يعرض 1 - 20 نتائج من 129 نتيجة بحث عن '"Microonda"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Grasas y Aceites; Vol. 75 No. 1 (2024); e545 ; Grasas y Aceites; Vol. 75 Núm. 1 (2024); e545 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2024.v75.i1

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2166/3173; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2166/3174; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2166/3175; Alishahi A, Golmakani MT, Niakousari M. 2021. Feasibility Study of Microwave-Assisted Biodiesel Production from Vegetable Oil Refinery Waste. Eur. J. Lipid Sci. Technol. 123, 2000377. https://doi.org/10.1002/ejlt.202000377; AOCS. 2000. Official Methods and Recommended Practices of the American Oil Chemists' Society (5th Ed.). USA, AOCS Press, Champaign, Illinois.; ASTM. 2013. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Distillate Fuels, ASTM D6751-12.; Almasi S, Najafi G, Ghobadian B, Jalili S. 2021. Biodiesel production from sour cherry kernel oil as novel feedstock using potassium hydroxide catalyst: Optimization using response surface methodology. ISBAB 35, 102089. https://doi.org/10.1016/j.bcab.2021.102089; Atapour M, Kariminia H. 2011. Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Appl. Energy 88, 2377-2381. https://doi.org/10.1016/j.apenergy.2011.01.014; Azcan N, Danisman A. 2008. Microwave assisted transesterification of rapeseed oil. Fuel 87, 1781-1788. https://doi.org/10.1016/j.fuel.2007.12.004; Azcan N, Yilmaz O. 2013. Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation. Fuel 104, 614-619. https://doi.org/10.1016/j.fuel.2012.06.084; Cavalcante KS, Penha MN, Mendonca KK, Louzeiro HC, Vasconcelos AC, Maciel AP, Souza AG, Silva FC. 2010. Optimization of transesterification of castor oil with ethanol using a central composite rotatable design (CCRD). Fuel 89, 1172-1176. https://doi.org/10.1016/j.fuel.2009.10.029; Chen K, Lin Y, Hsu K, Wang H. 2012. Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy 38, 151-156. https://doi.org/10.1016/j.energy.2011.12.020; Dehghan L, Golmakani M-T, Hosseini SMH. 2021. Improving biodiesel yield from pre-esterified inedible olive oil using microwave-assisted transesterification method. Grasas Aceites 72, e417. https://doi.org/10.3989/gya.0336201; Dehghan L, Golmakani M-T, Hosseini SMH. 2019. Optimization of microwave-assisted accelerated transesterification of inedible olive oil for biodiesel production. Renew. Energ. 138, 915-922. https://doi.org/10.1016/j.renene.2019.02.017; Golmakani M-T, Dehghan L, Rahimizad N. 2022. Biodiesel production enhanced by ultrasound-assisted esterification and transesterification of inedible olive oil. Grasas Aceites 73, e447. https://doi.org/10.3989/gya.1233202; Gornas P, Rudzinska M, Raczyk M, Misina I, Soliven A, Seglina D. 2016. Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications. Ind. Crops Prod. 82, 44-50. https://doi.org/10.1016/j.indcrop.2015.12.010; Kanitkar A, Balasubramanian S, Lima M, Boldor D. 2011. A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves. Bioresour. Technol. 