يعرض 1 - 20 نتائج من 133 نتيجة بحث عن '"Miocitos cardíacos"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Purroy Lledós, Rosa

    المساهمون: University/Department: Universitat de Lleida. Departament de Ciències Mèdiques Bàsiques

    Thesis Advisors: Tamarit Sumalla, Jordi, Ros Salvador, Joaquim

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis

    المؤلفون: Obis Monné, Èlia

    المساهمون: University/Department: Universitat de Lleida. Departament de Ciències Mèdiques Bàsiques

    Thesis Advisors: Tamarit Sumalla, Jordi, Ros Salvador, Joaquim

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    Academic Journal
  4. 4
  5. 5
  6. 6
    Academic Journal
  7. 7
  8. 8
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المساهمون: Díaz del Moral,S, Barrena,S, Muñoz-Chápuli,R, Carmona,R Department of Animal Biology, University of Málaga, Málaga, Spain. Hernández-Torres,F Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain. Hernández-Torres,F, Aránega,A Medina Foundation, Technology Park of Health Sciences, Granada, Spain. Aránega,A, Franco,D Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain. Villaescusa,JM, Gómez Doblas,JJ, Jiménez-Navarro,M Heart Area Clinical Management Unit, University Hospìtal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain., This work was supported by: Spanish Ministry of Economy, Industry and Competitivity (BFU2017-83907-P to RM-C and RC and PID2019-107492GB-I00 to AA and DF), Consejería de Salud, Junta de Andalucía (PC0066?2017/PC-0081-2017 to RC, JV, and JG), Instituto de Salud Carlos III-TERCEL network (RD16/0011/0030 to RM-C and RC), Instituto de Salud Carlos III-CIBERCV “Enfermedades Cardiovasculares” (CB16/11/00360 to MJ-N), and Consejería de Economía yConocimiento, Junta de Andalucía (UMA18-FEDERJA-146 to RM-C and RC and FEDER-UJA to AA and DF).

    وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document; video/msvideo

    Relation: https://www.frontiersin.org/articles/10.3389/fcell.2021.683861/full; Díaz Del Moral S, Barrena S, Hernández-Torres F, Aránega A, Villaescusa JM, Gómez Doblas JJ, et al. Deletion of the Wilms' Tumor Suppressor Gene in the Cardiac Troponin-T Lineage Reveals Novel Functions of WT1 in Heart Development. Front Cell Dev Biol. 2021 Jul 22;9:683861; http://hdl.handle.net/10668/4505; PMC8339973

  13. 13
    Academic Journal
  14. 14
  15. 15
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المصدر: Scalpelo; Vol. 1, No. 2 (2020); 48-55 ; 2791-0350

