-
1Academic Journal
المصدر: Revista UIS Ingenierías, Vol 23, Iss 4 (2024)
مصطلحات موضوعية: Estabilización química, Estabilización de suelos, Limo de alta plasticidad, Mejoramiento de suelos, Protección de taludes, Subrasante, Technology, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
2Academic Journal
المصدر: Journal of Construction and Civil Engineering; Vol. 12 No. 1 (2024); 1-6 ; Revista Ingeniería De Obras Civiles; Vol. 12 Núm. 1 (2024); 1-6 ; 0719-0514
مصطلحات موضوعية: Mejoramiento de suelos blandos, Ensayos no destructivos
وصف الملف: application/pdf
-
3Academic Journal
المصدر: Tecnura, Vol 25, Iss 68, Pp 140-164 (2021)
مصطلحات موضوعية: desaturación de suelo, licuefacción, mejoramiento de suelos, Technology, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Quispe Vilca, Dante
المصدر: Ambiente, Comportamiento y Sociedad; Vol. 4 Núm. 2 (2021): Julio - Diciembre Medio Ambiente y Sostenibilidad; 75-86 ; 2709-829X
مصطلحات موضوعية: Soil stabilization, expansive soils, clay, ash chemical stabilization, soil improvement, Estabilización de suelos, suelos expansivos, suelos arcillosos, estabilización química con cenizas, mejoramiento de suelos
وصف الملف: application/pdf
Relation: https://revistas.unsaac.edu.pe/index.php/ACS/article/view/808/1114; https://revistas.unsaac.edu.pe/index.php/ACS/article/view/808/1115; https://revistas.unsaac.edu.pe/index.php/ACS/article/view/808
-
5Academic Journal
المساهمون: Castilla-Barbosa, Miguel Mauricio, dir.
مصطلحات موضوعية: PAVIMENTO FLEXIBLE, BASE, GEOMALLA, GEOSINTETICOS, GEOSINTETICOS TEJIDOS, GEOSINTETICOS NO TEJIDOS, MEJORAMIENTO DE SUELOS, SUBBASE, SUBRASANTE
وصف الملف: 37 páginas; application/pdf
Relation: Manual de diseño de pavimentos asfalticos para vias con bajos volumenes de transito, 103 (2007).; Especificaciones Generales de Construccion de Carreteras y Normas de Ensayos para Materiales de Carreteras, (2013).; AIM (Agencia para la Infraestrucura del Meta). (2021, febrero 19). Listado de precios de referencias. https://sites.google.com/idm-meta.gov.co/aim/resoluciones; BELTRAN, C. (2013). Ventajas De La Utilización De Geosintéticos Para El Refuerzo De Pavimento En La Carrera 7 Estación Transmilenio Museo Nacional. 58. http://repository.unimilitar.edu.co/bitstream/10654/10962/1/MONOGRAFÍA GEOSINTÉTICOS.pdf; Cruz, L. D. A., & Manrique, W. N. B. (2020). ANALISIS COMPARATIVO DEL USO DE GEOMALLAS BIAXIALES COMO ELEMENTO DE REFUERZO EN PAVIMENTOS FLEXIBLES [Universidad Piloto de Colombia]. http://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/9344/MONOGRAFIA FINAL DAVID-NATALY.pdf?sequence=1&isAllowed=y; Cuzcano, J. G. Y. (2018). Aplicacion de geosinteticos para mejorar la capacidad portante la Carretera Ninacaca – Huachón, Departamento de Pasco, 2018. https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/38383/Yi_CJG.pdf?sequen ce=3&isAllowed=y; Diaz, J. F., Escobar, O. E., & Olivo, E. J. (2009). Aplicacion de los geosinteticos en la estructura de los pavimentos y en obras de drenaje para carreteras. [Universidad de El Salvador]. http://ri.ues.edu.sv/id/eprint/2100/1/Aplicacion_de_los_geosintéticos_en_la_estructura_ de_los_pavimentos_y_en_obras_de_drenaje_para_carreteras.pdf; Díaz Jiménez, G. (2007). Diseño Con Geosintéticos Para La Función De Separación, Filtración Y Refuerzo En Pavimentos Flexibles. Test, 1-114. http://tesis.pucp.edu.pe/repositorio/handle/123456789/550%5Cnhttp://tesis.pucp.edu.p e/; Flores, L. E. M., & Spinel, S. C. (2005). FACTORES QUE DETERMINAN EL USO DE GEOSINTÉTICOS EN PROYECTOS DE PAVIMENTACIÓN EN COLOMBIA. E-mail Educativo, 1(1). https://revistas.unal.edu.co/index.php/email/article/view/1181; GeoAndes. (s. f.). Geotextil Tejido y No Tejido - Geo Andes. Recuperado 11 de noviembre de 2021, de https://www.geoandes.co/geosinteticos/geotextiltejidoynotejido/; Geosoft Pavco. (2012). Geosoft V3.0.; Hernandez, J. A., Mejia, D. R., & Zelaya, C. E. (2016). PROPUESTA DE ESTABILIZACIÓN DE SUELOS ARCILLOSOS PARA SU APLICACIÓN EN PAVIMENTOS RÍGIDOS EN LA FACULTAD MULTIDISCIPLINARIA ORIENTAL DE LA UNIVERSIDAD DE EL SALVADOR [Universidad de el Salvador]. http://ri.ues.edu.sv/id/eprint/14342/1/50108285.pdf; Moreno, C., Perez, S., & Sifuentes, N. (2015). From Fundamentals to Applications in Geotechnics (D. Manzanal (ed.); IOS PRESS). https://books.google.com.co/books?hl=es&lr=&id=DAxRCwAAQBAJ&oi=fnd&pg=PA236&d q=Estabilizacion+de+suelos+blandos+con+geosinteticos.+&ots=fpgBUU1ubW&sig=LIvRs9g YqsV2fp-jKOFFEWn1bL4&redir_esc=y#v=onepage&q=Estabilizacion de suelos blandos con geosinteticos.&; Padilla, P. L., & Salazar, L. G. L. (2012). Observaciones a la metodología de diseño tradicional de pavimentos reforzados con geosintéticos. https://www.lanamme.ucr.ac.cr/repositorio/bitstream/handle/50625112500/714/UMP-A- 08-12-REVISTA-RIOC %282%29.pdf?sequence=1&isAllowed=y; PAVCO. (2012). Manual de Diseños con Geosinteticos. http://www.geosoftpavco.com/manualvirtual/document.pdf; Perez, S. (2013). UTILIZACION DE GEOTEXTILES PARA EL CONTROL DE FISURAS EN PAVIMENTOS. Revista Vial. https://revistavial.com/utilizacion-de-geotextiles-para-el-control-de-fisuras- en-pavimentos-26093/; Ramos, M. A. G. (2018). INFLUENCIA DE LOS GEOSINTETICOS EN EL DIMENSIONAMIENTO DE LOS ESPESORES DE LAS CAPAS DEL PAVIMENTO FLEXIBLE. Universidad Peruana Los Andes, 1-102. http://repositorio.upla.edu.pe/handle/UPLA/327; Rebolledo, R. J. M. (2010). DETERIOROS EN PAVIMENTOS FLEXIBLES Y RÍGIDOS [Universidad Austral de Chile]. https://d1wqtxts1xzle7.cloudfront.net/38405574/deterioros_en_pavimentos-with-cover- page- v2.pdf?Expires=1636387279&Signature=LDyZbdMlHSnS7DI0Z8zEgHlrRq44OXKd2pdW~rzS 7BYaB3woEVF0L4UYEyriuMxYl4XqQRmBjixocjpIpqG15aiLIMcdLlfXWMrzt~mUZRh~IlkctM6 hi8ZmFGHcTsBlnqZ; Revista, V. (2018). Revista Vial. https://revistavial.com/estabilizacion-de-subrasantes-con- geotextil-tejido/; Roca, A. B., Perez, I. P., & Herrador, M. F. (2011). Geosinteticos en carreteras: Planteamiento para su aplicacion en las capas de firme. https://core.ac.uk/download/pdf/75988385.pdf; Rosales, D., & López, T. (2013). Geosintéticos y su uso en la ingeniería mexicana. 