rcch.2016v10i1.4460; Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Pati??o, V. H., … Jimenez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE, 11(8). http://doi.org/10.1371/journal.pone.0161620; Cortés, C., Bernal, J., Díaz, E., & Méndez, J. (2013). uso del modelo AquaCrop para estimar rendimientos para el cultivo de arroz en los Departamentos de Tolima y Meta, 53. Retrieved from http://www.fao.org/docrep/field/009/i3430s/i3430s.pdf; DANE, & FEDEARROZ. (2016). 4 ° Censo Nacional Arrocero 2016. Retrieved from http://www.dane.gov.co/; Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., … Sheffield, J. (2015). The Global Gridded Crop Model Intercomparison: Data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 8(2), 261–277. http://doi.org/10.5194/gmd-8-261-2015; Ewert, F., Ro??tter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., … Asseng, S. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 72. http://doi.org/10.1016/j.envsoft.2014.12.003; FAO. (2009). How to Feed the World in 2050. Insights from an Expert Meeting at FAO, 2050(1), 1–35. http://doi.org/10.1111/j.1728-4457.2009.00312.x; Ge, H., Ma, F., Li, Z., & Du, C. (2021). Global sensitivity analysis for ceres-rice model under different cultivars and specific-stage variations of climate parameters. Agronomy, 11(12). https://doi.org/10.3390/agronomy11122446; Gonzalez-Dugo, V., Durand, J.-L., & Gastal, F. (2010). Water deficit and nitrogen nutrition of crops. A review. Agronomy for Sustainable Development, 30(3), 529–544. http://doi.org/10.1051/agro/2009059; Guo, D., Zhao, R., Xing, X., & Ma, X. (2020). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115–1133. https://doi.org/10.1080/03650340.2019.1657845; Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., … Thorburn, P. (2015). Environmental Modelling & Software Agricultural production systems modelling and software : Current status and future prospects *, (2014), 1–11.; Iizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., … Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5(May), 3712. http://doi.org/10.1038/ncomms4712; IPCC. (2014). Cambio Climático 2014: Informe de síntesis / Resumen para responsables de políticas. Cambio Climático 2001: Informe de Síntesis, 2–38. http://doi.org/10.1016/S1353-8020(09)70300-1; Janssen, S. J. C., Porter, C. H., Moore, A. D., Athanasiadis, I. N., Foster, I., Jones, J. W., & Antle, J. M. (2017). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.017; Jin, X. L., Feng, H. K., Zhu, X. K., Li, Z. H., Song, S. N., Song, X. Y., . & Guo, W. S. (2014). Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PloS one, 9(1), e86938.; Jing, Q. (2007). Improving resource use efficiency in rice-based cropping systems: Experimentation and modelling. Production Ecology and Resource Conservation (Vol. Ph.D.).; Jones, J. ., Hoogenboom, G., Porter, C. ., Boote, K. J., Batchelor, W. ., Hunt, L. ., … Ritchie, J. . (2003). The DSSAT cropping system model. European Journal of Agronomy (Vol. 18). http://doi.org/10.1016/S1161-0301(02)00107-7; Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Brief history of agricultural systems modeling. Agsy. http://doi.org/10.1016/j.agsy.2016.05.014; Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.021; Kadiyala, M. D. M., Jones, J. W., Mylavarapu, R. S., Li, Y. C., & Reddy, M. D. (2012). Identifying irrigation and nitrogen best management practices for aerobic rice-maize cropping system for semi-arid tropics using CERES-rice and maize models. Agricultural Water Management, 149, 23–32. http://doi.org/10.1016/j.agwat.2014.10.019; Kar, G., Kumar, A., & Chandra Bhaskar Burla, B. (2009). Simulation of growth and productivity of rice (Oryza sativa) under tropical monsoon climate. Indian Journal of Agronomy, 54(1), 52–57.; Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Advances in Agronomy (1st ed., Vol. 111). Elsevier Inc. http://doi.org/10.1016/B978-0-12-387689-8.00004-7; Larijani, B. A., Sarvestani, Z. T., Nematzadeh, G., Manschadi, a. M., & Amiri, E. (2011). Simulating Phenology, Growth and Yield of Transplanted Rice at Different Seedling Ages in Northern Iran Using ORYZA2000. Rice Science, 18(4), 321–334. http://doi.org/10.1016/S1672-6308(12)60011-0; Li, T., Angeles, O., Marcaida Iii, M., Manalo, E., Manalili, M. P., Radanielson, A., & Mohanty, S. (2017). From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology, 237, 246–256. http://doi.org/10.1016/j.agrformet.2017.02.025; Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K. J., Adam, M., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. http://doi.org/10.1111/gcb.12758; Li, T., Raman, A. K., Marcaida, M., Kumar, A., Angeles, O., & Radanielson, A. M. (2013). Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Research, 149, 312–321. http://doi.org/10.1016/j.fcr.2013.05.006; Liu, J., Liu, Z., Zhu, A. X., Shen, F., Lei, Q., & Duan, Z. (2019). Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of the Total Environment, 651, 953–968. https://doi.org/10.1016/j.scitotenv.2018.09.254; Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water Footprint of crop productions: A review. Science of the Total Environment, 548–549, 236–251. http://doi.org/10.1016/j.scitotenv.2016.01.022; Maniruzzaman, M., Talukder, M. S. U., Khan, M. H., Biswas, J. C., & Nemes, A. (2015). Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agricultural Water Management, 159, 331–340. http://doi.org/10.1016/j.agwat.2015.06.022; Matthews, R. B., Rivington, M., Muhammed, S., Newton, A. C., & Hallett, P. D. (2013). Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security, 2(1), 24–28. http://doi.org/10.1016/j.gfs.2012.11.009; McCall, J. (2005). Genetic algorithms for modelling and optimisation. Journal of computational and Applied Mathematics, 184(1), 205-222.; Mishra, A., Singh, R., Raghuwanshi, N. S., Chatterjee, C., & Froebrich, J. (2013). Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. The Science of the Total Environment, 468–469 Su, S132-8. http://doi.org/10.1016/j.scitotenv.2013.05.080; Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production , supply , trade , and consumption, 7–14. http://doi.org/10.1111/nyas.12540; Neto, D. D. (2010). Calibração e avaliação do modelo ORYZA-APSIM para o arroz de terras altas no Brasil 1 Calibration and evaluation of the ORYZA-APSIM crop model for upland rice in Material e métodos, 605–613.; Nissanka, S. P., Karunaratne, A. S., Perera, R., Weerakoon, W. M. W., Thorburn, P. J., & Wallach, D. (2015). Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling and Software, 70, 128–137. http://doi.org/10.1016/j.envsoft.2015.04.007; Porter, C. H., Villalobos, C., Holzworth, D., Nelson, R., White, J. W., Athanasiadis, I. N., … Jones, J. W. (2014). Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling and Software, 62, 495–508. http://doi.org/10.1016/j.envsoft.2014.09.004; Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agronomy Journal, 101(3), 438–447. http://doi.org/10.2134/agronj2008.0140s; Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989. http://doi.org/10.1038/ncomms6989; Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., … Winter, J. M. (2012). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 1–17. http://doi.org/10.1016/j.agrformet.2012.09.011; Saadati, Z., Pirmoradian, N., & Rezaei, M. (2011). CALIBRATION AND EVALUATION OF AquaCrop MODEL IN RICE GROWTH SIMULATION UNDER DIFFERENT IRRIGATION; Sánchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: A review. Global Change Biology, 20(2), 408–417. http://doi.org/10.1111/gcb.12389; Sanint, L. (2010). Nuevos retos y grandes oportunidades tecnológicas para los sistemas arroceros: Produccion, seguridad alimentaria y disminucion de la pobreza en América Latina y el Caribe. Produccion eco-eficiente del arroz en América latina. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/2010_Degiovanni-Produccion_eco-eficiente_del_arroz.pdf; Scrucca L (2013). “GA: A Package for Genetic Algorithms in R.” Journal of Statistical Software, 53(4), 1–37. doi:10.18637/jss.v053.i04.; Scrucca L (2017). “On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution.” The R Journal, 9(1), 187–206. doi:10.32614/RJ-2017-008.; Semenov, M. A., & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology, 73(3–4), 265–283. http://doi.org/10.1016/0168-1923(94)05078-K; Singh, U., Tsuji, G.Y., Godwin, D.C. 1990. Planting new ideas in DSSAT: the CERES-Rice model. Agrotechnology Transfer, 10:1-7. University of Hawaii, Honolulu, Hawaii, USA.; Sotelo, S., Guevara, E., Llanos-Herrera, L., Agudelo, D., Esquivel, A., Rodriguez, J., . & Ramirez-Villegas, J. (2020). Pronosticos AClimateColombia: A system for the provision of information for climate risk reduction in Colombia. Computers and Electronics in Agriculture, 174, 105486. https://doi.org/10.1016/j.compag.2020.105486; Subash, N., & Ram Mohan, H. S. (2012). Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agricultural and Forest Meteorology, 164, 71–81. http://doi.org/10.1016/j.agrformet.2012.05.008; Soundharajan, B., & Sudheer, K. P. (2013). Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework. Paddy and Water Environment, 11(1–4), 59–71. https://doi.org/10.1007/s10333-011-0293-z; Tan, J., Cui, Y., & Luo, Y. (2017). Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. European Journal of Agronomy, 91(August), 54–62. https://doi.org/10.1016/j.eja.2017.09.001; Tan, J., Zhao, S., Liu, B., Luo, Y., & Cui, Y. (2021). Global sensitivity analysis and uncertainty analysis for drought stress parameters in the ORYZA (v3) model. Agronomy Journal, 113(2), 1407–1419. https://doi.org/10.1002/agj2.20580; Tan, J., Cui, Y., & Luo, Y. (2016). Global sensitivity analysis of outputs over rice-growth process in ORYZA model. Environmental Modelling and Software, 83, 36–46. https://doi.org/10.1016/j.envsoft.2016.05.001; Van Nguyen, N., & Ferrero, A. (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1), 1–9. http://doi.org/10.1007/s10333-005-0031-5; Yang, J. M., Yang, J. Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127, 81–89. http://doi.org/10.1016/j.agsy.2014.01.008; XING, H. min, XU, X. gang, LI, Z. hai, CHEN, Y. jin, FENG, H. kuan, YANG, G. jun, & CHEN, Z. xia. (2017). Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test. Journal of Integrative Agriculture, 16(11), 2444–2458. https://doi.org/10.1016/S2095-3119(16)61626-X; https://repositorio.unal.edu.co/handle/unal/85667; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  3. 3
    Academic Journal
  4. 4
    Conference
  5. 5
    Dissertation/ Thesis
  6. 6
    Academic Journal

    المصدر: Revista Facultad Nacional de Agronomía Medellín; Vol. 67 No. 2 (2014); 7365-7373 ; Revista Facultad Nacional de Agronomía Medellín; v. 67 n. 2 (2014); 7365-7373 ; Revista Facultad Nacional de Agronomía Medellín; Vol. 67 Núm. 2 (2014); 7365-7373 ; 2248-7026 ; 0304-2847

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/refame/article/view/44179/45464; Cao Abad, R. 2002 Introducción a la simulación y teoría de colas. Primera edición. NETBIBLO, S.L., Coruña. 217 p.; Charles, S., J. Hughes and P. Guttorp. 1997. Non homogeneous Hidden Markov model for Precipitation. NRCSE-TRS No. 004.; Espinosa, E., M. Cantú, M. y V. Leiva. 2004. Caracterización y aplicación de la distribución Birnbaum-Saunders como modelo de tiempos de vida. Revista Agraria -Nueva Época- 1(1): 19-27.; Fowler, H.J., C.G. Kilsby, P.E. O'Connell and A. Burton. 2005. A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change. Journal of Hydrology 308(1-4): 50-66.; Gálvez, G., A. Sigarroa, T. López, J. Fernández y J. Fernández. 2010. Modelación de cultivos agrícolas. Algunos ejemplos. Cultivos Tropicales 31(3): 60-65.; Grondona, M., G. Podestá, M. Bidegain, M. Marino and H. Hordij. 2000. A stochastic precipitation generator conditioned on ENSO phase: A case study in southeastern South America. Journal of Climate 13(16): 2973-2986.; Jones, P. and P. Thornton. 1999. Fitting a third-order Markov rainfall model to interpolated climate surfaces. Agricultural and Forest Meteorology 97(3): 213231.; Jones, P. and P. Thornton. 2000. MarkSim: Software to generate daily weather data for Latin America and Africa. Agronomy Journal 92(3): 445-453.; León. G., J. Zea y J. Eslava. 2000. Circulación general del trópico y la zona de confluencia intertropical en Colombia. Meteorología Colombiana 1:31-38.; Maravall, A. and D. Peña. 1992. Missing observations and additive outliers in time series models. Working papers statistics and econometric series 92-40 (28). Universidad Carlos III, Madrid. 53 p.; Mood, A. and F. Graybill. 1963. Introduction to the Theory of Statistics. Second edition. McGraw-Hill Book Company, Inc. New York. 443 p.; Moreno, L. 1993. Procesos Estocásticos. Primera edición. Universidad Nacional de Colombia, Bogotá, 151 p.; Peña, A. 2000. Incidencia de los fenómenos El Niño y La Niña sobre el clima del valle del río Cauca. Trabajo de Grado. Ingeniería Agronómica. Universidad Nacional de Colombia, Palmira 110 p.; Schneider, T. 2001. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. Journal of Climate 14(5): 853-871.; Trenberth, K. 1997. The definition of El Niño. Bulletin of American Meteorological Society 78(12): 2771-2777.; Wei, W. 1990. Time Series Analysis. Addison-Wesley Publishing Company, USA. 478 p.; Wilks, D. 1995. Statistical Methods in Atmospheric Sciences. Academic Press, USA. 467 p.; https://revistas.unal.edu.co/index.php/refame/article/view/44179

  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: http://revistas.unal.edu.co/index.php/refame/article/view/44179; Universidad Nacional de Colombia Revistas electrónicas UN Revista Facultad Nacional de Agronomía Medellín; Revista Facultad Nacional de Agronomía Medellín; Revista Facultad Nacional de Agronomía Medellín; Vol. 67, núm. 2 (2014); 7365-7373 2248-7026 0304-2847; Chica Ramírez, Héctor Alberto and Peña Quiñones, Andrés Javier and Giraldo Jiménez, José Fernando and Obando Bonilla, Diego and Riaño Herrera, Néstor Miguel (2014) Suemulador: herramienta para la simulación de datos faltantes en series climáticas diarias de zonas ecuatoriales suemulador: a tool for missing data simulation of climatic series in equatorial zones. Revista Facultad Nacional de Agronomía Medellín; Vol. 67, núm. 2 (2014); 7365-7373 2248-7026 0304-2847 .; https://repositorio.unal.edu.co/handle/unal/74894; http://bdigital.unal.edu.co/39371/

  8. 8
    Academic Journal
  9. 9