-
1Report
-
2Report
المؤلفون: Alraqad, Tariq A., Milovanovic, Igor Z., Saber, Hicham, Ali, Akbar, Mazorodze, Jaya Percival, Attiya, Adel A.
مصطلحات موضوعية: Mathematics - Combinatorics
URL الوصول: http://arxiv.org/abs/2211.05218
-
3Report
مصطلحات موضوعية: Mathematics - Combinatorics, 05C07, 05C09, 05C92
URL الوصول: http://arxiv.org/abs/2207.00353
-
4Academic Journal
المساهمون: Bozkurt Altındaǧ, Şerife Burcu
مصطلحات موضوعية: Energy of Graphs, Laplacian Eigenvalues, Trees
وصف الملف: application/pdf
Relation: Discrete Mathematics Letters; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; Matejić, M., Bozkurt Altındaǧ, Ş. B., Milovanović, I., & Milovanović, E. (2023). Some observations on the Laplacian–energy–like invariant of trees. Discrete Mathematics Letters, 11, 46-52. doi:10.47443/dml.2022.089; https://doi.org/10.47443/dml.2022.089; https://hdl.handle.net/11492/7085; 11; 46; 52
-
5Report
-
6Academic Journal
المصدر: Afrika Matematica; Jun2024, Vol. 35 Issue 2, p1-10, 10p
-
7Academic Journal
المصدر: Discrete Applied Mathematics ; volume 342, page 385-390 ; ISSN 0166-218X
-
8Academic Journal
المؤلفون: Gutman, Ivan, Milovanovíc, Emina, Milovanović, Igor
المصدر: AKCE International Journal of Graphs and Combinatorics
وصف الملف: application/pdf
Relation: https://scidar.kg.ac.rs/handle/123456789/12927; 2-s2.0-85048341247
-
9Academic Journal
المؤلفون: Javaid, Mubeen, Ali, Akbar, Milovanović, Igor, Milovanović, Emina
المصدر: AKCE International Journal of Graphs and Combinatorics ; volume 17, issue 3, page 920-923 ; ISSN 0972-8600 2543-3474
-
10Academic Journal
المؤلفون: Alraqad, Tariq A., Milovanović, Igor Ž., Saber, Hicham, Ali, Akbar, Mazorodze, Jaya P., Attiya, Adel A.
المصدر: AIMS Mathematics; 2024, Vol. 9 Issue 2, p3707-3721, 15p
مصطلحات موضوعية: BINARY stars, TREES, MOLECULAR connectivity index
-
11Academic Journal
المؤلفون: ALI, AKBAR, MATEJIĆ, MARJAN M., MILOVANOVIĆ, IGOR Ž., MILOVANOVIĆ, EMINA I., STANKOV, STEFAN D., RAZA, ZAHID
المصدر: Journal of Mathematical Inequalities; Dec2023, Vol. 17 Issue 4, p1565-1579, 15p
مصطلحات موضوعية: ARITHMETIC, GEOMETRIC vertices, MATHEMATICAL bounds, MATHEMATICAL formulas, MATHEMATICAL models
-
12Academic Journal
المؤلفون: ALI, AKBAR, MILOVANOVIĆ, IGOR, MILOVANOVIĆ, EMINA, MATEJIĆ, MARJAN
المصدر: Journal of Mathematical Inequalities; Dec2023, Vol. 17 Issue 4, p1411-1426, 16p
مصطلحات موضوعية: MATHEMATICAL bounds, GRAPH theory, GEOMETRIC vertices, MATHEMATICAL formulas, MATHEMATICAL models
-
13Academic Journal
مصطلحات موضوعية: Laplacian graph spectra, bipartite graph, spread of graph
Relation: Czechoslovak Mathematical Journal; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; https://doi.org/10.21136/CMJ.2023.0005-22; https://hdl.handle.net/11492/7964; 73; 499; 511; 2-s2.0-85148082637; WOS:000933669000001
-
14Academic Journal
المؤلفون: Milovanović, Igor, Gutman, Ivan, Milovanović, Emina
المصدر: Filomat, 2015 Jan 01. 29(8), 1869-1877.
URL الوصول: https://www.jstor.org/stable/24898349
-
15Academic Journal
المصدر: Filomat, 2015 Jan 01. 29(9), 1969-1981.