7° Coloquio de posgrado - Avances de Jóvenes investigadores DIPFI-UAQ 2013. https://www.academia.edu/6718172/Geosintéticos_y_su_uso_en_la_ingeniería_mexican a_Geosynthetics_and_their_use_in_Mexican_engineering; Salamanca, M. A., & Zuluaga, S. A. (2014). Diseño de la estructura de pavimento flexible por medio de los métodos INVIAS, AASHTO 93 e Instituto del Asfalto para la vía La Ye - Santa Lucía Barranca Lebrija entre los abscisas K19+250 A K25+750 ubicada en el departamento del Cesar. En Universidad Catolica de Colombia. file:///C:/Users/Eliana Mezquida/Downloads/Diseño-estructura-pavimento-flexible-Aashto-Invias-Insituto- Asfalto-Barranca_Lebrija.pdf; Skok, D. (2019). Geoceldas de aleación nano polimérica (NPA): última generación de geosintéticos aplicados a refuerzos de suelos en obras viales. Vial. https://revistavial.com/geoceldas-de-aleacion-nano-polimerica-npa-ultima-generacion-de- geosinteticos-aplicados-a-refuerzos-de-suelos-en-obras-viales/; Torres, G. A. V. (2015). Evaluación del comportamiento mecanicista de los geosintéticos en pavimentos flexibles. https://repositorio.uniandes.edu.co/bitstream/handle/1992/18390/u722034.pdf?sequenc e=1; Urbanimos.com. (2012). Pavimentos flexibles %7C Urbanismo.com. https://www.urbanismo.com/pavimentos-flexibles/; Mojica-Prieto, V. M. & Palomares-Montealegre, J. P. (2021). Implementación de geosintéticos en la Ingeniería de Pavimentos como solución de mejoramiento para la subrasante de pavimentos flexibles. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería de Civil. Especialización en Ingeniería de Pavimentos. Bogotá, Colombia; https://hdl.handle.net/10983/27101
الاتاحة: https://hdl.handle.net/10983/27101
-
6Academic Journal
المصدر: Tecnura Journal; Vol. 25 No. 68 (2021): April - June ; 140-164 ; Tecnura; Vol. 25 Núm. 68 (2021): Abril - Junio ; 2248-7638 ; 0123-921X
مصطلحات موضوعية: desaturación de suelo, licuefacción, mejoramiento de suelos, liquefaction, soil improvement, soil desaturation
وصف الملف: application/pdf; text/xml
Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/16282/16975; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/16282/17513; Bouferra, R., Benseddiq, N. y Shahrour, I. (2007). Saturation and preloading effects on the cyclic behavior of sand. International Journal of Geomechanics, 7(5), 396-401. DOI: https://doi.org/10.1061/(ASCE)1532-3641(2007)7:5(396) https://doi.org/10.1061/(ASCE)1532-3641(2007)7:5(396); Camp, W. M., Camp, H. C. y Andrus, R. D. (2010). Liquefaction mitigation using air injection. En International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Missouri University of Science and Technology.; Chaney, R. C. (1978). Saturation effects on the cyclic strength of sands. En Volume I of Earthquake Engineering and Soil Dynamics--Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference (pp. 342-358). Junio 19-21. Pasadena, California: Geotechnical Engineering Division of ASCE.; Chen, J., Hopmans, J. y Grismer, M. (1999). Parameter estimation of two-fluid capillary pressure–saturation and permeability functions. Advances in Water Resources, 22(5), 479-493. DOI: https://doi.org/10.1016/S0309-1708(98)00025-6; Darcy, H. (1983). Determination of the laws of flow of water through sand. En R. A. Freeze y W. Back (eds.), Physical hydrogeology. Benchmark Papers in Geology (vol. 72). Stroudsburg: Hutchinson Ross.; Eseller-bayat, E., Yegian, M. K. y Alshawabkeh, A. (2013). Liquefaction response of partially saturated sands. I : experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 863-871. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000815.; Gallagher, P. M., Pamuk, A. y Abdoun, T. (2007). Stabilization of liquefiable soils using colloidal silica grout. Journal of Materials in Civil Engineering, 19(1), 33-40. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33); Gao, Q., Liu, Z. y Yu, X. (2013). Computer simulations on the effects of desaturation on soil liquefaction resistance. En IACGE, 786-795. Reston, EE. UU.: American Society of Civil Engineers. DOI: https://doi.org/10.1061/9780784413128.091; Grozic, J. L. H., Nadim, F. y Kvalstad, T. J. (2005). On the undrained shear strength of gassy clays. Computers and Geotechnics, 32(7), 483-490. DOI: https://doi.org/10.1016/j.compgeo.2005.10.002; Grozic, J. L., Robertson, P. K. y Morgenstern, N. R. (1999). The behavior of loose gassy sand. Canadian Geotechnical Journal, 36(3), 482-492. DOI: https://doi.org/10.1139/t99-007; He, J., Chu, J. e Ivanov, V. (2013). Mitigation of liquefaction of saturated sand using biogas. Géotechnique, 63(4), 267-275. DOI: https://doi.org/10.1680/geot.SIP13.P.004; Holbrook, T. B., Bass, D., Boersma, P., DiGiulio, D. C., Eisenbeis, J., Hutzler, N. J. y Roberts E. (1998). Vapor extraction and air sparging design and application. wastech innovative site remediation technology series (vol. 7). Annapolis, EE. UU.; Horgue, P., Soulaine, C., Franc, J., Guibert, R. y Debenest, G. (2015). An open-source toolbox for multiphase flow in porous media. Computer Physics Communications, 187, 217-226. DOI: https://doi.org/10.1016/j.cpc.2014.10.005; Ishihara, K., Huang, Y. y Tsuchiya, H. (1998). Liquefaction resistance of nearly saturated sand as correlated with longitudinal wave velocity. En J. F. Thimus et al. (eds.), Poromechanics: a tribute to Maurice A. Biot (pp. 583-586). Boca Ratón: CRC Press. https://doi.org/10.1201/9781003078487-98; Ishihara, M., Okamura, M. y Oshita, T. (2003). Desaturating sand deposit by air injection for reducing liquefaction potential. En Proc. Pacific Conference on Earthquake Engineering. Tsukuba City, Japón.; Kohno, I. y Nishigaki, M. (1982). Some aspects of laboratory permeability test. Soils and Foundations, 22(4), 181-190. DOI: https://doi.org/10.3208/sandf1972.22.4_181; Lu, N. y Likos, W. J. (2004). Unsaturated soil mechanics. Hoboken, EE. UU.: Wiley. Recuperado de https://books.google.com.co/books?id=Rv1RAAAAMAAJ; Lundegard, P. D. y LaBrecque, D. (1995). Air sparging in a sandy aquifer (Florence, Oregon, U.S.A.): actual and apparent radius of influence. Journal of Contaminant Hydrology, 19(1), 1-27. DOI: https://doi.org/10.1016/0169-7722(95)00010-S; Marasini, N. P. y Okamura, M. (2015a). Air injection to mitigate liquefaction under light structures. International Journal of Physical Modelling in Geotechnics, 15(3), 129-140. DOI: https://doi.org/10.1680/jphmg.14.00005; Marasini, N. P. y Okamura, M. (2015b). Numerical simulation of centrifuge tests to evaluate the performance of desaturation by air injection on liquefiable foundation soil of light structures. Soils and Foundations, 55(6), 1388-1399. DOI: https://doi.org/10.1016/j.sandf.2015.10.005; Marulanda, C., Culligan, P. J. y Germaine, J. T. (2000). Centrifuge modeling of air sparging - a study of air flow through saturated porous media. Journal of Hazardous Materials, 72(2-3), 179-215. DOI: https://doi.org/10.1016/S0304-3894(99)00140-5; McCray, J. E. (2000). Mathematical modeling of air sparging for subsurface remediation: state of the art. Journal of Hazardous Materials, 72(2-3), 237-263. DOI: https://doi.org/10.1016/S0304-3894(99)00142-9; Mitsuji, K. (2008). Numerical simulations for development of liquefaction countermeasures by use of partially saturated sand. En Proceedings of the 14th World Conference on Earthquake Engineering October (pp. 12-17).; Ogata, H. y Okamura, M. (2006). Experimental study on air behaviour in saturated soil under air injection. En Proc. Symp. On Natural Disaster Prevention, JSCE (pp. 89-90). Tokushima, Japón.; Oka, F., Yashima, A., Shibata, T., Kato, M. y Uzuoka, R. (1994). FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model. Applied Scientific Research, 52(3), 209-245. DOI: https://doi.org/10.1007/BF00853951; Oka, F, Yashima, A., Tateishi, A., Taguchi, Y. y Yamashita, A. (1999). A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus. Géotechnique, 49(5), 661-680. DOI: https://doi.org/10.1680/geot.1999.49.5.661; Okamura, M. y Noguchi, K. (2009). Liquefaction resistances of unsaturated non-plastic silt. Soils and Foundations, 49(2), 221-229. DOI: https://doi.org/10.3208/sandf.49.221; Okamura, M. y Soga, Y. (2006). Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils and Foundations, 46(5), 695-700. DOI: https://doi.org/10.3208/sandf.46.695; Okamura, M. y Tamura, K. (2004). Prediction method for liquefaction-induced settlement of embankment with remedial measure by deep mixing method. Soils and Foundations, 44(4), 53-65. DOI: https://doi.org/10.3208/sandf.44.4_53; Okamura, M. y Teraoka, T. (2005a). Shaking table tests to investigate soil desaturation as a liquefaction countermeasure. En Seismic Performance and simulation of pile foundations in liquefied and laterally spreading ground (pp. 282-293). Reston, EE. UU.: American Society of Civil Engineers. DOI: https://doi.org/10.1061/40822(184)23; Okamura, M. y Teraoka, T. (2005b). Shaking Table Tests to Investigate Soil Desaturation as a Liquefaction Countermeasure. En Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground (pp. 282-293). Reston, EE. UU.: American Society of Civil Engineers. DOI: https://doi.org/10.1061/40822(184)23; Okamura, M. y Tomida, Y. (2015). Full scale test on cost effective liquefaction countermeasure for highway embankment. En Proceedings of Sixth Internal Geotechnical Symposium on Disaster Mitigation in Special Geoenvironment Conditions. IIT Madras Chennai, India.; Okamura, M., Ishihara, M. y Tamura, K. (2003). Liquefaction resistances and degree of saturation of sand improved with sand compaction piles. En 13th World Conference on Earthquake Engineering (vol. 43, pp. 175-187). DOI: https://doi.org/10.3208/sandf.43.5_175; Okamura, M., Ishihara, M. y Tamura, K. (2006). Degree of saturation and liquefaction resistances of sand improved with sand compaction pile. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 258-264. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(258); Okamura, Mitsu, Takebayashi, M., Nishida, K., Fujii, N., Jinguji, M., Imasato, T., …, Nakagawa, E. (2009). In-situ test on desaturation by air injection and its monitoring. Japanese.). Journal of Japan Society of Civil Engineers, 65, 756-766. https://doi.org/10.3850/GI100; Okamura, M., Takebayashi, M., Nishida, K., Fujii, N., Jinguji, M., Imasato, T., …, Nakagawa, E. (2011). In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643-652. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000483; PDE Solutions Inc. (2005). FlexPDE Users Guide. Spokane Valley, EE. UU. Recuperado de http://www.pdesolutions.com; Pinder, G. F. y Gray, W. G. (2008). Essentials of multiphase flow in porous media. Hoboken, EE. UU.: Wiley. Recuperado de https://books.google.com.co/books?id=V3srAMAzw-EC https://doi.org/10.1002/9780470380802; Pruess, K. (1991). TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows. Berkeley, EE. UU. DOI: https://doi.org/10.2172/138333; Rad, N. S., Vianna, A. J. D. y Berre, T. (1994). Gas in soils. II: Effect of gas on undrained static and cyclic strength of sand. Journal of Geotechnical Engineering, 120(4), 716-736. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(716); Ramos, A. M. (2015). Influence of the void ratio and the confining on the static liquefaction in slopes in changi sand. Tecnura, 19(43). 57-67. DOI: https://doi.org/10.14483/udistrital.jour.tecnura.2015.1.a04; Ramos, A. M., Prada, L. F. y Vega, C. A. (2016). Análisis de elementos finitos con un continuo elástico lineal tipo Cosserat. Tecnura 20(50). 43-54. DOI: https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a03; Reddy, K. R. y Adams, J. A. (2001). Effects of soil heterogeneity on airflow patterns and hydrocarbon removal during in situ air sparging. Journal of Geotechnical and Geoenvironmental Engineering, 127(3), 234-247. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(234); Reddy, K. R., Kosgi, S. y Zhou, J. (1995). A review of in-situ air sparging for the remediation of VOC-contaminated saturated soils and groundwater. Hazardous Waste and Hazardous Materials, 12(2), 97-118. DOI: https://doi.org/10.1089/hwm.1995.12.97; Takemura, J., Igarashi, R., Izawa, J., Okamura, M. y Masuda, M. (2009). Centrifuge model tests on soil desaturation as a liquefaction countermeasure. En Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering (vol. 1, pp. 502-505). DOI: https://doi.org/10.3233/978-1-60750-031-5-502; Tomida, Y. (2014). A study on soil desaturation as a liquefactioncounter- measure for highway embankmens. Japón: Ehime University.; Tsukamoto, Y., Kawabe, S., Matsumoto, J. y Hagiwara, S. (2014). Cyclic resistance of two unsaturated silty sands against soil liquefaction. Soils and Foundations, 54(6), 1094-1103. DOI: https://doi.org/10.1016/j.sandf.2014.11.005; Tsukamoto, Y., Ishihara, K., Nakazawa, H., Kamada, K. y Huang, Y. (2002). Resistance of partly saturated sand to liquefaction with reference to longitudinal and shear wave velocities. Soils and Foundations, 42(6), 93-104. DOI: https://doi.org/10.3208/sandf.42.6_93; United States Environmental Protection Agency (US EPA) (1992). A technology assessment of soil vapor extraction and air sparging. EPA/600/R-92/173. Cincinnati, EE. UU.; Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892. DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x; Vega, C. A., Ramos, A. M. y García, E. F. (2017). Efecto del gas en la velocidad de onda de corte de suelos arenosos densificados con explosivos. Tecnura, 21(51), 67-80. DOI: https://doi.org/10.14483/udistrital.jour.tecnura.2017.1.a05; Wisconsin DNR (1995). Updated information and errata regarding guidance on design, installation and operation of in situ air sparging systems. File Ref. 4440. Madison, EE. UU.; Yang, J., Savidis, S. y Roemer, M. (2004). Evaluating liquefaction strength of partially saturated sand. Journal of Geotechnical and Geoenvironmental Engineering, 130(9), 975-979. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(975); Yang, J, Savidis, S., Sato, T. y Li, X. S. (2003). Influence of vertical acceleration on soil liquefaction: new findings and implications. Proceeding Soil and Rock America, 1.; Yashima, A., Oka, F., Taguchi, Y. y Tateishi, A. (1995). Three dimensional liquefaction analysis considering the compressibility of fluid phase. En Proceedings 40th JGS Symposium (pp. 257-264).; Yasuhara, H., Okamura, M. y Kochi, Y. (2008). Experiments and predictions of soil desaturation by air-injection technique and the implications mediated by multiphase flow simulation. Soils and Foundations, 48(6), 791-804. DOI: https://doi.org/10.3208/sandf.48.791; Yegian, M. K., Eseller-Bayat, E., Alshawabkeh, A. y Ali, S. (2007). Induced-partial saturation for liquefaction mitigation: experimental investigation. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 372-380. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(372); Yoshimi, Y., Tanaka, K. y Tokimatsu, K. (1989). Liquefaction resistance of a partially saturated sand. Soils and Foundations, 29(3), 157-162. DOI: https://doi.org/10.3208/sandf1972.29.3_157; Zeybek, A. y Madabhushi, G. S. P. (2017a). Centrifuge testing to evaluate the liquefaction response of air-injected partially saturated soils beneath shallow foundations. Bulletin of Earthquake Engineering, 15(1), 339-356. DOI: https://doi.org/10.1007/s10518-016-9968-6; Zeybek, A. y Madabhushi, G. S. P. (2017b). Influence of air injection on the liquefaction-induced deformation mechanisms beneath shallow foundations. Soil Dynamics and Earthquake Engineering, 97, 266-276. DOI: https://doi.org/10.1016/j.soildyn.2017.03.018; Zeybek, A. y Madabhushi, G. S. P. (2017c). Durability of partial saturation to counteract liquefaction. Proceedings of the Institution of Civil Engineers: Ground Improvement, 170(2), 102-111. DOI: https://doi.org/10.1680/jgrim.16.00025; Zeybek, A. y Madabhushi, G. S. P. (2018). Physical modelling of air injection to remediate liquefaction. International Journal of Physical Modelling in Geotechnics, 18(2), 68-80. DOI: https://doi.org/10.1680/jphmg.16.00049; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/16282
-
7Academic Journal
المؤلفون: Hernández-Francisco,Antonio, López-Lara,Teresa, Hernández-Zaragoza,Juan Bosco, Horta-Rangel,Jaime Moisés