102, 7896-7902. https://doi.org/10.1016/j.biortech.2011.05.091 PMid:21715160; Korlesky NM, Stolp LJ, Kodali DR, Goldschmidt R, Byrdwell WC. 2016. Extraction and characterization of montmorency sour cherry (Prunus cerasus L.) pit oil. J. Am. Oil Chem.' Soc. 93, 995-1005. https://doi.org/10.1007/s11746-016-2835-4; Leung DYC, Wu X, Leung MKH. 2010. A review on biodiesel production using catalyzed transesterification. Appl. Energy 87, 1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006; Lin J, Chen Y. 2017. Production of biodiesel by transesterification of Jatropha oil with microwave heating. J. Taiwan Inst. Chem. Eng. 75, 43-50. https://doi.org/10.1016/j.jtice.2017.03.034; Lin Y, Hsu K, Lin J. 2014. Rapid palm-biodiesel production assisted by a microwave system and sodium methoxide catalyst. Fuel 115, 306-311. https://doi.org/10.1016/j.fuel.2013.07.022; Ma F, Hanna MA. 1999. Biodiesel production: a review. Bioresour. Technol. 70, 1-15. https://doi.org/10.1016/S0960-8524(99)00025-5; Mahlinda S, Supardan MD, Husin H, Riza M, Muslim A. 2017. A comparative study of biodiesel production from screw pine fruit seed: using ultrasound and microwave assistance in in-situ transesterification. JESTEC 12, 3412-3425; Motasemi F, Ani FN. 2012. A review on microwave-assisted production of biodiesel. Renewable Sustainable Energy Rev. 16, 4719-4733. https://doi.org/10.1016/j.rser.2012.03.069; Patil PD, Gude VG, Mannarswamy A, Cooke P, Munson-McGee S, Nirmalakhandan N, Lammers P, Deng S. 2011. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresour. Technol. 102, 1399-1405. https://doi.org/10.1016/j.biortech.2010.09.046 PMid:20933395; Popa V, Misca C, Bordean D, Raba D, Stef D, Dumbrava D. 2011. Characterization of sour cherries (Prunus cerasus) kernel oil cultivars from Banat. J. Agroaliment. Processes Technol. 15, 398-401.; Sajjadi B, Abdul Aziz AR, Ibrahim S. 2014. Investigation, modelling and reviewing the effective parameters in microwave-assisted transesterification. Renewable Sustainable Energy Rev. 37, 762-777. https://doi.org/10.1016/j.rser.2014.05.021; Sharma A, Kodgire P, Kachhwaha SS. 2019. Biodiesel production from waste cotton-seed cooking oil using microwave-assisted transesterification: Optimization and kinetic modeling. Renewable Sustainable Energy Rev. 116, 109394. https://doi.org/10.1016/j.rser.2019.109394; Suppalakpanya K, Ratanawilai SB, Tongurai C. 2010. Production of ethyl ester from crude palm oil by two-step reaction with a microwave system. Fuel 89, 2140-2144. https://doi.org/10.1016/j.fuel.2010.04.003; Talebian-Kiakalaieh A, Amin NAS, Mazaheri H. 2013. A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 104, 638-710. https://doi.org/10.1016/j.apenergy.2012.11.061; Yilmaz FM, Görgüç A, Karaaslan M, Vardin H, Bilek SE, Uygun Ö, Bircan C. 2019. Sour Cherry By-products: Compositions, Functional Properties and Recovery Potentials. Crit. Rev. Food Sci. Nutr. 59, 3549-3563. https://doi.org/10.1080/10408398.2018.1496901 PMid:30040438; Zhang H, Ding J, Zhao Z. 2012. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production. Bioresour. Technol. 123, 72-77. https://doi.org/10.1016/j.biortech.2012.06.082 PMid:22940301; Zhang S, Zu Y, Fu Y, Luo M, Zhang D, Efferth T. 2010. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresour. Technol. 101, 931-936. https://doi.org/10.1016/j.biortech.2009.08.069 PMid:19793648; Zu Y, Zhang S, Fu Y, Liu W, Liu Z, Luo M, Efferth T. 2009. Rapid microwave-assisted transesterification for the preparation of fatty acid methyl esters from the oil of yellow horn (Xanthoceras sorbifolia Bunge.). Eur. Food Res. Technol. 229, 43-49. https://doi.org/10.1007/s00217-009-1024-1; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2166

