يعرض 1 - 20 نتائج من 40 نتيجة بحث عن '"Miocardiopatía arritmogénica"', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Limeres Freire, Javier

    Thesis Advisors: Rodríguez Palomares, Jose Fernando

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
  3. 3
    Academic Journal

    المصدر: Revista de Ecocardiografía Práctica y Otras Técnicas de Imagen Cardíaca; Vol. 6 No. 3 (2023): Journal of Practical Echocardiography and Other Cardiac Imaging Techniques; 19-22 ; Revista de Ecocardiografía Práctica y Otras Técnicas de Imagen Cardíaca; Vol. 6 Núm. 3 (2023): Revista de Ecocardiografía Práctica y Otras Técnicas de Imagen Cardíaca; 19-22 ; 2529-976X

    وصف الملف: application/pdf

  4. 4
  5. 5
  6. 6
    Dissertation/ Thesis
  7. 7
    Dissertation/ Thesis
  8. 8
    Dissertation/ Thesis
  9. 9
    Dissertation/ Thesis
  10. 10
    Academic Journal
  11. 11
    Dissertation/ Thesis
  12. 12
  13. 13
  14. 14

    المساهمون: Jiménez Jáimez, Juan, Bermúdez Jiménez, Francisco José, Universidad de Granada. Programa de Doctorado en Medicina Clínica y Salud Pública

    وصف الملف: application/pdf

  15. 15
  16. 16
  17. 17
  18. 18
    Dissertation/ Thesis

    المؤلفون: Rucinski Calderón, Cynthia

    المساهمون: Yunis Londoño, Juan José, Patología Molecular

    وصف الملف: 1 recurso en linea (113 paginas); application/pdf

    Relation: RedCol; 1. Teo R, Gollop ND, Baig M, Uppal H, Chandran S, Potluri R. The burden and trends of psychiatric co-morbidities amongst patients with cardiomyopathy. Int J Cardiol. 2014;174(2):398-399. doi:10.1016/j.ijcard.2014.04.062; 2. Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013;113(6):660-675. doi:10.1161/CIRCRESAHA.113.300282; 3. Stefan N. The Failing Heart — An Engine Out of Fuel. N Engl J Med. 2007;356(11):1140-1151.; 4. Basso C, Aguilera B, Banner J, et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. 2017. doi:10.1007/s00428-017-2221-0; 5. Zheng Z, Croft JB, Giles WH, Mensah G a. Clinical Investigation and Reports Sudden Cardiac Death in the United States , 1989 to 1998. Circulation. 2001:2158-2163.; 6. Hayashi M, Shimizu W, Albert CM. The Spectrum of Epidemiology Underlying Sudden Cardiac Death. Circ Res. 2015;116(12):1887-1906. doi:10.1161/CIRCRESAHA.116.304521; 7. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Hear Rhythm. 2011;8(8):1308-1339. doi:10.1016/j.hrthm.2011.05.020; 8. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis E. The Next-Generation Sequencing Revolution and Its Impact on Genomics. Cell. 2014;155(1):27-38. doi:10.1016/j.cell.2013.09.006.; 9. Bahassi EM, Stambrook PJ. Next-generation sequencing technologies: Breaking the sound barrier of human genetics. Mutagenesis. 2014;29(5):303-310. doi:10.1093/mutage/geu031; 11. Mizusawa Y. Recent advances in genetic testing and counseling for inherited arrhythmias. J Arrhythmia. 2016;32(5):389-397. doi:10.1016/j.joa.2015.12.009; 12. McKenna WJ, Maron BJ, Thiene G. Classification, Epidemiology, and Global Burden of Cardiomyopathies. Circ Res. 2017;121(7):722-730. doi:10.1161/CIRCRESAHA.117.309711; 13. Arbustini E, Narula N, Dec GW, et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: Endorsed by the world heart federation. Glob Heart. 2013;8(4):355-382. doi:10.1016/j.gheart.2013.11.001; 14. Giraldo G. CA, Mesa Cock A, García Jaramillo S, Hurtado A. MV. Muerte súbita. Estudio prospectivo en Medellín, Colombia, 1982. Bol La Of Sanit Panam. 1984;96(6):532-550.; 15. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation. 2012;125(4):620-637. doi:10.1161/CIRCULATIONAHA.111.023838; 16. Magi S, Lariccia V, Maiolino M, Amoroso S, Gratteri S. Sudden cardiac death: focus on the genetics of channelopathies and cardiomyopathies. J Biomed Sci. 2017;24(1):56. doi:10.1186/s12929-017-0364-6; 17. Hershberger RE, Morales A, Cowan J. Is Left Ventricular Noncompaction a Trait, Phenotype, or Disease?: The Evidence Points to Phenotype. Circ Cardiovasc Genet. 2017;10(6):1-3. doi:10.1161/CIRCGENETICS.117.001968; 18. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi:10.1038/gim.2015.30; 19. Hershberger RE, Givertz MM, Ho CY, et al. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(9):899-909. doi:10.1038/s41436-018-0039-z; 20. Mademont-Soler I, Mates J, Yotti R, et al. Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PLoS One. 2017;12(8):1-23. doi:10.1371/journal.pone.0181465; 21. Hertz CL, Christiansen SL, Larsen MK, et al. Genetic investigations of sudden unexpected deaths in infancy using next-generation sequencing of 100 genes associated with cardiac diseases. Eur J Hum Genet. 2015;(August):1-6. doi:10.1038/ejhg.2015.198; 22. Hertz CL, Christiansen SL, Ferrero-Miliani L, et al. Next-generation sequencing of 100 candidate genes in young victims of suspected sudden cardiac death with structural abnormalities of the heart. Int J Legal Med. 2016;130(1):91-102. doi:10.1007/s00414-015-1261-8; 23. Bagnall RD, Weintraub RG, Ingles J, et al. A Prospective Study of Sudden Cardiac Death among Children and Young Adults. N Engl J Med. 2016;374(25):2441-2452. doi:10.1056/NEJMoa1510687; 24. Whiffin N, Walsh R, Govind R, et al. CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation. Genet Med. 2018;00(December 2017):1-9. doi:10.1038/gim.2017.258; 25. Robyns T, Kuiperi C, Breckpot J, et al. Repeat genetic testing with targeted capture sequencing in primary arrhythmia syndrome and cardiomyopathy. Eur J Hum Genet. 