    وصف الملف: application/pdf

    Relation: https://rescalpelo.sld.cu/index.php/scalpelo/article/view/51/pdf; Hroob AM, Abukhalil MH, Hussein OE, Mahmoud AM. Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother. 2019;109:2155–2172.; Ramírez R, Durán M, Márquez J. Miocardiopatía diabética: un punto de vista retrospectivo. Rev Colomb Cardiol [internet]. 2018 [citado 21 ene. 2020]; 25(1):[aprox. 4 p.]. Disponible en: https://www.elsevier.es/es-revista-revista-colombiana-cardiologia-203-articulo-miocardiopatia-diabetica-un-punto-vista-S0120563317302073; Manfredi-Carabetti JA. Cardiomiopatía diabética. Rev Urug Cardiol [internet]. 2017 [citado 21 ene. 2020];32:[aprox. 12 p.]. Disponible en:http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S1688-04202017000300264; Cuba Ministerio de Salud Pública. Anuario Estadístico de Salud 2018. La Habana: Dirección Nacional de Registros Médicos y Estadísticas de Salud; 2019.; Cuba Ministerio de Salud Pública. Anuario Estadístico de Salud 2018. Las Tunas: Dirección Nacional de Registros Médicos y Estadísticas de Salud; 2019.; González-Fernández P, Ozores-Suárez J, Gutiérrez-Gil J. Hallazgos ecocardiográficos en niños y adolescentes con diabetes mellitus tipo 1. Rev Cubana Endocrinol [internet]. 2013 [citado 21 ene. 2020];24(2):[aprox. 11 p.]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-29532013000200007; Codinach-Huix P, Freixa-Pamias R. Miocardiopatía diabética: concepto, función cardiaca y patogenia. An Med Interna [internet]. 2002;19(6):313-20.; Fuentes-Antrás J, Picatoste B, Gómez-Hernández A, Egido J, Tuñón J, Lorenzo O. Updating Experimental Models of Diabetic Cardiomyopathy. J Diabetes Res [internet]. 2015 [citado 2020 Jan. 21 ]; 2015(2):[aprox. 12 p.]. Disponible en:https://pubmed.ncbi.nlm.nih.gov/25973429/; Loncarevic B, Trifunovic D, Soldatovic I, Bujisic-Tesic B. Silent diabetic cardiomyopathy in everyday practice: a clinical and echocardiographic study. BMC Cardiovasc Disord [internet]. 2016 [citado 2020 Jan. 21 ];16(1):[aprox. 1 p.]. Disponible en:https://pubmed.ncbi.nlm.nih.gov/27894255/; Okoshi K, Campos-Guimarães JF, Di Muzio BP, Fernandes AA, Politi-Okoshi M. Miocardiopatia Diabética. Arq Bras Endocrinol Metab [internet]. 2007 [citado 21 de ene. 2020]; 51(2):[aprox. 7 p.]. Disponible en: https://www.scielo.br/scielo.php?pid=S0004-27302007000200004&script=sci_abstract&tlng=pt; Cai Y, Kandula V, Kosuru R, Ye X, Irwin MG, Xia Z. Decoding telomere protein Rap1: Its telomeric and nontelomeric functions and potential implications in diabetic cardiomyopathy. Cell Cycle [internet]. 2017 [citado 2020 Jan. 21]; 16(19):[aprox. 13 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28853973/; Tian J, Zhao Y, Liu Y, Chen K, Lyu Sh. Roles and Mechanisms of Herbal Medicine for Diabetic Cardiomyopathy: Current Status and Perspective. Oxid Med Cell Longev [internet]. 2017 [citado 2020 Jan. 21]; 2017(2):[aprox. 15 p.]. Disponible en:https://www.hindawi.com/journals/omcl/2017/8214541/; Yan B, Ren J, Zhang Q, Gao R, Zhao F. Antioxidative Effects of Natural Products on Diabetic Cardiomyopathy. J Diabetes Res [internet]. 2017 [citado 2020 Jan. 21]; 2017:[aprox. 15 p.]. Disponible en: https://www.hindawi.com/journals/jdr/2017/2070178/; Carpentier AC. Abnormal Myocardial Dietary Fatty Acid Metabolism and Diabetic Cardiomyopathy. Can J Cardiol [internet]. 2018 mayo [citado 2020 Jan. 21];34(5):[aprox. 9 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29627307/; Levelt E, Gulsin G, Neubauer S, McCann GP. Mechanisms in Endocrinology: Diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur J Endocrinol [internet]. 2018 [citado 2020 Jan. 21];178(4):[aprox. 12 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29440374/; Jia G, De Marco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol [internet]. 2016 [citado 2020 Jan. 21];12(3):[aprox. 9 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26678809/; Campos-Vera N, Rivas-Estany E, Andrade-Ruiz M. Miocardiopatía Diabética, lo que hoy conocemos. Rev Cubana Cardiol Cir Cardiovasc [internet]. 2018 [citado 21 de ene. 2020];24(1):[aprox. 10 p.]. Disponible en: http://www.revcardiologia.sld.cu/index.php/revcardiologia/article/view/743/html_116; Zhang Y, Wang JH, Zhang YY, Wang J, Zhao Y. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways. Sci Rep [internet]. 2016 [citado 2020 Jan. 21];6:[aprox. 10 p.] Disponible en: https://pubmed.ncbi.nlm.nih.gov/26972749/; Bugger H, Dale Abel E. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia [internet]. 2014 [citado 2020 Jan. 21 ];57(4):[aprox. 11 p.]. Disponible en:https://pubmed.ncbi.nlm.nih.gov/24477973/; Lorenzo-Almorós A, Tuñón J, Cortés M, Egido J, Lorenzo O. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc. Diabetol [internet]. 2017 [citado 2020 Jan. 21];16(28):[aprox. 12 p.]. Disponible en: https://cardiab.biomedcentral.com/articles/10.1186/s12933-017-0506-x; Shaver A, Nichols A, Thompson E, Mallick A, Payne K. Role of Serum Biomarkers in Early Detection of Diabetic Cardiomyopathy in the West Virginian Population. Int J Med Sci [internet]. 2016 [citado 2020 Jan. 21]; 13(3):[aprox. 7 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773280/; Palomer X, Pizarro-Delgado J, Vázquez-Carrera M. Emerging Actors in Diabetic Cardiomyopathy: Heartbreaker Biomarkers or Therapeutic Targets? Trends Pharmacol Sci [internet]. 2018 [citado 2020 Jan. 21 2020];39(5):[aprox. 15 p.] 452-467. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29605388/; https://rescalpelo.sld.cu/index.php/scalpelo/article/view/51