URL الوصول: https://www.jstor.org/stable/24898358
-
16Academic Journal
المساهمون: National Research Foundation of Korea, Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, Sungkyunkwan University
المصدر: Linear Algebra and its Applications ; volume 554, page 185-204 ; ISSN 0024-3795
-
17Academic Journal
المؤلفون: Milovanović, Igor Z., Matejić, M. M., Milovanović, Rmina I.
المصدر: BULLETIN OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE; Свеска 7, Бр. 3 (2017): Bulletin of IMVI, 7(3)(2017); 473-478 ; 2303-4955 ; 2303-4874
وصف الملف: application/pdf
-
18Academic Journal
مصطلحات موضوعية: keyword:inequality, keyword:real number sequence, keyword:Laplacian eigenvalue of graph, keyword:normalized Laplacian eigenvalue, msc:05C30, msc:15A18
وصف الملف: application/pdf
Relation: mr:MR4467942; zbl:Zbl 07584102; reference:[1] Andrade, E., Freitas, M. A. A. de, Robbiano, M., Rodríguez, J.: New lower bounds for the Randić spread.Linear Algebra Appl. 544 (2018), 254-272. Zbl 1388.05108, MR 3765785, 10.1016/j.laa.2017.07.037; reference:[2] Bianchi, M., Cornaro, A., Palacios, J. L., Torriero, A.: Bounds for the Kirchhoff index via majorization techniques.J. Math. Chem. 51 (2013), 569-587. Zbl 1327.05066, MR 3017758, 10.1007/s10910-012-0103-x; reference:[3] Butler, S. K.: Eigenvalues and Structures of Graphs: Ph.D. Thesis.University of California, San Diego (2008). MR 2711548; reference:[4] Cavers, M., Fallat, S., Kirkland, S.: On the normalized Laplacian energy and general Randić index $R_{-1}$ of graphs.Linear Algebra Appl. 433 (2010), 172-190. Zbl 1217.05138, MR 2645076, 10.1016/j.laa.2010.02.002; reference:[5] Chen, X., Das, K. C.: Some results on the Laplacian spread of a graph.Linear Algebra Appl. 505 (2016), 245-260. Zbl 1338.05158, MR 3506494, 10.1016/j.laa.2016.05.002; reference:[6] Chen, X., Qian, J.: Bounding the sum of powers of the Laplacian eigenvalues of graphs.Appl. Math., Ser. B (Engl. Ed.) 26 (2011), 142-150. Zbl 1240.05186, MR 2810546, 10.1007/s11766-011-2732-4; reference:[7] Chung, F. R. K.: Spectral Graph Theory.Regional Conference Series in Mathematics 92. AMS, Providence (1997). Zbl 0867.05046, MR 1421568, 10.1090/cbms/092; reference:[8] Edwards, C. S.: The largest vertex degree sum for a triangle in a graph.Bull. Lond. Math. Soc. 9 (1977), 203-208. Zbl 0357.05058, MR 0463005, 10.1112/blms/9.2.203; reference:[9] Fath-Tabar, G. H., Ashrafi, A. R.: Some remarks on Laplacian eigenvalues and Laplacian energy of graphs.Math. Commun. 15 (2010), 443-451. Zbl 1206.05062, MR 2814304; reference:[10] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs.Linear Algebra Appl. 416 (2006), 68-74. Zbl 1107.05059, MR 2232920, 10.1016/j.laa.2005.07.007; reference:[11] Grone, R., Merris, R.: The Laplacian spectrum of graph. II.SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653; reference:[12] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals. Total $\phi $-electron energy of alternant hydrocarbons.Chem. Phys. Lett. 17 (1972), 535-538. 10.1016/0009-2614(72)85099-1; reference:[13] Hakimi-Nezhaad, M., Ashrafi, A. R.: A note on normalized Laplacian energy of graphs.J. Contemp. Math. Anal., Armen. Acad. Sci. 49 (2014), 207-211. Zbl 1312.05082, MR 3379554, 10.3103/S106836231405001X; reference:[14] Huang, J., Li, S.: On the normalized Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs.Bul. Aust. Math. Soc. 91 (2015), 353-367. Zbl 1326.05082, MR 3338961, 10.1017/S0004972715000027; reference:[15] Jensen, J. L. W. V.: Sur les functions convexes et les inéqualités entre les valeurs moyennes.Acta Math. 30 (1906), 175-193 French \99999JFM99999 37.0422.02. MR 1555027, 10.1007/BF02418571; reference:[16] Kemeny, J. G., Snell, J. L.: Finite Markov Chains.The University Series in Undergraduate Mathematics. Van Nostrand, Princeton (1960). Zbl 0089.13704, MR 0115196; reference:[17] Li, J., Guo, J.-M., Shiu, W. C., ndağ, Ş. B. B. Altı, Bozkurt, D.: Bounding the sum of powers of normalized Laplacian eigenvalues of a graph.Appl. Math. Comput. 324 (2018), 82-92. Zbl 1426.05101, MR 3743658, 10.1016/j.amc.2017.12.003; reference:[18] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613, 10.1016/0024-3795(94)90486-3; reference:[19] Milovanović, I. Ž., Milovanović, E. I., Glogić, E.: Lower bounds of the Kirchhoff and degree Kirchhoff indices.Sci. Publ. State Univ. Novi Pazar, Ser. A, Appl. Math. Inf. Mech. 7 (2015), 25-31. 10.5937/SPSUNP1501025M; reference:[20] Milovanović, I. Ž., Milovanović, E. I., Glogić, E.: On Laplacian eigenvalues of connected graphs.Czech. Math. J. 65 (2015), 529-535. Zbl 1363.15016, MR 3360442, 10.1007/s10587-015-0191-4; reference:[21] Milovanović, I. Ž., Milovanović, E. I.: Bounds for the Kirchhoff and degree Kirchhoff indices.Bounds in Chemical Graph Theory: Mainstreams Mathematical Chemistry Monographs 20. University of Kragujevac, Kragujevac (2017), 93-119. MR 3403904; reference:[22] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Classical and New Inequalities in Analysis.Mathematics and Its Applications. East European Series 61. Kluwer Academic Publishers, Dorchrecht (1993). Zbl 0771.26009, MR 1220224, 10.1007/978-94-017-1043-5; reference:[23] Nikiforov, V.: The energy of graphs and matrices.J. Math. Anal. Appl. 326 (2007), 1472-1475. Zbl 1113.15016, MR 2280998, 10.1016/j.jmaa.2006.03.072; reference:[24] Nordhaus, E. A., Gaddum, J. W.: On complementary graphs.Am. Math. Mon. 63 (1956), 175-177. Zbl 0070.18503, MR 0078685, 10.2307/2306658; reference:[25] Ozeki, N.: On the estimation of the inequalities by the maximum, or minimum values.J. College Arts Sci. Chiba Univ. 5 (1968), 199-203 Japanese. MR 0254198; reference:[26] Palacios, J. L.: Some inequalities for Laplacian descriptors via majorization.MATCH Commun. Math. Comput. Chem. 77 (2017), 189-194. Zbl 1466.92279, MR 3645376; reference:[27] Palacios, J. L., Renom, J. M.: Broder and Karlin's formula for hitting times and the Kirchhoff index.Int. J. Quantum Chem. 111 (2011), 35-39. 10.1002/qua.22396; reference:[28] Shi, L.: Bounds on Randić indices.Discr. Math. 309 (2009), 5238-5241. Zbl 1179.05039, MR 2548924, 10.1016/j.disc.2009.03.036; reference:[29] Shi, L., Wang, H.: The Laplacian incidence energy of graphs.Linear Algebra Appl. 439 (2013), 4056-4062. Zbl 1282.05152, MR 3133474, 10.1016/j.laa.2013.10.028; reference:[30] You, Z., Liu, B.: On the Laplacian spectral ratio of connected graphs.Appl. Math. Lett. 25 (2012), 1245-1250. Zbl 1248.05116, MR 2947387, 10.1016/j.aml.2011.09.071; reference:[31] You, Z., Liu, B.: The Laplacian spread of graphs.Czech. Math. J. 62 (2012), 155-168. Zbl 1245.05089, MR 2899742, 10.1007/s10587-012-0003-z; reference:[32] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs.Linear Algebra Appl. 429 (2008), 2239-2246. Zbl 1144.05325, MR 2446656, 10.1016/j.laa.2008.06.023; reference:[33] Zumstein, P.: Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph: Diploma Thesis.ETH, Zürich (2005).
-
19
المؤلفون: Milovanović, Igor, Milovanović, Emina
المصدر: Czechoslovak Mathematical Journal | 2014 Volume:64 | Number:1
-
20
المؤلفون: Milovanović, Igor Ž., Milovanović, Emina I., Glogić, Edin
المصدر: Czechoslovak Mathematical Journal | 2015 Volume:65 | Number:2