2017;25(12):1313-1323. doi:10.1038/s41431-017-0004-3; 26. Schwartz, Peter J. Crotti, Lia. Insolia R. Long QT Syndrome: From Genetics to Management. 2013;5(4):868-877. doi:10.1161/CIRCEP.111.962019.Long; 27. Gaetano Vacantia, Riccardo Maragnaa, Andrea Mazzantia, b and SGP. Genetic causes of sudden cardiac death in children: inherited arrhythmogenic diseases. Curr Opin Pediatr. 2017;29(5):552-559. doi:10.1097/HCO.0000000000000391; 28. Mazzanti A, Underwood K, Nevelev D, Kofman S, Priori SG. The new kids on the block of arrhythmogenic disorders: Short QT syndrome and early repolarization. J Cardiovasc Electrophysiol. 2017;(1):1-28. doi:10.1111/jce.13265; 29. Fernández-Falgueras A, Sarquella-Brugada G, Brugada J, Brugada R, Campuzano O. Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances. Biology (Basel). 2017;6(1):7. doi:10.3390/biology6010007; 30. Gehi AK, Duong TD, Metz LD, Gomes JA, Mehta D. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J Cardiovasc Electrophysiol. 2006;17(6):577-583. doi:10.1111/j.1540-8167.2006.00455.x; 31. Polovina MM, Vukicevic M, Banko B, Lip GYH, Potpara TS. Brugada syndrome: A general cardiologist’s perspective. Eur J Intern Med. 2017. doi:10.1016/j.ejim.2017.06.019; 32. Sumitomo N. Current topics in catecholaminergic polymorphic ventricular tachycardia. J Arrhythmia. 2016;32(5):344-351. doi:10.1016/j.joa.2015.09.008; 33. Refaat MM, Hassanieh S, Scheinman M. Catecholaminergic Polymorphic Ventricular Tachycardia. Card Electrophysiol Clin. 2016;8(1):233-237. doi:10.1016/j.ccep.2015.10.035; 34. Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ. Arrhythmogenic Cardiomyopathy: Etiology, Diagnosis, and Treatment. Annu Rev Med. 2010;61(1):233-253. doi:10.1146/annurev.med.052208.130419; 35. Corrado D, Link MS, Calkins H. Arrhythmogenic Right Ventricular Cardiomyopathy. N Engl J Med. 2017;376(1):61-72. doi:10.1056/NEJMra1509267; 36. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur Heart J. 2010;31(7):806-814. doi:10.1093/eurheartj/ehq025; 37. Corrado D, Basso C, Judge DP. Arrhythmogenic Cardiomyopathy. Circ Res. 2017;121(7). doi:10.1016/j.ccep.2011.02.015; 38. Finocchiaro G, Papadakis M, Robertus JL, et al. Etiology of Sudden Death in Sports Insights from a United Kingdom Regional Registry. J Am Coll Cardiol. 2016;67(18):2108-2115. doi:10.1016/j.jacc.2016.02.062; 39. Austin KM, Trembley MA, Chandler SF, et al. Molecular mechanisms of arrhythmogenic cardiomyopathy. Nat Rev Cardiol. 2019;16(9):519-537. doi:10.1038/s41569-019-0200-7; 40. Biagini E, Coccolo F, Ferlito M, et al. Dilated-hypokinetic evolution of hypertrophic cardiomyopathy: Prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients. J Am Coll Cardiol. 2005;46(8):1543-1550. doi:10.1016/j.jacc.2005.04.062; 41. Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy. Circ Res. 2017;121(7):749-770. doi:10.1161/CIRCRESAHA.117.311059; 42. Bick AG, Flannick J, Ito K, et al. Burden of rare sarcomere gene variants in the framingham and jackson heart study cohorts. Am J Hum Genet. 2012;91(3):513-519. doi:10.1016/j.ajhg.2012.07.017; 43. Sabater-Molina M, Pérez-Sánchez I, Hernández del Rincón JP, Gimeno JR. Genetics of hypertrophic cardiomyopathy: A review of current state. Clin Genet. 2017;(November 2016):1-12. doi:10.1111/cge.13027; 44. Oficina de Tecnología de la Información y la Comunicación – OTIC. Ministerio de Salud y Protección Social. Lineamiento Técnico para el Registro y envío de los datos del Registro Individual de Prestaciones de Salud – RIPS, desde las Instituciones Prestadoras de Servicios de Salud a las EAPB. 2019.; 45. Burgos M, Arenas A, Cabrera R. Semiconductor Whole Exome Sequencing for the Identification of Genetic Variants in Colombian Patients Clinically Diagnosed with Long QT Syndrome. Mol Diagn Ther. 2016;20(4):353-362. doi:10.1007/s40291-016-0207-2; 46. Charron P, Arad M, Arbustini E, et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2010;31(22):2715-2726. doi:10.1093/eurheartj/ehq271; 47. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure. Circulation. 2013;128(16). doi:10.1161/CIR.0b013e31829e8776; 48. Herbert E, Trusz-Gluza M, Moric E, Śmiłowska-Dzielicka E, Mazurek U, Wilczok T. KCNQ1 gene mutations and the respective genotype-phenotype correlations in the long QT syndrome. Med Sci Monit. 2002;8(10):240-249.; 49. Albertella L, Crawford J, Skinner JR. Presentation and outcome of water-related events in children with long QT syndrome. Arch Dis Child. 2011;96(8):704-707. doi:10.1136/adc.2009.178152; 50. Zehelein J, Thomas D, Khalil M, et al. Identification and characterisation of a novel KCNQ1 mutation in a family with Romano–Ward syndrome. Biochim Biophys Acta - Mol Basis Dis. 2004;1690(3):185-192. doi:10.1016/J.BBADIS.2004.06.024; 51. Hobbs JB, Peterson DR, Moss AJ, et al. Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. J Am Med Assoc. 2006;296(10):1249-1254. doi:10.1001/jama.296.10.1249; 52. Ackerman MJ, Priori SG, Dubin AM, et al. Beta-blocker therapy for long QT syndrome and catecholaminergic polymorphic ventricular tachycardia: Are all beta-blockers equivalent? Hear Rhythm. 2017;14(1). doi:10.1016/j.hrthm.2016.09.012; 53. Ahn J, Kim HJ, Choi J Il, et al. Effectiveness of beta-blockers depending on the genotype of congenital long-QT syndrome: A meta-analysis. Aalto-Setala K, ed. PLoS One. 2017;12(10):e0185680. doi:10.1371/journal.pone.0185680; 54. Goldenberg I, Horr S, Moss AJ, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011;57(1):51-59. doi:10.1016/j.jacc.2010.07.038; 55. Dicker B, Garrett N, Wong S, et al. Relationship between socioeconomic factors, distribution of public access defibrillators and incidence of out-of-hospital cardiac arrest. Resuscitation. 2019;138(February):53-58. doi:10.1016/j.resuscitation.2019.02.022; 56. Earle N, Crawford J, Smith W, et al. Community detection of long QT syndrome with a clinical registry: An alternative to ECG screening programs? Hear Rhythm. 2013;10(2):233-238. doi:10.1016/j.hrthm.2012.10.043; 57. Winbo A, Earle N, Marcondes L, et al. Genetic testing in Polynesian long QT syndrome probands reveals a lower diagnostic yield and an increased prevalence of rare variants. Hear Rhythm. 2020;17(8):1304-1311. doi:10.1016/j.hrthm.2020.03.015; 58. den Haan AD, Tan BY, Zikusoka MN, et al. Comprehensive Desmosome Mutation Analysis in North Americans With Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Circ Cardiovasc Genet. 2009;2(5):428-435. doi:10.1161/CIRCGENETICS.109.858217; 59. Watanabe H, Minamino T. Genetics of Brugada syndrome. J Hum Genet. 2016;61(1):57-60. doi:10.1038/jhg.2015.97; 60. Bos JM, Will ML, Gersh BJ, Kruisselbrink TM, Ommen SR, Ackerman MJ. Characterization of a phenotype-based genetic test prediction score for unrelated patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2014;89(6):727-737. doi:10.1016/j.mayocp.2014.01.025; 61. Berge KE, Leren TP. Genetics of hypertrophic cardiomyopathy in Norway. Clin Genet. 2014;86(4):355-360. doi:10.1111/cge.12286; 62. Risgaard B. Sudden cardiac death: A nationwide cohort study among the young. Dan Med J. 2016;63(12):1-18.; 63. Rucinski C, Winbo A, Marcondes L, et al. A Population-Based Registry of Patients With Inherited Cardiac Conditions and Resuscitated Cardiac Arrest. J Am Coll Cardiol. 2020;75(21):2698-2707. doi:10.1016/j.jacc.2020.04.004; 64. Hershkovitz T, Kurolap A, Ruhrman-Shahar N, et al. Clinical diversity of MYH7-related cardiomyopathies: Insights into genotype–phenotype correlations. Am J Med Genet Part A. 2019;179(3):365-372. doi:10.1002/ajmg.a.61017; 65. L C, G M, K S, F C. Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene. 2015;573(2). doi:10.1016/J.GENE.2015.09.008; 66. Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, et al. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol. 2018;107(1):30-41. doi:10.1007/s00392-017-1155-5; 67. Skinner JR, Winbo A, Abrams D, Vohra J, Wilde AA. Channelopathies That Lead to Sudden Cardiac Death: Clinical and Genetic Aspects. Hear Lung Circ. 2019;28(1):22-30. doi:10.1016/j.hlc.2018.09.007; 68. Ramdat Misier AR, Ghani A, Elvan A, Ottervanger JP, Maas AHEM, Delnoy PPHM. Sex-Based Differences in Cardiac Arrhythmias, ICD Utilisation and Cardiac Resynchronisation Therapy. Netherlands Hear J. 2010;19(1):35-40. doi:10.1007/s12471-010-0050-8; 69. Garg L, Garg J, Krishnamoorthy P, et al. Influence of Pregnancy in Patients with Congenital Long QT Syndrome. Cardiol Rev. 2017;25(4):197-201. doi:10.1097/CRD.0000000000000108; 70. Rodriguez I, Kilborn MJ, Liu XK, Pezzullo JC, Woosley RL. Drug-induced QT prolongation in women during the menstrual cycle. J Am Med Assoc. 2001;285(10):1322-1326. doi:10.1001/jama.285.10.1322; 71. Cheung CC, Laksman ZWM, Mellor G, Sanatani S, Krahn AD. Exercise and Inherited Arrhythmias. Can J Cardiol. 2016;32(4):452-458. doi:10.1016/j.cjca.2016.01.007; 72. Mascia G, Arbelo E, Solimene F, Giaccardi M, Brugada R, Brugada J. The long-QT syndrome and exercise practice: The never-ending debate. J Cardiovasc Electrophysiol. 2018;29(3):489-496. doi:10.1111/jce.13410; 73. Lombardi R, Chen SN, Ruggiero A, et al. Cardiac fibro-adipocyte progenitors express desmosome proteins and preferentially differentiate to adipocytes upon deletion of the desmoplakin gene. Circ Res. 2016;119(1):41-54. doi:10.1161/CIRCRESAHA.115.308136; 74. Saffitz JE, Asimaki A, Huang H. Arrhythmogenic right ventricular cardiomyopathy: new insights into mechanisms of disease. Cardiovasc Pathol. 2010;19(3):166-170. doi:10.1016/j.carpath.2009.10.006; 75. Zhang Q, Deng C, Rao F, et al. Silencing of desmoplakin decreases connexin43/Nav1.5 expression and sodium current in HL-1 cardiomyocytes. Mol Med Rep. 2013;8(3):780-786. doi:10.3892/mmr.2013.1594; 76. Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116(7):2012-2021. doi:10.1172/JCI27751; 77. Giuliodori A, Beffagna G, Marchetto G, et al. Loss of cardiac Wnt/β-catenin signalling in desmoplakin-deficient AC8 zebrafish models is rescuable by genetic and pharmacological intervention. Cardiovasc Res. 2018;114(8):1082-1097. doi:10.1093/cvr/cvy057; 78. Castelletti S, Vischer AS, Syrris P, et al. Desmoplakin missense and non-missense mutations in arrhythmogenic right ventricular cardiomyopathy: Genotype-phenotype correlation. Int J Cardiol. 2017;249:268-273. doi:10.1016/j.ijcard.2017.05.018; 79. Abbott GW, Goldstein SAN. Disease‐associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism. FASEB J. 2002;16(3):390-400. doi:10.1096/fj.01-0520hyp; 80. Faridi R, Tona R, Brofferio A, et al. Mutational and phenotypic spectra of KCNE1 deficiency in Jervell and Lange-Nielsen Syndrome and Romano-Ward Syndrome. Hum Mutat. 2019;40(2):162-176. doi:10.1002/humu.23689; 81. Adler A, Novelli V, Amin AS, et al. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation. 2020:418-428. doi:10.1161/CIRCULATIONAHA.119.043132; 82. Roberts JD, Asaki SY, Mazzanti A, et al. An International Multicenter Evaluation of Type 5 Long QT Syndrome: A Low Penetrant Primary Arrhythmic Condition. Circulation. 2020:429-439. doi:10.1161/CIRCULATIONAHA.119.043114; 83. Lane CM, Giudicessi JR, Ye D, et al. Long QT syndrome type 5-Lite: Defining the clinical phenotype associated with the potentially proarrhythmic p.Asp85Asn-KCNE1 common genetic variant. Hear Rhythm. 2018;15(8):1223-1230. doi:10.1016/j.hrthm.2018.03.038; 84. Kim M, Hunter RW, Garcia-Menendez L, et al. Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res. 2014;114(6):966-975. doi:10.1161/CIRCRESAHA.114.302364; 85. Zhan Y, Sun X, Li B, et al. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells. J Mol Cell Cardiol. 2018;117(August 2017):49-61. doi:10.1016/j.yjmcc.2018.02.007; 86. Porto AG, Brun F, Severini GM, et al. Clinical Spectrum of PRKAG2 Syndrome. Circ Arrhythmia Electrophysiol. 2016;9(1):1-8. doi:10.1161/CIRCEP.115.003121; 87. Albernaz Siqueira MH, Honorato-Sampaio K, Dias GM, et al. Sudden death associated with a novel H401Q PRKAG2 mutation. Europace. 2020;22(8):1278. doi:10.1093/europace/euaa014; 88. Hu D, Hu D, Liu L, et al. Identification, clinical manifestation and structural mechanisms of mutations in AMPK associated cardiac glycogen storage disease. EBioMedicine. 2020;54:1-14. doi:10.1016/j.ebiom.2020.102723; 89. Chi C, Leonard A, Knight WE, et al. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome–lysosome fusion. Proc Natl Acad Sci U S A. 2019;116(2):556-565. doi:10.1073/pnas.1808618116; 90. Cheng Z, Fang Q. Danon disease: Focusing on heart. J Hum Genet. 2012;57(7):407-410. doi:10.1038/jhg.2012.72; 91. Boucek D, Jirikowic J, Taylor M. Natural history of Danon disease. Genet Med. 2011;13(6):563-568. doi:10.1097/GIM.0b013e31820ad795; 92. Cheng Z, Cui Q, Tian Z, et al. Danon disease as a cause of concentric left ventricular hypertrophy in patients who underwent endomyocardial biopsy. Eur Heart J. 2012;33(5):649-656. doi:10.1093/eurheartj/ehr420; 93. Arad M, Seidman JG. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005;352:362-372. doi:10.1016/s0093-3619(08)70160-6; 94. Wei B, Jin J-P. TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene. 2016;582(1):1-13. doi:10.1016/j.gene.2016.01.006; 95. Lv W, Qiao L, Petrenko N, et al. Functional Annotation of TNNT2 Variants of Uncertain Significance With Genome-Edited Cardiomyocytes. Circulation. 2018;138(24):2852-2854. doi:10.1161/CIRCULATIONAHA.118.035028; 96. Pedram A, Razandi M, Narayanan R, Dalton JT, McKinsey TA, Levin ER. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy. Mol Biol Cell. 2013;24(24):3805-3818. doi:10.1091/mbc.E13-08-0444; 97. Verdonschot JAJ, Vanhoutte EK, Claes GRF, et al. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat. 2020;41(6):1091-1111. doi:10.1002/humu.24004; 98. Valdés-Mas R, Gutiérrez-Fernández A, Gómez J, et al. Mutations in filamin C cause a new form of familial hypertrophic cardiomyopathy. Nat Commun. 2014;5(1):5326. doi:10.1038/ncomms6326; 99. Ader F, De Groote P, Réant P, et al. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clin Genet. 2019;96(4):317-329. doi:10.1111/cge.13594; 100. Cui H, Wang J, Zhang C, et al. Mutation profile of FLNC gene and its prognostic relevance in patients with hypertrophic cardiomyopathy. Mol Genet Genomic Med. 2018;6(6):1104-1113. doi:10.1002/mgg3.488; 101. Karbassi I, Maston GA, Love A, et al. A Standardized DNA Variant Scoring System for Pathogenicity Assessments in Mendelian Disorders. Hum Mutat. 2016;37(1):127-134. doi:10.1002/humu.22918; 102. Kelly MA, Caleshu C, Morales A, et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: Recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet Med. 2018;20(3):351-359. doi:10.1038/gim.2017.218; 103. Taha A, Ballou MM, Lama AE. Utilization of national patient registries by clinical nurse specialist: Opportunities and implications. Clin Nurse Spec. 2014;28(1):56-62. doi:10.1097/NUR.0000000000000018; 104. Fredman D, Ringh M, Svensson L, et al. Experiences and outcome from the implementation of a national Swedish automated external defibrillator registry. Resuscitation. 2018;130:73-80. doi:10.1016/j.resuscitation.2018.06.036; 105. Earle NJ, Crawford J, Hayes I, et al. Development of a cardiac inherited disease service and clinical registry: A 15-year perspective. Am Heart J. 2019;209:126-130. doi:10.1016/j.ahj.2018.11.013; 106. Martins AM, Cabrera G, Molt F, et al. The clinical profiles of female patients with Fabry disease in Latin America: A Fabry Registry analysis of natural history data from 169 patients based on enzyme replacement therapy status. JIMD Rep. 2019;49(1):107-117. doi:10.1002/jmd2.12071; 107. Drelichman G, Linares A, Villalobos J, et al. Enfermedad de Gaucher en LatinoAmérica: Un informe del registro internacional y del grupo LatinoAmericano para la enfermedad de Gaucher. Med. 2012;72(4):273-282. http://www.medicinabuenosaires.com/PMID/22892077.pdf. Accessed August 4, 2020.; 108. Eslava Otálora, Andrea Cecilia; Mateus Arbelaez HE. Registro de pacientes con distrofinopatías en Colombia. 2016.; 109. Krahn AD, Healey JS, Chauhan V, et al. Systematic assessment of patients with unexplained cardiac arrest: Cardiac arrest survivors with preserved ejection fraction registry (CASPER). Circulation. 2009;120(4):278-285. doi:10.1161/CIRCULATIONAHA.109.853143; 110. Wissenberg M, Hansen CM, Folke F, et al. Survival after out-of-hospital cardiac arrest in relation to sex: A nationwide registry-based study. Resuscitation. 2014;85(9):1212-1218. doi:10.1016/j.resuscitation.2014.06.008; https://repositorio.unal.edu.co/handle/unal/79466; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  19. 19
  20. 20