المصدر: Ingeniería, investigación y tecnología v.22 n.3 2021
مصطلحات موضوعية: Zeolita natural, clinoptilolita de Puebla, límites de Atterberg, mejoramiento de suelos Querétaro, cal
وصف الملف: text/html
-
8Dissertation/ Thesis
المساهمون: ARONES VILLAVICENCIO, ALVARO PAULO
المصدر: Universidad Peruana de Ciencias Aplicadas (UPC) ; Repositorio Académico - UPC
مصطلحات موضوعية: Columnas de grava, Mejoramiento de suelos, Estabilidad de terraplén, Asentamientos, PTAR, https://purl.org/pe-repo/ocde/ford#2.01.01, https://purl.org/pe-repo/ocde/ford#2.00.00
وصف الملف: application/pdf; application/msword; application/epub
Relation: http://hdl.handle.net/10757/682805; 000000012196144X
الاتاحة: http://hdl.handle.net/10757/682805
-
9Dissertation/ Thesis
المساهمون: ARONES VILLAVICENCIO, ALVARO PAULO
المصدر: Universidad Peruana de Ciencias Aplicadas (UPC) ; Repositorio Académico - UPC
مصطلحات موضوعية: Mejoramiento de suelos, Inclusiones rígidas, Asentamiento, Suelos blandos, https://purl.org/pe-repo/ocde/ford#2.01.01, https://purl.org/pe-repo/ocde/ford#2.00.00
وصف الملف: application/pdf; application/msword; application/epub
Relation: http://hdl.handle.net/10757/682804; 000000012196144X
الاتاحة: http://hdl.handle.net/10757/682804
-
10Dissertation/ Thesis
المؤلفون: Condori Mamani, Javier Samuel
المساهمون: Huaquisto Cáceres, Samuel
مصطلحات موضوعية: Emulsión asfáltica, Cemento, Solución básica, Mejoramiento de suelos, Pavimentos, https://purl.org/pe-repo/ocde/ford#2.01.01
وصف الملف: application/pdf
-
11Dissertation/ Thesis
المؤلفون: Lavado Ruiz, Robinson Felipe
المساهمون: Raygada Rojas, Luis Fernando
المصدر: Universidad San Ignacio de Loyola ; Repositorio Institucional - USIL
مصطلحات موضوعية: Mejoramiento de suelos, Asentamientos, Columnas de Gravas, Bottom feed, Suelos Blandos, Licuación, https://purl.org/pe-repo/ocde/ford#2.01.01
وصف الملف: application/pdf
-
12Dissertation/ Thesis
المساهمون: Arones Villavicencio, Álvaro Paulo
المصدر: Universidad Peruana de Ciencias Aplicadas (UPC) ; Repositorio Académico - UPC
مصطلحات موضوعية: Pilas de grava compactada, Asentamientos, Mejoramiento de suelos, Cargas de servicio, Baja capacidad portante, Módulo de elasticidad compuesta, Compacted gravel piles, Settlements, Soil improvement, Service loads, Low bearing capacity, Composite elastic modulus, https://purl.org/pe-repo/ocde/ford#2.01.01, https://purl.org/pe-repo/ocde/ford#2.00.00
وصف الملف: application/pdf; application/msword; application/epub
Relation: http://hdl.handle.net/10757/671755; 000000012196144X
الاتاحة: http://hdl.handle.net/10757/671755
-
13Dissertation/ Thesis
المساهمون: Durán Ramírez, Gary Gary
المصدر: Universidad Peruana de Ciencias Aplicadas (UPC) ; Repositorio Académico - UPC
مصطلحات موضوعية: CBR, Subrasante, Mejoramiento de suelos, Limo Arenoso, Proes 100, PET, Tubería de gas, Subgrade, Soil improvement, Sandy silt, Pros 100, Gas Pipes, https://purl.org/pe-repo/ocde/ford#2.01.01, https://purl.org/pe-repo/ocde/ford#2.00.00
وصف الملف: application/pdf; application/msword; application/epub
Relation: http://hdl.handle.net/10757/670986; 000000012196144X
الاتاحة: http://hdl.handle.net/10757/670986
-
14Dissertation/ Thesis
المساهمون: ARONES VILLAVICENCIO, ALVARO PAULO
المصدر: Universidad Peruana de Ciencias Aplicadas (UPC) ; Repositorio Académico - UPC
مصطلحات موضوعية: Asentamiento, Pila de agregado compactado, Columna de grava, Módulo de elasticidad compuesto, Mejoramiento de suelos, Settlement, Compacted aggregate pile, Stone column, Composite elastic modulus, Soil improvement, https://purl.org/pe-repo/ocde/ford#2.01.01, https://purl.org/pe-repo/ocde/ford#2.00.00
وصف الملف: application/pdf; application/msword; application/epub
Relation: http://hdl.handle.net/10757/670560; 000000012196144X
الاتاحة: http://hdl.handle.net/10757/670560
-
15Dissertation/ Thesis
المساهمون: Hurtado Espinoza, Liset Oriana
المصدر: Universidad Peruana de Ciencias Aplicadas (UPC) ; Repositorio Académico - UPC
مصطلحات موضوعية: Mejoramiento de suelos arenosos, Agregados, Reciclaje de residuos de construcción y demolición de edificaciones, Concreto reciclado, Capacidad portante, Granulometría, Proctor modificado, Ensayos de suelos, Improvement of sandy soils, Aggregates, Recycling of construction waste and demolition of buildings, Recycled concrete, Portant capacity, Granulometry, Modified proctor, Soil tests, https://purl.org/pe-repo/ocde/ford#2.01.01, https://purl.org/pe-repo/ocde/ford#2.00.00
وصف الملف: application/pdf; application/epub; application/msword
Relation: http://hdl.handle.net/10757/671810; 0000 0001 2196 144X
الاتاحة: http://hdl.handle.net/10757/671810
-
16Dissertation/ Thesis
المؤلفون: Cherti, Rim
المساهمون: Carrión Carmona, Miguel Ángel, Valiente Sanz, Ricardo, Universitat Politècnica de València. Departamento de Ingeniería del Terreno - Departament d'Enginyeria del Terreny, Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura
مصطلحات موضوعية: Arcillas, Suelos expansivos, Patologías estructurales, Mejoramiento de suelos, Estabilización química, Clays, Expansive soils, Structural pathologies, Soil improvement, Chemical stabilization, Cimentaciones, Fundations, INGENIERIA DEL TERRENO, Grado en Fundamentos de la Arquitectura-Grau en Fonaments de l'Arquitectura
Relation: http://hdl.handle.net/10251/201972
الاتاحة: http://hdl.handle.net/10251/201972
-
17Academic Journal
المؤلفون: Cordero Acosta, Juan Carlos, Pérez Betancourt, Yoeslandy, Hernández Figueroa, Fidel, Zamora MartÃn, Jorge Luis, Baños Utria, Rider, Valdez Castaño, Pedro A, Arteaga Márquez, Daniel, Torres Graverán, Juan