  3. 3
    Dissertation/ Thesis
  4. 4
    Dissertation/ Thesis
  5. 5
    Dissertation/ Thesis
  6. 6
    Academic Journal

    المصدر: Grasas y Aceites; Vol. 72 No. 3 (2021); e417 ; Grasas y Aceites; Vol. 72 Núm. 3 (2021); e417 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2021.v72.i3

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1888/2772; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1888/2773; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1888/2774; AOCS. 2000. Official Methods and Recommended Practices of the American Oil Chemists' Society (5th ed.). USA, AOCS Press, Champaign, Illinois; ASTM. 2013. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Distillate Fuels, ASTM D6751-12; Atapour M, Kariminia HR. 2011. Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Appl. Energy 88, 2377-2381. https://doi.org/10.1016/j.apenergy.2011.01.014; Chai M, Tu Q, Lu M, Yang YJ. 2014. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Process Technol. 125, 106-113. https://doi.org/10.1016/j.fuproc.2014.03.025; Dorado MP, Ballesteros E, Arnal JM, Gómez J, López FJ. 2003. Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil. Fuel 82, 1311-1315. https://doi.org/10.1016/S0016-2361(03)00034-6; FAOSTAT. 2014. www.fao.org/faostat; Fukuda H, Kondo A, Noda H. 2001. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92, 405-416. https://doi.org/10.1263/jbb.92.405 PMid:16233120; Golmakani M-T, Mendiola JA, Rezaei K, Ibanez E. 2012a. Expanded ethanol with CO2 and pressurized ethyl lactate to obtain fractions enriched in γ-Linolenic Acid from Arthrospira platensis (Spirulina). J. Supercrit. Fluid 62, 109-115. https://doi.org/10.1016/j.supflu.2011.11.026; Golmakani M-T, Rezaei K, Mazidi S, Razavi SH. 2012b. Effect of alternative C2 carbon sources on the growth, lipid, and γ-linolenic acid production of Spirulina (Arthrospira platensis). Food Sci. Biotechnol. 21, 355-363. https://doi.org/10.1007/s10068-012-0047-8; Habibi M, Golmakani M-T, Farahnaky A, Mesbahi G, Majzoobi M. 2016. NaOH-free debittering of table olives using power ultrasound. Food Chem. 192, 775-781. https://doi.org/10.1016/j.foodchem.2015.07.086 PMid:26304410; Hsiao MC, Lin CC, Chang YH, Chen LC. 2010. Ultrasonic mixing and closed microwave irradiation-assisted transesterification of soybean oil. Fuel 89, 3618-3622. https://doi.org/10.1016/j.fuel.2010.07.044; Jaliliannosrati H, Amin NAS, Talebian-Kiakalaieh A, Noshadi I. 2013. Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: Optimization using response surface methodology. Bioresour. Technol. 136, 565-573. https://doi.org/10.1016/j.biortech.2013.02.078 PMid:23567732; Kanitkar A, Balasubramanian S, Lima M, Boldor D. 2011. A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves. Bioresour. Technol. 102, 7896-7902. https://doi.org/10.1016/j.biortech.2011.05.091 PMid:21715160; Kara K, Ouanji F, Lotfi EM, Mahi ME, Kacimi M, Ziyad M. 2018. Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egypt J. Pet. 27, 249-255. https://doi.org/10.1016/j.ejpe.2017.07.010; Kumar R, Kumar GR, Chandrashekar N. 2011. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production. Bioresour. Technol. 102, 6617-6620. https://doi.org/10.1016/j.biortech.2011.03.024 PMid:21482464; Lin J, Chen Y. 2017. Production of biodiesel by transesterification of Jatropha oil with microwave heating. J. Taiwan Inst. Chem. E. 75, 43-50. https://doi.org/10.1016/j.jtice.2017.03.034; Mazubert A, Taylor C, Aubin J, Poux M. 2014. Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production. Bioresour. Technol. 161, 270-279. https://doi.org/10.1016/j.biortech.2014.03.011 PMid:24717320; Meher LC, Kulkarni MG, Dalai AK, Na S. 2006. Transesterification of karanja (Pongamia pinnata) oil by solid basic catalysts. Eur. J. Lipid Sci. Tech. 108, 389-397. https://doi.org/10.1002/ejlt.200500307; Motasemi F, Ani FN. 2012. A review on microwave-assisted production of biodiesel. Renew. Sust. Energ. Rev. 16, 4719-4733. https://doi.org/10.1016/j.rser.2012.03.069; Park J, Kim B, Lee JW. 2016. In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresour. Technol. 221, 55-60. https://doi.org/10.1016/j.biortech.2016.09.001 PMid:27639224; Patil P, Gude VG, Pinappu S, Deng S. 2011. Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chem. Eng. J. 168, 1296-1300. https://doi.org/10.1016/j.cej.2011.02.030; Sajjadi B, Abdul Aziz AR, Ibrahim S. 2014. Investigation, modelling and reviewing the effective parameters in microwave-assisted transesterification. Renew. Sust. Energ. Rev. 37, 762-777. https://doi.org/10.1016/j.rser.2014.05.021; Sarantopoulos I, Chatzisymeon E, Foteinis S, Tsoutsos T. 2014. Optimization of biodiesel production from waste lard by a two-step transesterification process under mild conditions. Energy Sustain. Dev. 23, 110-114. https://doi.org/10.1016/j.esd.2014.08.005; Shahidi F. 2005. Bailey's Industrial Oil and Fat Products (6th ed.). New Jersey, USA, John Wiley and Sons Inc.Publication.; Stavarache C, Vinatoru M, Nishimura R, Maeda Y. 2007. Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrason. Sonochem. 14, 380-386. https://doi.org/10.1016/j.ultsonch.2006.08.004 PMid:17079181; Suppalakpanya K, Ratanawilai S, Tongurai C. 2010. Production of ethyl ester from crude palm oil by two-step reaction with a microwave system. Fuel 89, 2140-2144. https://doi.org/10.1016/j.fuel.2010.04.003; Talebian-Kiakalaieh A, Amin NAS, Mazaheri H. 2013. A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 104, 683-710. https://doi.org/10.1016/j.apenergy.2012.11.061; Thoai DN, Tongurai C, Prasertsit K, Kumar A. 2017. A novel two-step transesterification process catalyzed by homogeneous base catalyst in the first step and heterogeneous acid catalyst in the second step. Fuel Process Technol. 168, 97-104. https://doi.org/10.1016/j.fuproc.2017.08.014; Van Gerpen J, Shanks B, Pruszko R, Clements D, Knothe G. 2004. Biodiesel Production Technology. National Renewable Energy Laboratory. www.nrel.gov; Vicente G, Martinez M, Aracil J. 2004. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 92, 297-305. https://doi.org/10.1016/j.biortech.2003.08.014 PMid:14766164; Wahidin S, Idris A, Muhamad Shaleh SR. 2014. Rapid biodiesel production using wet microalgae via microwave Irradiation. Energ. Convers. Manage. 84, 227-233. https://doi.org/10.1016/j.enconman.2014.04.034; Yuste AJ, Dorado MP.2006. A neural network approach to simulate biodiesel production from waste olive oil. Energ. Fuel. 20, 399-402. https://doi.org/10.1021/ef050226t; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1888

