يعرض 1 - 13 نتائج من 13 نتيجة بحث عن '"Membrana de intercambio aniónico"', وقت الاستعلام: 0.82s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Carrillo Abad, Jorge

    المساهمون: University/Department: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials

    Thesis Advisors: García Gabaldón, Montserrat, Pérez Herranz, Valentín

    المصدر: Riunet

  2. 2
    Dissertation/ Thesis

    المساهمون: University/Department: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials

    Thesis Advisors: García Gabaldón, Montserrat, Pérez Herranz, Valentín

    المصدر: Riunet

  3. 3
  4. 4
    Academic Journal

    المؤلفون: Castañeda Ramírez, Sergio

    المساهمون: Ribadeneira Paz, Rafael Esteban, Universidad Nacional de Colombia - Sede Medellín, Grupo Kimera

    وصف الملف: application/pdf

    Relation: Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy. 88 (2011) 981–1007. https://doi.org/10.1016/j.apenergy.2010.09.030.; X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Part I. Physico-chemical and electronic interactions between Pt and carbon support, and activity enhancement of Pt/C catalyst, J. Power Sources. 172 (2007) 133–144. https://doi.org/10.1016/j.jpowsour.2007.07.049.; G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J. Memb. Sci. 377 (2011) 1–35. https://doi.org/10.1016/j.memsci.2011.04.043.; K.N. Grew, W.K.S. Chiu, A Dusty Fluid Model for Predicting Hydroxyl Anion Conductivity in Alkaline Anion Exchange Membranes, J. Electrochem. Soc. 157 (2010) B327. https://doi.org/10.1149/1.3273200.; E. Antolini, E.R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources. 195 (2010) 3431–3450. https://doi.org/10.1016/j.jpowsour.2009.11.145.; Q.H. Zeng, Q.L. Liu, I. Broadwell, A.M. Zhu, Y. Xiong, X.P. Tu, Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells, J. Memb. Sci. 349 (2010) 237–243. https://doi.org/10.1016/j.memsci.2009.11.051.; L. Sun, J. Guo, J. Zhou, Q. Xu, D. Chu, R. Chen, Novel nanostructured high-performance anion exchange ionomers for anion exchange membrane fuel cells, J. Power Sources. 202 (2012) 70–77. https://doi.org/10.1016/j.jpowsour.2011.11.023.; A.D. Mohanty, C.Y. Ryu, Y.S. Kim, C. Bae, Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers, Macromolecules. 48 (2015) 7085–7095. https://doi.org/10.1021/acs.macromol.5b01382.; P. Dai, Z.H. Mo, R.W. Xu, S. Zhang, Y.X. Wu, Cross-Linked Quaternized Poly(styrene-b-(ethylene-co-butylene)-b-styrene) for Anion Exchange Membrane: Synthesis, Characterization and Properties, ACS Appl. Mater. Interfaces. 8 (2016) 20329–20341. https://doi.org/10.1021/acsami.6b04590.; S. Castañeda, C.I. Sánchez, Modeling and analysis of ion transport through anion exchange membranes used in alkaline fuel cells, ECS Trans. 50 (2012) 2091–2107.; J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M. a. Hickner, P. a. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T. Xu, L. Zhuang, Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci. 7 (2014) 3135–3191. https://doi.org/10.1039/b000000x.; Z.F. Pan, L. An, T.S. Zhao, Z.K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Prog. Energy Combust. Sci. 66 (2018) 141–175. https://doi.org/10.1016/j.pecs.2018.01.001.; V. Vijayakumar, S.Y. Nam, Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells, J. Ind. Eng. Chem. 70 (2019) 70–86. https://doi.org/10.1016/j.jiec.2018.10.026.; K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, Alkaline direct alcohol fuel cells using an anion exchange membrane, J. Power Sources. 150 (2005) 27–31. https://doi.org/10.1016/j.jpowsour.2005.02.020.; M. Cifrain, K. Kordesch, Advances, aging mechanism and lifetime in AFCs with circulating electrolytes, J. Power Sources. 127 (2004) 234–242. https://doi.org/10.1016/j.jpowsour.2003.09.019.; B. Pivovar, 2011 Alkaline Membrane Fuel Cell Workshop Final Report, in: Alkaline Membr. Fuel Cell Work., Arlington, 2011: pp. 1–24.; J. Cheng, G. He, F. Zhang, A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies, Int. J. Hydrogen Energy. 40 (2015) 7348–7360. https://doi.org/10.1016/j.ijhydene.2015.04.040.; M.A. Hickner, A.M. Herring, E.B. Coughlin, Anion exchange membranes: Current status and moving forward, J. Polym. Sci. Part B Polym. Phys. 51 (2013) 1727–1735. https://doi.org/10.1002/polb.23395.; S. Maurya, S.-H. Shin, Y. Kim, S.-H. Moon, A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries, RSC Adv. 5 (2015) 37206–37230. https://doi.org/10.1039/C5RA04741B.; S. Gottesfeld, D.R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, Y.S. Kim, Anion exchange membrane fuel cells: Current status and remaining challenges, J. Power Sources. 375 (2018) 170–184. https://doi.org/10.1016/j.jpowsour.2017.08.010.; D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources. 375 (2018) 158–169. https://doi.org/10.1016/j.jpowsour.2017.07.117.; A.Z. Weber, J. Newman, Transport in Polymer-Electrolyte Membranes I. Physical Model, J. Electrochem. Soc. 150 (2003) A1008. https://doi.org/10.1149/1.1580822.; A.Z. Weber, J. Newman, Transport in Polymer-Electrolyte Membranes II. Mathematical Model, J. Electrochem. Soc. 151 (2004) A311. https://doi.org/10.1149/1.1639157.; A.Z. Weber, J. Newman, Transport in Polymer-Electrolyte Membranes III. Model Validation in a Simple Fuel-Cell Model, J. Electrochem. Soc. 151 (2004) A326. https://doi.org/10.1149/1.1639158.; S. Castañeda Ramírez, R. Ribadeneira, Hydroxide Transport in Anion-Exchange Membranes for Alkaline Fuel Cells, in: S. Karakus (Ed.), New Trends Ion Exch. Stud., First, IntechOpen, Croatia, 2018: pp. 51–69. https://doi.org/10.5772/intechopen.77148.; M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution, Nature. 417 (2002) 925–929. https://doi.org/10.1038/nature00794.1.; M.E. Tuckerman, A. Chandra, D. Marx, Structure and dynamics of OH-(aq)., Acc. Chem. Res. 39 (2006) 151–8. https://doi.org/10.1021/ar040207n.; D. Marx, A. Chandra, M.E. Tuckerman, Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton., Chem. Rev. 110 (2010) 2174–2216. https://doi.org/10.1021/cr900233f.; P. Atkins, J. De Paula, Atkins’ Physical Chemistry, 8th ed., Oxford University Press, New York, 2006. https://doi.org/10.1039/c1cs15191f.; A. Botti, F. Bruni, S. Imberti, M. a Ricci, a K. Soper, Ions in water: the microscopic structure of concentrated NaOH solutions., J. Chem. Phys. 120 (2004) 10154–62. https://doi.org/10.1063/1.1705572.; S. McLain, S. Imberti, A. Soper, A. Botti, F. Bruni, M. Ricci, Structure of 2 molar NaOH in aqueous solution from neutron diffraction and empirical potential structure refinement, Phys. Rev. B. 74 (2006) 094201. https://doi.org/10.1103/PhysRevB.74.094201.; M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water, J. Chem. Phys. 103 (1995) 150–161. https://doi.org/10.1063/1.469654.; P. Choi, N.H. Jalani, R. Datta, Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity, J. Electrochem. Soc. 152 (2005) E123. https://doi.org/10.1149/1.1859814.; G.S. Hwang, M. Kaviany, J.T. Gostick, B. Kientiz, A.Z. Weber, M.H. Kim, Role of water states on water uptake and proton transport in Nafion using molecular simulations and bimodal network, Polymer (Guildf). 52 (2011) 2584–2593. https://doi.org/10.1016/j.polymer.2011.03.056.; M. Eikerling, A.A. Kornyshev, A.M. Kuznetsov, J. Ulstrup, S. Walbran, Mechanisms of Proton Conductance in Polymer Electrolyte Membranes, J. Phys. Chem. B. 105 (2001) 3646–3662. https://doi.org/10.1021/jp003182s.; D. Marx, Throwing Tetrahedral Dice, Science (80-. ). 303 (2004) 634–636.; Z. Ma, M.E. Tuckerman, On the connection between proton transport, structural diffusion, and reorientation of the hydrated hydroxide ion as a function of temperature, Chem. Phys. Lett. 511 (2011) 177–182. https://doi.org/10.1016/j.cplett.2011.05.066.; D. Marx, Proton transfer 200 years after von Grotthuss: insights from ab initio simulations., Chemphyschem. 7 (2006) 1848–70. https://doi.org/10.1002/cphc.200600128.; G. Yang, J. Hao, J. Cheng, N. Zhang, G. He, F. Zhang, C. Hao, Hydroxide ion transfer in anion exchange membrane: A density functional theory study, Int. J. Hydrogen Energy. 41 (2016) 6877–6884. https://doi.org/10.1016/j.ijhydene.2016.03.067.; C. Chen, Y.L.S. Tse, G.E. Lindberg, C. Knight, G.A. Voth, Hydroxide Solvation and Transport in Anion Exchange Membranes, J. Am. Chem. Soc. 138 (2016) 991–1000. https://doi.org/10.1021/jacs.5b11951.; W. Zhang, A.C.T. Van Duin, ReaxFF Reactive Molecular Dynamics Simulation of Functionalized Poly(phenylene oxide) Anion Exchange Membrane, J. Phys. Chem. C. 119 (2015) 27727–27736. https://doi.org/10.1021/acs.jpcc.5b07271.; D. Dong, W. Zhang, A.C.T. Van Duin, D. Bedrov, Grotthuss versus Vehicular Transport of Hydroxide in Anion-Exchange Membranes: Insight from Combined Reactive and Nonreactive Molecular Simulations, J. Phys. Chem. Lett. 9 (2018) 825–829. https://doi.org/10.1021/acs.jpclett.8b00004.; W. Zhang, D. Dong, D. Bedrov, A.C.T. Van Duin, Hydroxide transport and chemical degradation in anion exchange membranes: A combined reactive and non-reactive molecular simulation study, J. Mater. Chem. A. 7 (2019) 5442–5452. https://doi.org/10.1039/c8ta10651g.; D. Muñoz-Santiburcio, D. Marx, On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores, Nat. Commun. 7 (2016) 1–9. https://doi.org/10.1038/ncomms12625.; T. Zelovich, Z. Long, M. Hickner, S.J. Paddison, C. Bae, M.E. Tuckerman, Ab Initio Molecular Dynamics Study of Hydroxide Diffusion Mechanisms in Nanoconfined Structural Mimics of Anion Exchange Membranes, J. Phys. Chem. C. 123 (2019) 4638–4653. https://doi.org/10.1021/acs.jpcc.8b10298.; T. Zelovich, L. Vogt-Maranto, M.A. Hickner, S.J. Paddison, C. Bae, D.R. Dekel, M.E. Tuckerman, Hydroxide Ion Diffusion in Anion-Exchange Membranes at Low Hydration: Insights from Ab Initio Molecular Dynamics, Chem. Mater. 31 (2019) 5778–5787. https://doi.org/10.1021/acs.chemmater.9b01824.; D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, 2009. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed October 7, 2013).; K.-D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology., Chem. Rev. 104 (2004) 4637–78. http://www.ncbi.nlm.nih.gov/pubmed/15669165.; M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Second, Oxford University Press, Oxford, 2017.; F. Tassone, F. Mauri, R. Car, Acceleration schemes for ab initio molecular-dynamics simulations and electronic-structure calculations, Phys. Rev. B. 50 (1994) 10561–10573. https://doi.org/10.1103/PhysRevB.50.10561.; P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials., J. Phys. Condens. Matter. 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502.; F. Sepehr, H. Liu, X. Luo, C. Bae, M.E. Tuckerman, M.A. Hickner, S.J. Paddison, Mesoscale Simulations of Anion Exchange Membranes Based on Quaternary Ammonium Tethered Triblock Copolymers, Macromolecules. 50 (2017) 4397−4405. https://doi.org/10.1021/acs.macromol.7b00082.; B. Abu-Sharkh, A. Alsunaidi, Morphology and conformation analysis of self-assembled triblock copolymer melts, Macromol. Theory Simulations. 15 (2006) 507–515. https://doi.org/10.1002/mats.200600014; T.L. Chantawansri, T.W. Sirk, Y.R. Sliozberg, Entangled triblock copolymer gel: Morphological and mechanical properties, J. Chem. Phys. 138 (2013) 1–11. https://doi.org/10.1063/1.4774373.; S.S. Tallury, R.J. Spontak, M. a Pasquinelli, Dissipative particle dynamics of triblock copolymer melts: A midblock conformational study at moderate segregation., J. Chem. Phys. 141 (2014) 244911. https://doi.org/10.1063/1.4904388.; J.A. Morrone, K.E. Haslinger, M.E. Tuckerman, Ab initio molecular dynamics simulation of the structure and proton transport dynamics of methanol-water solutions, J. Phys. Chem. B. 110 (2006) 3712–3720. https://doi.org/10.1021/jp0554036.; A. Chandra, M.E. Tuckerman, D. Marx, Connecting solvation shell structure to proton transport kinetics in hydrogen-bonded networks via population correlation functions, Phys. Rev. Lett. 99 (2007) 1–4. https://doi.org/10.1103/PhysRevLett.99.145901.; M.E. Tuckerman, A. Chandra, D. Marx, A statistical mechanical theory of proton transport kinetics in hydrogen-bonded networks based on population correlation functions with applications to acids and bases, J. Chem. Phys. 133 (2010). https://doi.org/10.1063/1.3474625.; B. V. Merinov, W.A. Goddard, Computational modeling of structure and OH-anion diffusion in quaternary ammonium polysulfone hydroxide – Polymer electrolyte for application in electrochemical devices, J. Memb. Sci. 431 (2013) 79–85. https://doi.org/10.1016/j.memsci.2012.12.010.; H.N. Sarode, G.E. Lindberg, Y. Yang, L.E. Felberg, G. a. Voth, A.M. Herring, Insights into the transport of aqueous quaternary ammonium cations: A combined experimental and computational study, J. Phys. Chem. B. 118 (2014) 1363–1372. https://doi.org/10.1021/jp4085662.; S. Chempath, B.R. Einsla, L.R. Pratt, C.S. Macomber, J.M. Boncella, J.A. Rau, B.S. Pivovar, Mechanism of Tetraalkylammonium Headgroup Degradation in Alkaline Fuel Cell Membranes, J. Phys. Chem. C. 112 (2008) 3179–3182. https://doi.org/10.1021/jp7115577.; S. Chempath, J.M. Boncella, L.R. Pratt, N. Henson, B.S. Pivovar, Density Functional Theory Study of Degradation of Tetraalkylammonium Hydroxides, J. Phys. Chem. C. 114 (2010) 11977–11983. https://doi.org/10.1021/jp9122198.; H. Long, K. Kim, B.S. Pivovar, Hydroxide Degradation Pathways for Substituted Trimethylammonium Cations: A DFT Study, J. Phys. Chem. C. 116 (2012) 9419–9426. https://doi.org/10.1021/jp3014964.; A.S. Davies, W.O. George, S.T. Howard, Ab initio and DFT computer studies of complexes of quaternary nitrogen cations: trimethylammonium, tetramethylammonium, trimethylethylammonium, choline and acetylcholine with hydroxide, fluoride and chloride anions, Phys. Chem. Chem. Phys. 5 (2003) 4533. https://doi.org/10.1039/b307534f.; F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, Tables of Bond Lengths determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds, J. Chem. Soc. Perkin Trans. 2. (1987) 1–19.; P. Macchi, D.M. Proserpio, A. Sironi, Experimental electron density in a transition metal dimer: Metal-metal and metal-ligand bonds, J. Am. Chem. Soc. 120 (1998) 13429–13435. https://doi.org/10.1021/ja982903m.; P. Macchi, A. Sironi, Chemical bonding in transition metal carbonyl clusters: Complementary analysis of theoretical and experimental electron densities, Coord. Chem. Rev. 238–239 (2003) 383–412. https://doi.org/10.1016/S0010-8545(02)00252-7.; B. Silvi, R.J. Gillespie, C. Gatti, Electron Density Analysis, Elsevier Ltd., 2013. https://doi.org/10.1016/B978-0-08-097774-4.00227-8.; S.J. Paddison, J.A. Elliott, On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes., Phys. Chem. Chem. Phys. 8 (2006) 2193–203. https://doi.org/10.1039/b602188c.; P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.Å. Näslund, T.K. Hirsch, L. Ojamäe, P. Glatzel, L.G.M. Pettersson, A. Nilsson, The Structure of the First Coordination Shell in Liquid Water, Science (80-. ). 304 (2004) 995–999.; S. Castañeda, R. Ribadeneira, Theoretical Description of the Structural Characteristics of the Quaternized SEBS Anion-Exchange Membrane Using DFT, J. Phys. Chem. C. 119 (2015) 28235–28246. https://doi.org/10.1021/acs.jpcc.5b07166.; O. Poizat, G. Buntinx, Probing the Dynamics of Solvation and Structure of the OH- Ion in Aqueous Solution from Picosecond Transient Absorption Measurements, Molecules. 15 (2010) 3366–3377. https://doi.org/10.3390/molecules15053366.; W. Humphrey, A. Dalke, K. Schulten, VMD: Visual Molecular Dynamics, J. Mol. Graph. 14 (1996) 33–38.; B.N. Cassenti, K.N. Grew, W.K.S. Chiu, The Use of Statistical Mechanics for Hydroxyl Ion Transport in an Alkaline Anion-Exchange Membrane, ECS Trans. 33 (2010) 1875–1887.; W.Y. Hsu, T.D. Gierke, Ion transport and clustering in nafion perfluorinated membranes, J. Memb. Sci. 13 (1983) 307–326. https://doi.org/10.1016/S0376-7388(00)81563-X.; Castañeda, S. (2020). Theoretical study of the Grotthuss mechanism for hydroxide ions in a homogeneous membrane used in alkaline fuel cells. Universidad Nacional de Colombia, Medellín, Colombia; https://repositorio.unal.edu.co/handle/unal/78388

  5. 5

    المؤلفون: Albistur, Ainhoa

    المساهمون: Escuela Técnica Superior de Ingeniería Industrial, Informática y de Telecomunicación, Industria, Informatika eta Telekomunikazio Ingeniaritzako Goi Mailako Eskola Teknikoa, Sanchis Gúrpide, Pablo, Ursúa Rubio, Alfredo

    المصدر: Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
    instname

    وصف الملف: application/pdf

  6. 6
  7. 7

    المصدر: Digital.CSIC. Repositorio Institucional del CSIC
    instname
    RUIdeRA. Repositorio Institucional de la UCLM
    Molecules
    Molecules, Vol 26, Iss 6326, p 6326 (2021)

    وصف الملف: application/pdf

  8. 8

    المؤلفون: Carrillo Abad, Jorge

    المساهمون: García Gabaldón, Montserrat, Pérez Herranz, Valentín, Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials

    المصدر: Riunet
    RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
    instname

    وصف الملف: application/pdf

  9. 9
    Dissertation/ Thesis
  10. 10
  11. 11
    Dissertation/ Thesis

    المؤلفون: Albistur, Ainhoa

    المساهمون: Escuela Técnica Superior de Ingeniería Industrial, Informática y de Telecomunicación, Industria, Informatika eta Telekomunikazio Ingeniaritzako Goi Mailako Eskola Teknikoa, Sanchis Gúrpide, Pablo, Ursúa Rubio, Alfredo

    وصف الملف: application/pdf

  12. 12
  13. 13