المصدر: Revista ECOVIDA; Vol. 9, Núm. 2 (2019): Julio - Diciembre; 184-194 ; 2076-281X
مصطلحات موضوعية: Protected area of Managed Resources, biodiversity, erosion of the soil, conservation and improvement of soil, Ãrea Protegida de Recursos Manejados, biodiversidad, erosión de suelos, conservación y mejoramiento de suelos
وصف الملف: text/html; application/pdf
Relation: https://revistaecovida.upr.edu.cu/index.php/ecovida/article/view/163/html; https://revistaecovida.upr.edu.cu/index.php/ecovida/article/view/163/370; Castillo, V. M. 2004. La estrategia temática para la protección del suelo: un instrumento para el uso sostenible de los suelos en Europa. Ecosistemas XIII (enero abril). Disponible en: http://www.aeet.org/ecosistemas/ 041/informe2.htm. Cifuentes, M (1992) Determinación de la capacidad de carga en Ãreas Protegidas. Turrialba, Costa Rica 1992- 23p. Cifuentes, M (1999) Capacidad de Carga TurÃstica de las Ãreas de Uso Público del Monumento Nacional Guayabo, Costa Rica. WWF Centroamérica.60p Lal, R. 1999. Global carbon pools and fluxes and the impact of agricultural intensification and judicious land use, 45-55 En: World Soils Resources Report, Prevention of land degradation, enhancement of carbon sequestration and conservation of biodiversity through land use change and sustainable land management with a focus on Latin America and the Caribbean. Proceedings of an IFAD/FAO Expert Consultation, FAO, 113 pp. MODER Z., L. 1983a. Control de cárcavas. CONAF. Sexta región. Primera Parte. En: Chile Forestal No. 94: 29-40. PROGRAMA DE LAS NACIONES UNIDAS PARA EL MEDIO AMBIENTE (PNUMA). 2000. Perspectivas del Medio Ambiente Mundial. Madrid: Mundi-Prensa. PNUMA (Programa de Naciones Unidas para el Medio Ambiente) 2000. Annual Review. Nairobi, Kenia. Provencio E., J. Carabias, y V. Toledo. El artÃculo 27 y su impacto en el medio ambiente. En: El artÃculo 27 y el desarrollo urbano. H. Cámara de diputados, LV Legislatura, México, 1994, pp. 69-77. Sagué, H; L. Hernández; J. Ortega; L. Lastres (1976). Balance HÃdrico y erosión en Sierra del Rosario. Revista Voluntad Hidráulica. Sombroek, W. G., F. O. Nachtergaele y A. Hebel. 1993 Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio (12)7: 417-426. Zamora, J (2012): Plan de Manejo del APRMSR 2016-2020. Kern, J. S. y M. G. Johnson. 1993. Conservation tillage impacts on national and atmospheric carbon levels. Soil Science Society of America Journal 57: 200-210. Karlen, D. L., M. J. Mausbach, J. W. Doran, R. G. Cline, R. F. Harris y G. E. Schuman. 1997. Soil quality: a concept, definition and framework for evaluation. Soil Science Society of America Journal 61: 4-10.; https://revistaecovida.upr.edu.cu/index.php/ecovida/article/view/163
-
18Academic Journal
المصدر: Tecnura, Vol 21, Iss 51, Pp 67-80 (2017)
مصطلحات موضوعية: arenas sueltas, densificación con explosivos, licuación, mejoramiento de suelos, velocidad de onda de corte, Technology, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
19Academic Journal
مصطلحات موضوعية: algalization, chlorophytes, cyanophytes, soil improvement, algalización, cianofitas, clorofitas, mejoramiento de suelos, algalização, clorofíceas, cianofíceas, melhoramento do solo
وصف الملف: application/pdf
Relation: Abd Elhafz A, Abd Elhafz A, Gaur SS, Hamdany N, Osman M, Lakshmi TVR. Recent Res Sci Technol. 2015;7:14-21.; Adessia A, De Carvalhoc RC, De Philippisa R, Branquinhoc C, Da Silva JM. Microbial extracellular polymeric substances improve water retention indryland biological soil crusts. Soil Biol Biochem. 2018;116:67-69.; Agwa OK, Ogugbue CJ, Williams EE. Field Evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Int J Agric Res. 2017;12(4):181-189.; Al-Shakankery FM, Hamouda RA, Ammar MM. The promotive effect of different concentrations of marine algae as biofertilizers on growth and yield of maize (Zea mays L.) plants. J chem Biol Phys Sci. 2014; 4:43201-43211.; Antoninka A, Bowker MA, Reed SC, Doherty K. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function: cultivating biocrust mosses. Restor Ecol. 2016;24:324-335. DOI:10.1111/rec.12311; Arce MI, Méndoza-Lera C, Almagro M, Catalán N, Romaní A, Martí E, Gómez R, et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Sci Rev. 2019;188:441-453.; Awale R, Machado S, Ghimire R, Bista P. 2017. Soil Health. In: Yorgey G, Kruger C, (Editors). Advances in dryland farming in the Inland Pacifc Northwest. Washington State University. p. 47-98.; Baumann K, Glaser K, Mutz JE, Karsten U, Maclennan A, Hu Y, Michalikd D, et al. Biological soil crusts of temperate forests: Their role in P cycling. Soil Biol Biochem. 2017;109:156-166. DOI:10.1016/j.soilbio.2017.02.011; Beltrame A, Pascholati SF. Cianobactérias e algas reduzem os sintomas causados por Tobacco mosaic virus (TMV) em plantas de fumo. Summa Phytopathol. 2011;37(2):140-145.; Bileva T. Influence of green algae Chlorella vulgaris on infested Xiphinema index grape seedlings. J Earth Sci Clim Change. 2013;4:136-138.; Bleakley S, Hayes M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017;6:33.; Borchhardt N, Baum C, Mikhailyuk T, Karsten U. Biological soil crusts of Arctic Svalbard - Water availability as potential controlling factor for microalgal biodiversity. Front Microbiol. 2017;8:1485. DOI: 1485. DOI:10.3389/fmicb.2017.01485; Chacón TL. 2010. Efecto de la aplicación de soluciones de Chlorella vulgaris y Scenedesmus obliquus sobre el contenido de compuestos funcionales en germinados de brócoli (Brassica oleracea var itálica). Magister en diseño y gestión de procesos, Facultad de Ingeniería, Universidad de la Sabana, Bogotá DC, Colombia. 