  7. 7
    Academic Journal

    المؤلفون: Baştürk, A.

    المصدر: Grasas y Aceites; Vol. 70 No. 4 (2019); e326 ; Grasas y Aceites; Vol. 70 Núm. 4 (2019); e326 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2019.v70.i4

    وصف الملف: text/html; application/pdf; application/xml

    Relation: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1792/2494; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1792/2495; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1792/2496; Adhvaryu A, Erhan SZ, Liu ZS, Perez JM. 2000. Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochim. Acta 364, 87-97. https://doi.org/10.1016/S0040-6031(00)00626-2; Albi T, Lanzón A, Guinda A, Pérez-Camino MC, León M. 1997. Microwave and conventional heating effects on some physical and chemical parameters of edible fats. J. Agric. Food Chem. 45, 3000-3003. https://doi.org/10.1021/jf970168c; AOAC 1990. Official Methods of Analysis, Fifteenth edition. Association of Official Analysis Chemists, Washington, DC.; AOCS 1989. In Official methods and recommended practices of the American Oil Chemists' Society (4th ed.), AOCS Champaign, IL, USA.; AOCS 2003. Official Method Ce 8-89. Determination of tocopherols and tocotrienols in vegetable oils and fats by HPLC. In Official methods and recommended practices of the American Oil Chemists' Society (4th ed.), AOCS, Champaign, IL, USA.; Basturk A, Javidipour I, Boyaci IH. 2007. Oxidative stability of natural and chemically interesterified cottonseed, palm and soybean oils. J. Food Lipids 14,170-188. https://doi.org/10.1111/j.1745-4522.2007.00078.x; Ba?türk A, Ceylan MM, Çavu? M, Boran G, Javidipour I. 2018. Effects of some herbal extracts on oxidative stability of corn oil under accelerated oxidation conditions in comparison with some commonly used antioxidants. LWT-Food Sci. Technol. 89, 358-64. https://doi.org/10.1016/j.lwt.2017.11.005; Benedini L, Schulz EP, Messina PV, Palma SD, Allemandi DA, Schulz PC. 2011. The ascorbyl palmitate-water system: Phase diagram and state of water. Colloid Surface A 375, 178-185. https://doi.org/10.1016/j.colsurfa.2010.11.083; Caponio F, Pasqualone A, Gomes T. 2003. Changes in the fatty acid composition of vegetable oils in model doughs submitted to conventional or microwave heating. Int. J. Food Sci. Tech. 38, 481-486. https://doi.org/10.1046/j.1365-2621.2003.00703.x; Chen XQ, Zhang Y, Zu YG, Yang L, Lu Q, Wang W. 2014. Antioxidant effects of rosemary extracts on sunflower oil compared with synthetic antioxidants. Int. J. Food Sci. Tech. 49, 385-91. https://doi.org/10.1111/ijfs.12311; Chu YH, Hsu HF. 1999. Effects of antioxidants on peanut oil stability. Food Chem. 66, 29-34. https://doi.org/10.1016/S0308-8146(98)00082-X; Crapiste GH, Brevedan MI, Carelli AA. 1999. Oxidation of sunflower oil during storage. J. Am. Oil Chem. Soc. 76, 1437. https://doi.org/10.1007/s11746-999-0181-5; Frankel EN. 2010. Chemistry of extra virgin olive oil: adulteration, oxidative stability, and antioxidants. J. Agric. Food Chem. 58, 5991-6006. https://doi.org/10.1021/jf1007677 PMid:20433198; Göksunger Y. 2011.Reaction and Fermentation Kinetics in Food Engineering, Sidas Medya Ltd. ?ti. Publisher: ?zmir, Turkey.; Hamilton RJ, Kalu C, Prisk E, Padley F, Pierce H. 1997. Chemistry of free radicals in lipids. Food Chem. 60, 193-9. https://doi.org/10.1016/S0308-8146(96)00351-2; Hassanein MM, El-Shami SM, El-Mallah MH. 2003. Changes occurring in vegetable oils composition due to microwave heating. Grasas Aceites 54, 343-349. https://doi.org/10.3989/gya.2003.v54.i4.219; Javidipour I, Erinc H, Basturk A, Tekin A. 2017. Oxidative changes in hazelnut, olive, soybean, and sunflower oils during microwave heating. Int. J. Food Prop. 20, 1582-1592. https://doi.org/10.1080/10942912.2016.1214963; Javidipour I, Qian MC. 2008. Volatile component change in whey protein concentrate during storage investigated by headspace solid-phase microextraction gas chromatography. Dairy Sci. Technol. 88, 95-104. https://doi.org/10.1051/dst:2007010; Karel M. 1992. Kinetics of lipid oxidation, Phys Chem foods, New York: Marcel Dekker Inc., pp. 651-68.; Kiralan M, Kiralan SS. 2015. Changes in Volatile Compounds of Black Cumin Oil and Hazelnut Oil by Microwave Heating Process. J. Am. Oil Chem. Soc. 92, 1445-1450. https://doi.org/10.1007/s11746-015-2711-7; Lukesova D, Dostalova J, Mahmoud EEM, Svarovska M. 2009. Oxidation Changes of Vegetable Oils during Microwave Heating. Czech J. Food Sci. 27, S178-S181. https://doi.org/10.17221/929-CJFS; Labuza TP, Dugan Jr L. 1971. Kinetics of lipid oxidation in foods. Crit. Rev. Food Sci. 2,355-405. https://doi.org/10.1080/10408397109527127; Schaich K. 2016. 'Analysis of lipid and protein oxidation in fats, oils, and foods', Oxidative stability and shelf life of foods containing oils and fats, Elsevier, pp. 1-131. https://doi.org/10.1016/B978-1-63067-056-6.00001-X PMid:26948539; Shahidi F. 1998. Indicators for evaluation of lipid oxidation and off-flavor development in food. Dev. Food Sci. 40, 55-68. https://doi.org/10.1016/S0167-4501(98)80032-0; Shahidi F, Wanasundara UN. 1996. Methods for evaluation of the oxidative stability of lipid-containing foods. Food Sci. Technol. Int. 2,73-81. https://doi.org/10.3136/fsti9596t9798.2.73; Shahidi F, Zhong Y. 2005. Antioxidants: regulatory status. Bailey's industrial oil and fat products. 1, 491-512. https://doi.org/10.1002/047167849X.bio035; Tan CP, Man YBC, Jinap S, Yusoff MSA. 2001. Effects of microwave heating on changes in chemical and thermal properties of vegetable oils. J. Am. Oil Chem. Soc. 78,1227-1232. https://doi.org/10.1007/s11745-001-0418-5; Vieira TMFS, Regitano-D'arce MAB. 1998. Stability of oils heated by microwave: UV-spectrophotometric evaluation. Food Sci. Technol. 18, 433-437. https://doi.org/10.1590/S0101-20611998000400015; Yoshida H, Kondo I, Kajimoto G. 1992a. Participation of Free Fatty-Acids in the Oxidation of Purified Soybean Oil during Microwave-Heating. J. Am. Oil Chem. Soc. 69,1136-40. https://doi.org/10.1007/BF02541050; Yoshida H, Tatsumi M, Kajimoto G. 1992b. Influence of Fatty-Acids on the Tocopherol Stability in Vegetable-Oils during Microwave-Heating. J. Am. Oil Chem. Soc. 69, 119-25. https://doi.org/10.1007/BF02540560; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1792

  8. 8
    Academic Journal
  9. 9
    Dissertation/ Thesis
  10. 10
  11. 11
  12. 12
    Conference
  13. 13
    Video Recording
  14. 14

    المساهمون: Jardim, Isabel Cristina Sales Fontes, 1953, Anazawa, Tania Akiko, Rath, Susanne, Universidade Estadual de Campinas. Instituto de Química, Programa de Pós-Graduação em Química, UNIVERSIDADE ESTADUAL DE CAMPINAS

    المصدر: Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)
    Universidade Estadual de Campinas (UNICAMP)
    instacron:UNICAMP

    وصف الملف: application/pdf; 100p. : il.

  15. 15
    Video Recording
  16. 16
    Academic Journal

    المصدر: DYNA; Vol. 81 Núm. 183 (2014); 16-21 ; DYNA; Vol. 81 No. 183 (2014); 16-21 ; 2346-2183 ; 0012-7353

    وصف الملف: application/pdf; text/html

    Relation: https://revistas.unal.edu.co/index.php/dyna/article/view/34802/43946; https://revistas.unal.edu.co/index.php/dyna/article/view/34802/45780; Nour A. Emulsion Stability and Microwave Demulsification of Crude Oil Emulsion: Emulsion characterization, mechanisms of microwave heating technology, chemical demulsification, Lambert Academic Publishing, 2011, p. 25.; Flynn J. The Nalco Water Handbook, 2009, p. 813.; Klaila W. Method and Apparatus for Controlling Fluency of High Viscosity Hydrocarbon Fluids, 1978, U.S. Patent 4,067,683.; Wolf N. Use of Microwave Radiation in Separating Emulsions and Dispersions of Hydrocarbons and Water, 1986, U.S. Patent 4,582,629.; Countinho R. Method for the Microwave Treatment of Water-In-Oil Emulsions, 2010, U.S. Patent 7,705,058 B2.; https://revistas.unal.edu.co/index.php/dyna/article/view/34802

  17. 17

    المصدر: Revista Verde de Agroecologia e Desenvolvimento Sustentável; Vol. 15 No. 2 (2020); 183-192
    Revista Verde de Agroecologia e Desenvolvimento Sustentável; Vol. 15 Núm. 2 (2020); 183-192
    Revista Verde de Agroecologia e Desenvolvimento Sustentável; v. 15 n. 2 (2020); 183-192
    Revista Verde de Agroecologia e Desenvolvimento Sustentavel
    Grupo Verde de Agroecologia e Abelhas (GVAA)
    instacron:GVAA

    مصطلحات موضوعية: Microonda, Secagem, Micro-ondas, Carica papaya L, Microwave, El secado, Drying

    وصف الملف: text/html; application/pdf

  18. 18
    Academic Journal

    المؤلفون: Arévalo, Edward, Rivas, Wenceslao

    المساهمون: Universidad Don Bosco

    مصطلحات موضوعية: Científica, Metodología, Diseño, Amplificador, Microonda, Banda Ancha

    وصف الملف: 12 p.; application/pdf

    Relation: Reproducción del documento original; Revista Científica, 2010, No. 11, p. 3-14; Arévalo, E. y Rivas, W. (2010). Diseño de un amplificador de pequeña señal y de banda ancha para 1.1 GHZ. Revista Científica, (11), pp. 3-14.; http://hdl.handle.net/11715/315

  19. 19
    Dissertation/ Thesis
  20. 20
    Academic Journal

    المؤلفون: Rivas, Wenceslao

    المساهمون: Universidad Don Bosco

    مصطلحات موضوعية: Científica, Metodología, Diseño, Osciladores, Microonda

    وصف الملف: 12 p.; application/pdf

    Relation: Reproducción del documento original; Revista Científica, 2009, No. 10, p. 47-58; Rivas, W. (2009). Diseño de un oscilador de microondas considerando las pistas del circuito impreso. Revista Científica, (10), pp. 47-58.; http://hdl.handle.net/11715/307