  18. 18
    Dissertation/ Thesis

    المؤلفون: Osorio Méndez, Jhon Jairo

    المساهمون: Gómez Grosso, Luis Alberto, Fisiología Molecular - Instituto Nacional de Salud

    وصف الملف: 96 páginas; application/pdf

    Relation: World Heart Federation, “WORLD HEART REPORT 2023 CONFRONTING THE WORLD ’ S NUMBER,” 2023; M. Reulen, C., Raoul, C., Winter, D., Frobisher C., Lancashire, E., Stiller, C., Jenney, M., Skinner, R., Stivens, M., Hawkins, “Long-term Cause-Specific Mortality Among Survivors of Childhood Cancer,” JAMA, vol. 304, no. 2, p. 172, Jul. 2010, doi:10.1001/jama.2010.923.; T. M. Okwuosa, S. Anzevino, and R. Rao, “Cardiovascular disease in cancer survivors,” Postgrad. Med. J., vol. 93, no. 1096, pp. 82–90, 2017, doi:10.1136/postgradmedj-2016-134417.; S. Raj, V. I. Franco, and S. E. Lipshultz, “Anthracycline-induced cardiotoxicity: A review of pathophysiology, diagnosis, and treatment,” Curr. Treat. Options Cardiovasc. Med., vol. 16, no. 6, 2014, doi:10.1007/s11936-014-0315-4.; Hongxin Zhu, “Doxorubicin-Induced Cardiotoxicity,” in Cardiotoxicity, vol. I, W. Tan, Ed. InTech, 2018, p. 20.; L. Zhao and B. Zhang, “Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes,” Sci. Rep., vol. 7, no. March, pp. 1–11, 2017, doi:10.1038/srep44735.; C. S. Abdullah et al., “Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration,” Sci. Rep., no. August 2018, pp. 1–20, 2019, doi:10.1038/s41598-018-37862-3.; S. Zerikiotis, C. Angelidis, I. Dhima, K. K. Naka, and P. Kasioumi, “The increased expression of the inducible Hsp70 (HSP70A1A) in serum of patients with heart failure and its protective effect against the cardiotoxic agent doxorubicin,” Mol. Cell. Biochem., vol. 0, no. 0, p. 0, 2018, doi:10.1007/s11010-018-3469-7.; S. Amirfakhri, A. Salimi, and N. Fernandez, “Effects of conditioned medium from breast cancer cells on Tlr2 expression in Nb4 cells,” Asian Pacific J. Cancer Prev., vol. 16, no. 18, pp. 8445–8450, 2015, doi:10.7314/APJCP.2015.16.18.8445.; Y. Feng et al., “Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis,” Genes Dis., vol. 5, no. 2, pp. 77–106, 2018, doi:10.1016/j.gendis.2018.05.001; Y. Feng et al., “Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis,” Genes Dis., vol. 5, no. 2, pp. 77–106, 2018, doi:10.1016/j.gendis.2018.05.001.; K. Aubertin et al., “Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy,” Sci. Rep., vol. 6, no. June, pp. 1–11, 2016, doi:10.1038/srep35376.; M. Iero et al., “Tumour-released exosomes and their implications in cancer immunity,” Cell Death Differ., vol. 15, no. 1, pp. 80–88, 2008, doi:10.1038/sj.cdd.4402237.; D. S. Chulpanova, K. V. Kitaeva, V. James, A. A. Rizvanov, and V. V. Solovyeva, “Therapeutic prospects of extracellular vesicles in cancer treatment,” Front. Immunol., vol. 9, no. July, 2018, doi:10.3389/fimmu.2018.01534.; X. Li et al., “Nano carriers for drug transport across the blood–brain barrier,” J. Drug Target., vol. 25, no. 1, pp. 17–28, 2017, doi:10.1080/1061186X.2016.1184272.; C. Liu and C. Su, “Design strategies and application progress of therapeutic exosomes,” Theranostics, vol. 9, no. 4, pp. 1015–1028, 2019, doi:10.7150/thno.30853.; N. Eiro, L. O. Gonzalez, S. Cid, J. Schneider, and F. J. Vizoso, “Breast Cancer Tumor Stroma : Cellular Components , Therapeutic Opportunities,” Cancers (Basel)., vol. 664, no. 11, pp. 1–26, 2019.; F. Masoudkabir et al., “Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention,” Atherosclerosis, pp. 343–351, 2018, doi:10.1016/j.atherosclerosis.2017.06.001.Cardiovascular.; C. Shaima, P. Moorthi, and N. Shaheen, “Cardiovascular diseases: Traditional and non-traditional risk factors,” J. Med. Allied Sci., vol. 6, no. 2, p. 46, 2016, doi:10.5455/jmas.228597.; R. J. Koene, A. E. Prizment, A. Blaes, and S. H. Konety, “Shared risk factors in cardiovascular disease and cancer,” Circulation, vol. 133, no. 11, pp. 1104–1114, 2016, doi:10.1161/CIRCULATIONAHA.115.020406.; K. H. Allison, “Molecular pathology of breast cancer: What a pathologist needs to know,” Am. J. Clin. Pathol., vol. 138, no. 6, pp. 770–780, 2012, doi:10.1309/AJCPIV9IQ1MRQMOO.; A. R. Venkitaraman, “How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility?,” DNA Repair (Amst)., vol. 81, no. July, p. 102668, 2019, doi:10.1016/j.dnarep.2019.102668.; A. R. Venkitaraman, “Cancer suppression by the chromosome custodians, BRCA1 and BRCA2,” Science (80-. )., vol. 343, no. 6178, pp. 1470–1475, 2014, doi:10.1126/science.1252230.; Y. Liubomirski et al., “Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer,” Front. Immunol., vol. 10, no. APR, pp. 1–24, 2019, doi:10.3389/fimmu.2019.00757.; P. Eroles, A. Bosch, J. Alejandro Pérez-Fidalgo, and A. Lluch, “Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways,” Cancer Treat. Rev., vol. 38, no. 6, pp. 698–707, 2012, doi:10.1016/j.ctrv.2011.11.005.; A. Ahmad, Breast cancer metastasis and drug resistance: Progress and prospects. 2019.; H. Kennecke et al., “Metastatic behavior of breast cancer subtypes,” J. Clin. Oncol., vol. 28, no. 20, pp. 3271–3277, 2010, doi:10.1200/JCO.2009.25.9820.; A. Kontoyannis and H. Sweetland, “Adjuvant therapy for breast cancer,” Surgery, vol. 25, no. 6, pp. 272–275, 2007, doi:10.1016/j.mpsur.2007.05.005.; C. J. Lovitt, T. B. Shelper, and V. M. Avery, “Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins,” BMC Cancer, vol. 18, no. 1, pp. 1–11, 2018, doi:10.1186/s12885-017-3953-6.; O. Tacar, P. Sriamornsak, and C. R. Dass, “Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems,” J. Pharm. Pharmacol., vol. 65, no. 2, pp. 157–170, 2013, doi:10.1111/j.2042-7158.2012.01567.x.; S. N. Hilmer, V. C. Cogger, M. Muller, and D. G. Le Couteur, “THE HEPATIC PHARMACOKINETICS OF DOXORUBICIN AND LIPOSOMAL DOXORUBICIN,” Drug Metab. Dispos., vol. 32, no. 8, pp. 794–799, Aug. 2004, doi:10.1124/dmd.32.8.794.; P. S. Rawat, A. Jaiswal, A. Khurana, J. S. Bhatti, and U. Navik, “Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management,” Biomed. Pharmacother., vol. 139, p. 111708, 2021, doi:10.1016/j.biopha.2021.111708.; D. Cardinale et al., “Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy,” Circulation, vol. 131, no. 22, pp. 1981–1988, 2015, doi:10.1161/CIRCULATIONAHA.114.013777.; L. Han, E. W. F. Lam, and Y. Sun, “Extracellular vesicles in the tumor microenvironment: Old stories, but new tales,” Mol. Cancer, vol. 18, no. 1, pp. 1–14, 2019, doi:10.1186/s12943-019-0980-8.; M. Patil, J. Henderson, H. Luong, D. Annamalai, G. Sreejit, and P. Krishnamurthy, “The Art of Intercellular Wireless Communications: Exosomes in Heart Disease and Therapy,” Front. Cell Dev. Biol., vol. 7, no. December, pp. 1–16, 2019, doi:10.3389/fcell.2019.00315.; Y. Fujita, Y. Yoshioka, and T. Ochiya, “Extracellular vesicle transfer of cancer pathogenic components,” Cancer Sci., vol. 107, no. 4, pp. 385–390, 2016, doi:10.1111/cas.12896.; D. Lucchetti, C. R. Tenore, F. Colella, and A. Sgambato, “Extracellular Vesicles and Cancer: A Focus on Metabolism, Cytokines, and Immunity,” Cancers (Basel)., pp. 1–19, 2020, [Online]. Available: https://www.mdpi.com/2072-6694/12/1/171/htm#B6-cancers-12-00171.; A. Loftus et al., “Extracellular Vesicles From Osteotropic Breast Cancer Cells Affect Bone Resident Cells,” J. Bone Miner. Res., vol. 35, no. 2, pp. 396–412, 2020, doi:10.1002/jbmr.3891.; A. Gaceb, M. C. Martinez, and R. Andriantsitohaina, “Extracellular vesicles: New players in cardiovascular diseases,” Int. J. Biochem. Cell Biol., vol. 50, no. 1, pp. 24–28, 2014, doi:10.1016/j.biocel.2014.01.018.; S. Munich, A. Sobo-Vujanovic, W. J. Buchser, D. Beer-Stolz, and N. L. Vujanovic, “Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands,” Oncoimmunology, vol. 1, no. 7, pp. 1074–1083, 2012, doi:10.4161/onci.20897.; Y. Zheng, C. Tu, J. Zhang, and J. Wang, “Inhibition of multiple myeloma‑derived exosomes uptake suppresses the functional response in bone marrow stromal cell,” Int. J. Oncol., vol. 54, no. 3, pp. 1061–1070, 2019, doi:10.3892/ijo.2019.4685.; S. Gurung, D. Perocheau, L. Touramanidou, and J. Baruteau, “The exosome journey: from biogenesis to uptake and intracellular signalling,” Cell Commun. Signal., vol. 19, no. 1, pp. 1–19, 2021, doi:10.1186/s12964-021-00730-1.; S. Eguchi et al., “Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction,” J. Biol. Chem., vol. 294, no. 31, pp. 11665–11674, 2019, doi:10.1074/jbc.RA119.007537.; S. A. W. Joshua L. Hood, Hua Pan, Gregory M. Lanza, “Paracrine Induction of Endothelium by Tumor Exosomes,” Lab. Investig., 2009, doi: https://doi.org/10.1038/labinvest.2009.94.; A. Ramteke et al., “Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules,” Mol. Carcinog., vol. 54, no. 7, pp. 554–565, 2015, doi:10.1002/mc.22124.; R. Ferreira, V.; Borba H.; Bonetti A.; Leonart A.; Pontarolo, “Cytokines and Interferons: Types and Functions,” in Autoantibodies and Cytokines, vol. i, W. A. Khan, Ed. 2019.; R. J. Dunlop and C. W. Campbell, “Cytokines and advanced cancer,” J. Pain Symptom Manage., vol. 20, no. 3, pp. 214–232, 2000, doi:10.1016/S0885-3924(00)00199-8.; M. Bartekova, J. Radosinska, M. Jelemensky, and N. S. Dhalla, “Role of cytokines and inflammation in heart function during health and disease,” Heart Fail. Rev., vol. 23, no. 5, pp. 733–758, 2018, doi:10.1007/s10741-018-9716-x.; M. Hedayat, M. J. Mahmoudi, N. R. Rose, and N. Rezaei, “Proinflammatory cytokines in heart failure: Double-edged swords,” Heart Fail. Rev., vol. 15, no. 6, pp. 543–562, 2010, doi:10.1007/s10741-010-9168-4.; A. Lebedeva, W. Fitzgerald, I. Molodtsov, A. Shpektor, E. Vasilieva, and L. Margolis, “Differential clusterization of soluble and extracellular vesicle-associated cytokines in myocardial infarction,” Sci. Rep., vol. 10, no. 1, pp. 1–14, 2020, doi:10.1038/s41598-020-78004-y.; W. Fitzgerald, M. L. Freeman, M. M. Lederman, E. Vasilieva, R. Romero, and L. Margolis, “A System of Cytokines Encapsulated in ExtraCellular Vesicles,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018, doi:10.1038/s41598-018-27190-x.; R. Cailleau, R. Young, M. Olivé, and W. J. Reeves, “Breast tumor cell lines from pleural effusions,” J. Natl. Cancer Inst., vol. 53, no. 3, pp. 661–674, 1974, doi:10.1093/jnci/53.3.661.; H. D. Soule, J. Vazquez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma1,2,” J. Natl. Cancer Inst., vol. 51, no. 5, pp. 1409–1416, 1973, doi:10.1093/jnci/51.5.1409.; C. Théry, C. Aled, A. Sebastian, and R. Graça, “Isolation and Characterization of Exosomes from Cell Culture Supernatants,” Curr. Protoc. Cell Biol., vol. 3.22, pp. 1–29, 2006.; S. S. Novoa Herrán, “La malignización celular analizada mediante proteómica comparativa de líneas celulares trofoblásticas humanas,” Universidad Nacional de Colombia, 2017.; X. Osteikoetxea et al., “Differential detergent sensitivity of extracellular vesicle subpopulations,” Org. Biomol. Chem., vol. 13, no. 38, pp. 9775–9782, 2015, doi:10.1039/c5ob01451d.; S. Chiloiro et al., “Markers of humoral and cell-mediated immune response in primary autoimmune hypophysitis: a pilot study,” Endocrine, vol. 73, no. 2, pp. 308–315, 2021, doi:10.1007/s12020-021-02612-5.; L. A. Gomez, A. E. Alekseev, L. A. Aleksandrova, P. A. Brady, and A. Terzic, “Use of the MTT assay in adult ventricular cardiomyocytes to assess viability: Effects of adenosine and potassium on cellular survival,” J. Mol. Cell. Cardiol., vol. 29, no. 4, pp. 1255–1266, 1997, doi:10.1006/jmcc.1996.0363.; L. A. Gómez-Grosso, “Preacondicionamiento isquémico en cardiomiocitos ventriculares aislados. Identificación y expresión de algunos microRNAs asociados,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 37, no. 145, p. 433, 2014, doi:10.18257/raccefyn.26.; P. A. Brady, A. E. Alekseev, L. A. Aleksandrova, L. A. Gomez, and A. Terzic, “A disrupter of actin microfilaments impairs sulfonylurea-inhibitory gating of cardiac KATP channels,” Am. J. Physiol., vol. 271, no. 6 PART 2, 1996, doi:10.1152/ajpheart.1996.271.6.h2710.; A. Wojtala, M. Bonora, D. Malinska, P. Pinton, J. Duszynski, and M. R. Wieckowski, Methods to monitor ROS production by fluorescence microscopy and fluorometry, 1st ed., vol. 542. Elsevier Inc., 2014.; R. P. Rastogi, S. P. Singh, D. P. Häder, and R. P. Sinha, “Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2’,7’-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937,” Biochem. Biophys. Res. Commun., vol. 397, no. 3, pp. 603–607, 2010, doi:10.1016/j.bbrc.2010.06.006.; D. Li et al., “Isolation and identification of exosomes from feline plasma, urine and adipose-derived mesenchymal stem cells,” BMC Vet. Res., vol. 17, no. 1, pp. 1–8, 2021, doi:10.1186/s12917-021-02960-4.; J. Van Deun et al., “The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling,” J. Extracell. Vesicles, vol. 3, no. 1, 2014, doi:10.3402/jev.v3.24858.; L. D. Zorova et al., “Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria?,” Int. J. Mol. Sci., vol. 23, no. 13, 2022, doi:10.3390/ijms23137408.; M. A. M. Ali, A. D. Kandasamy, X. Fan, and R. Schulz, “Hydrogen peroxide-induced necrotic cell death in cardiomyocytes is independent of matrix metalloproteinase-2,” Toxicol. Vitr., vol. 27, no. 6, pp. 1686–1692, 2013, doi:10.1016/j.tiv.2013.04.013.; H. He et al., “Calcineurin suppresses AMPK-dependent cytoprotective autophagy in cardiomyocytes under oxidative stress,” Cell Death Dis., vol. 5, no. 1, 2014, doi:10.1038/cddis.2013.533.; J. D. Hutcheson and E. Aikawa, “Extracellular vesicles in cardiovascular homeostasis and disease,” Curr. Opin. Cardiol., vol. 33, no. 3, pp. 290–297, 2018, doi:10.1097/HCO.0000000000000510.; A. Matsumoto et al., “Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells,” Cancer Sci., vol. 108, no. 9, pp. 1803–1810, 2017, doi:10.1111/cas.13310.; L. D. Zorova et al., “Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria?,” Int. J. Mol. Sci., vol. 23, no. 13, Jul. 2022, doi:10.3390/IJMS23137408/S1.; H. Li and F. Li, “Exosomes from BM-MSCs increase the population of CSCs via transfer of miR-142-3p,” Br. J. Cancer, vol. 119, no. 6, pp. 744–755, 2018, doi:10.1038/s41416-018-0254-z.; G. Palazzolo, N. N. Albanese, G. Di Cara, D. Gygax, M. L. Vittorelli, and I. Pucci-Minafra, “Proteomic analysis of exosome-like vesicles derived from breast cancer cells,” Anticancer Res., vol. 32, no. 3, pp. 847–860, 2012.; A. Becker, B. K. Thakur, J. M. Weiss, H. S. Kim, H. Peinado, and D. Lyden, “Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis,” Cancer Cell, vol. 30, no. 6, pp. 836–848, 2016, doi:10.1016/j.ccell.2016.10.009.; J. Xu, R.;Greening, D.; Zhu, H.; Takahashi, N.; Simpson, “Extracellular vesicle isolation and characterization: toward clinical application,” J. Clin. Invest., vol. 4, pp. 1152–1162, 2016, doi:10.1172/JCI81129.; M. Tkach, J. Kowal, and C. Théry, “Why the need and how to approach the functional diversity of extracellular vesicles,” Philos. Trans. R. Soc. B Biol. Sci., vol. 373, no. 1737, 2018, doi:10.1098/rstb.2016.0479.; C. Lynch, M. Panagopoulou, and C. D. Gregory, “Extracellular vesicles arising from apoptotic cells in tumors: Roles in cancer pathogenesis and potential clinical applications,” Front. Immunol., vol. 8, no. SEP, pp. 1–8, 2017, doi:10.3389/fimmu.2017.01174.; J. Kowal et al., “Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 8, pp. E968–E977, 2016, doi:10.1073/pnas.1521230113.; D. W. Edwardson, J. Boudreau, J. Mapletoft, C. Lanner, A. T. Kovala, and A. M. Parissenti, Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance, vol. 12, no. 9. 2017.; M. Mirabdollahi, S. H. Javanmard, and H. Sadeghi-Aliabadi, “In vitro assessment of cytokine expression profile of MCF-7 cells in response to hWJ-MSCs secretome,” Adv. Pharm. Bull., vol. 9, no. 4, pp. 649–654, 2019, doi:10.15171/apb.2019.075.; A. Maillet et al., “Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes,” Sci. Rep., vol. 6, no. January, pp. 1–13, 2016, doi:10.1038/srep25333.; K. Chen et al., “Cytokine secretion in breast cancer cells – MILLIPLEX assay data,” Data Br., vol. 28, p. 104798, 2020, doi:10.1016/j.dib.2019.104798.; S. Fimmel, L. Devermann, A. Herrmann, and C. Zouboulis, “GRO-α: A potential marker for cancer and aging silenced by RNA interference,” Ann. N. Y. Acad. Sci., vol. 1119, no. 1, pp. 176–189, 2007, doi:10.1196/annals.1404.016.; X. Man et al., “High expression level of CXCL1/GROα is linked to advanced stage and worse survival in uterine cervical cancer and facilitates tumor cell malignant processes,” BMC Cancer, vol. 22, no. 1, pp. 1–13, 2022, doi:10.1186/s12885-022-09749-0.; A. Hanna and N. G. Frangogiannis, “Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure,” Cardiovasc. Drugs Ther., pp. 849–863, 2020, doi: https://doi.org/10.1007/s10557-020-07071-0.; Y. Liu, D. Zhang, and D. Yin, “Pathophysiological Effects of Various Interleukins on Primary Cell Types in Common Heart Disease,” Int. J. Mol. Sci., vol. 24, no. 7, 2023, doi:10.3390/ijms24076497.; W. Zhang, T. Zhu, L. Chen, W. Luo, and J. Chao, “MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR,” Am. J. Physiol. - Hear. Circ. Physiol., vol. 318, no. 1, pp. H59–H71, 2020, doi:10.1152/ajpheart.00308.2019.; M. Shibakura et al., “Induction of IL-8 and monocyte chemoattractant protein-1 by doxorubicin in human small cell lung carcinoma cells,” Int. J. Cancer, vol. 103, no. 3, pp. 380–386, 2003, doi:10.1002/ijc.10842.; A. Syukri et al., “Doxorubicin induced immune abnormalities and inflammatory responses via HMGB1, HIF1-α and VEGF pathway in progressive of cardiovascular damage,” Ann. Med. Surg., vol. 76, no. February, p. 103501, 2022, doi:10.1016/j.amsu.2022.103501.; S. H. Lee, K. W. Kim, K. M. Min, K. W. Kim, S. I. Chang, and J. C. Kim, “Angiogenin reduces immune inflammation via inhibition of tank-binding kinase 1 expression in human corneal fibroblast cells,” Mediators Inflamm., vol. 2014, 2014, doi:10.1155/2014/861435.; R. Ascione et al., “Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction,” Stem Cell Res. Ther., vol. 6, no. 1, pp. 1–16, 2015, doi:10.1186/s13287-015-0028-y.; J. P. Maloney and L. Gao, “Proinflammatory Cytokines Increase Vascular Endothelial Growth Factor Expression in Alveolar Epithelial Cells,” Mediators Inflamm., vol. 2015, 2015, doi:10.1155/2015/387842.; C. L. Roland, K. D. Lynn, J. E. Toombs, S. P. Dineen, D. G. Udugamasooriya, and R. A. Brekken, “Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer,” PLoS One, vol. 4, no. 11, pp. 1–13, 2009, doi:10.1371/journal.pone.0007669.; A. E. Vegf, V. Lionetti, F. Recchia, and M. Giacca, “340. AAV-Mediated Expression of VEGF165 and VEGF-B Enhances Cardiomyocytes Protection and Improves Heart Performance in the Infarcted Myocardium,” Mol. Ther., vol. 16, no. May, p. S128, 2008, doi:10.1016/s1525-0016(16)39743-x.; G. hua Li et al., “Dual effects of VEGF-B on activating cardiomyocytes and cardiac stem cells to protect the heart against short- and long-term ischemia-reperfusion injury,” J. Transl. Med., vol. 14, no. 1, pp. 1–14, 2016, doi:10.1186/s12967-016-0847-3.; T. Tang and H. K. Hammond, Gene Transfer for Clinical Congestive Heart Failure. Elsevier Inc., 2015.; A. A. Jarrah et al., “SDF-1 induces TNF-mediated apoptosis in cardiac myocytes,” Apoptosis, vol. 23, no. 1, pp. 79–91, 2018, doi:10.1007/s10495-017-1438-3.; https://repositorio.unal.edu.co/handle/unal/85734; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  19. 19
  20. 20
    Academic Journal