106 p.; Chamizo S, Rodríguez-Caballero E, Román JR, Cantón Y. Effects of biocrust on soil erosion and organic carbon losses under natural rainfall. Catena. 2016;148(2): 117-125. DOI:10.1016/j.catena.2016.06.017; Chen X, He G, Deng Z, Wang N, Jiang W, Chen S. Screening of microalgae for biodiesel feedstock. Adv Microbiol. 2014a;4:365-376.; Chen L, Rossi F, Deng S, Liu Y, Wang G, Adessi A, De Philippis R. Macromolecular and chemical features of the excreted extracellular polysaccharides in induced biological soil crusts of different ages. J Arid Environ. 2014b;67:521-527.; Cólica G, Li H, Rossi F, Li D, Liu Y, De Philippis R. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem. 2014;68:62-70. DOI:10.1016/j.soilbio.2013.09.017; Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valor. 2018;9(5):793-800. DOI:10.1007/s12649-017-9873-5; Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A, Kannadasan S, Sampathkumar P. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valor. 2017;8:1-10. DOI:10.1007/s12649-017-0123-7; Dubey A, Dubey DK. 2010. Evaluation of cost effective organic fertilizer. Organic eprints. http://orgprints.org/17043/1/17043.pdf (5 March, 2019).; Elarroussia H, Elmernissia N, Benhimaa R, Isam MEK, Najib B, Abedelaziz S, Imane W. Microalgae polysaccharides a promising plant growth biostimulant. J Algal Biomass Util. 2016;7:55-63.; El Modafar C, Elgadda M, El Boutachfaitib R, Abouraicha E, Zehhara N, Petit E, et al. Induction of natural defence accompanied by salicylic aciddependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae. Sci Hort. 2012;138:55-63. doi.org/10.1016/j.scienta.2012.02.011; El-Sheekh MM, Khairy HM, El-Shenody R. Algal production of extra and intra-cellular polysaccharides as an adaptive response to the toxin crude extract of Microcystis aeruginosa. Iranian J Environ Health Sci Eng. 2012;9(1):10. DOI:10.1186/1735-2746-9-10; Faheed FA, Fattah ZA. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J Agric Soc Sci. 2008;4:165-169.; Felde VJMNL, Chamizo S, Felix-Henningsen P, Drahorad SL. What stabilizes biological soil crusts in the Negev Desert?. Plant soil. 2018;429(1-2):9-18. DOI:10.1007/s11104-017-3459-7; Fischer T, Veste M, Bens O, Hüttl RF. Dew formation on the surface of biological soil crusts in central european sand ecosystems. Biogeosciences Discussions. 2012;9:8075-8092.; Ghiloufi W, Büdel B, Chaieb M. Effects of biological soil crusts on a mediterranean perennial grass (Stipatanacissima, L.). Plant Biosyst. 2016;151:158-167. DOI:10.1080/11263504.2015.1118165; Ghosh AK. Functions and bio-functions of soil and its restoration. IJRAR - Int J Res Anal Rev. 2018;5(3):672-677.; Grzzesik M, Romanowska-Duda Z. Improvements germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae. Pol J Environ Stud. 2014;23:1147-1153.; Grzzesik M, Romanowska-Duda Z. Ability of Cyanobacteria and green algae to improve metabolic activity and development of willow plants. Pol J Environ Stud. 2015;24(3): 1003-1012. DOI:10.15244/pjoes/34667; Grzzesik M, Romanowska-Duda Z, Kalaji HM. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica. 2017;55:510-521.; Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol. 2010;22:43-50.; Hussain A, Hasnain S. Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture. World J Microbiol Biotechnol. 2012;28(4):1459-1466.; Hussain A, Krischke M, Roitsch T, Hasnain S. Rapid determination of cytokinins and auxins in cyanobacteria. Curr Microbiol. 2010;6(5)1:361-369.; Iyovo GD, Du G, Chen J. Sustainable biomethane, biofertilizer and biodiesel system from poultry waste. Indian J Sci Technol. 2010;3(10):1062-1069.; Kholssi R, Marks EAN, Miñón J, Montero O, Debdoubi A, Rad C. Biofertilizing efect of Chlorella sorokiniana suspensions on wheat growth. J Plant Growth Regul. 2018; 1-6. DOI:10.1007/s00344-018-9879-7; Kim MJ, Shim CK, Kim YK, Ko BG, Park JH, Hwang SG, Kim BH. Effect of biostimulator, Chlorella fusca on improving growth and qualities of chinese chives and spinach in organic farm. Plant Pathol J. 2018;34(6):567-574. DOI:10.5423/PPJ.FT.11.2018.0254; Kim MJ, Shim CK, Kim YK, Park JH, Hong SJ, Ji HJ, Han EJ, Yoon JC. Effect of Chlorella vulgaris CHK0008 fertilization on enhancement of storage and freshness in organic strawberry and leaf vegetables. Korean J Hortic Sci Technol. 2014;32:872-878.; Kumar D, Purakayastha TJ, Shivay YS. Long-term effect of organic manures and biofertilizers on physical and chemical properties of soil and productivity of rice-wheat system. International Journal of Bio-resource and Stress Management (IJBSM). 2015; 6(2):176-181. DOI:10.5958/0976-4038.2015.00030.5; Lan SB, Hu CX, Rao BQ, Wu L, Zhang DL, Liu YD. Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert, Inner Mongolia. Sci China Life Sci. 2010;53:1135-1141.; Lan S, Zhang Q, Wu L, Liu Y, Zhang D, Hu C. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities. Environ Sci Technol. 2014;48:307-315. DOI:10.1021/es403785j; Lin CS, Chou TL, Wu JT. Biodiversity of soil algae in the farmlands of mid-taiwan. Bot Stud. 2013;54:41. DOI:10.1186/1999-3110-54-41; Liu J, Chen F. Biology and industrial applications of Chlorella: Advances and prospects. Adv Biochem Eng Biotechnol. 2016a;153:1-35.; Liu L, Pohnert G, Wei D. Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs. 2016b;14(10):191. DOI:10.3390/md14100191; Mager DM. Carbohydrates in cyanobacterial soil crusts as a source of carbon in the Southwest Kalahari, Botswana. Soil Biol Biochem. 2010;42:313-318. DOI:10.1016/j.soilbio.2009.11.009; Mager DM, Thomas AD. Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ. 2011;75:91-97.; Maqubela M, Mnkeni P, Malam Issa O, Pardo M, D’Acqui L. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil. 2009;315:79-92.; Maqubela MP, Muchaonyerwa P, Mnkeni NS. Inoculation effects of two south african cyanobacteria strains on aggregate stability of a silt loam soil. Afr J Biotechnol. 2012;11:10726-10735.; Mohamed ZA. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology. 2008;17(6): 504-516. DOI:10.1007/s10646-008-0204-2; Moreno-García L, Adjallé K, Barnabé S, Raghavan G. Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew Sust Energ Rev. 2017;76:493-506.; Nain L, Rana A, Joshi M, Jadhav SD, Kumar D, Shivay YS, Paul S, Prasanna R. Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant soil. 2010;331:217.; Odjadjare EC, Mutanda T, Olaniran AO. Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol. 2017;37(1):37-52. DOI:10.3109/07388551.2015.1108956; Osman M, El-Sheekh M, El-Naggar A, Gheda S. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils. 2010;46:861-875.; Özdemir S, Sukatar A, Öztekin GB. Production of Chlorella vulgaris and its effects on plant growth, yield and fruit quality of organic tomato grown in greenhouse as biofertilizer. J Agric Sci. 2016;22:596-605.; Pemmaraju D, Appidi T, Minhas G, Singh SP, Khan N, Pal M, Srivastava R, Rengan AK. Chlorophyll rich biomolecular fraction of a cadamba loaded into polymeric nanosystem coupled with photothermal therapy: a synergistic approach for cancer theranostics. Int J Biol Macromol. 2018;110:383-391.; Rana A, Joshi M, Prasanna R, Shivay RS, Nain L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol. 2012;50:118.; Rajasekaran S, Sundaramoorthy P, Sankar GK. Effect of FYM, N, P fertilizers and biofertilizers on germination and growth of paddy (Oryza sativa L.). Int Lett Nat Sci. 2015;35:59-65.; Raposo MFDJ, De Morais RMSC. Chlorella vulgaris as soil amendment: influence of encapsulation and enrichment with rhizobacteria. Int J Agric Biol. 2011;13:719-724.; Raposo MF, De Morais RM, Bernardo de Morais AM. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs. 2013;11(1): 233-252. DOI:10.3390/md11010233; Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N. Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev. 2018;92:394-404. DOI:10.1016/j.rser.2018.04.034; Romanowska-Duda ZB, Grzesik M, Owczarczyk A, Mazur-Marzec H. 2010. Impact of intra and extracellular substances fromcyanobacteria on the growth and physiological parameters of grapevine (Vitis vinifera). In: 20th International Conference on Plant Growth Substance (IPGSA), book of abstracts 28.07- 02.08.2010. Universitat Rovira I Virgili, Tarragona, Spain, 118.; Sahu D, Priyadarshani L, Rath B. Cyanobacteria as potential biofertilizer. CIBTech Journal of Microbiology. 2012;1(2-3):20-26.; Sassi KKB, Silva JA, Calixto CD, Sassi R, Sassi CFC. Metabolites of interest for food technology produced by microalgae from the Northeast Brazil. Rev Ciênc Agron. 2019;50(1):54-65. DOI:10.5935/1806-6690.20190007; Schreiber C, Henning S, Lucy H, Christoph B, Bärbel A, Josefne K, Silvia DS, et al. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. J Appl Psychol. 2018; 30(5):2827-2836; Shanan NT, Higazy AM. Integrated biofertilization management and cyanobacteria application to improven growth and flower quality of Matthiola incana. Res J Agric Biol Sci. 2009;5(6):1162-1168.; Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv. 2011;29(6):896-907. DOI:10.1016/j.biotechadv.2011.07.009; Suganya T, Varman M, Masjuki HH, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev. 2016;55:909-941. DOI:10.1016/j.rser.2015.11.026; Taher MT, Mohamed AY. Improvement of growth parameters of Zea mays and properties of soil inoculated with two Chlorella species. Rep Opinion. 2015;7: 22-27.; Tarkowski P, Ge LY, Yong JWH, Tan SN. Analytical methods for cytokinins. Trends Anal Chem. 2009;28:323-335.; Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh R. Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere. 2008;70: 1919-1928. DOI:10.1016/j.chemosphere.2007.07.038; Venkataraman, GS. 1972. Algal biofertilizers and rice cultivation, Today and Tommorrow’s. New Delhi. Pp 71.; Wang SK, Hu YR, Wang F, Stiles AR, Liu CZ. Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology. 2014;156:117-122.; Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29:949-982.; Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotech. 2013;4(3):405-413. DOI:10.1016/j.copbio.2013.04.004; Williams L, Loewen-Schneider K, Maier S, Büdel B. Cyanobacterial diversity of western european biological soil crusts along a latitudinal gradient. FEMS Microbiol Ecol. 2016;92(10): fiw157. DOI:10.1093/femsec/fiw157; Zayadan BK, Matorin DN, Baimakhanova GB, Bolathan K, Oraz GD, Sadanov AK. Promising microbial consortia for producing biofertilizers for rice fields. Microbiology. 2014;83:391-397.; Zhuang WW, Downing A, Zhang YM. The influence of biological soil crust on 15 N traslocation in soil and vascular plant in a temperate desert of Nortwest China. J Plant Ecol. 2014;8:1-9.; https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/582/pdf; 23; Orinoquia; https://repositorio.unillanos.edu.co/handle/001/3971; https://doi.org/10.22579/20112629.582
-
20Academic Journal
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia, Iss 80, Pp 56-62 (2016)
مصطلحات موضوعية: densificación con explosivos, densificación, arenas sueltas, licuación, mejoramiento de suelos, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource